APPLICATION NOTE

XC9500 Remote Field Upgrade

S XILINX

XAPP 102 January 13, 1998 (Version 1.0)

Application Note

Summary

This application note describes the concept and design of a remote field upgrade subsystem for an in-system programmable
XC9500 CPLD. The description of the subsystem is given along with guidelines that should help with variations on it.
Additional VHDL files are available for direct use of this design.

Specifically, the VHDL files include a complete IRDA receiver design fitting into an XC95108 CPLD.

Xilinx Family
XC9500

Key Terms:

Throughout this application note, frequent reference will be
made to XAPP058 and VHDL code for the XC95108.
These files along with others mentioned are obtainable
from the CPLD Application Notes section of the Xilinx
World Wide Website (http://www.xilinx.com). Also, several
key terms will be used frequently as follows:

EZTag - an early Xilinx ISP download software module

JTAG - Joint Test Action Group; the developers of the IEEE
1149.1 testing standard

JEDEC - a committee that developed programming stan-
dards; a bit file in text form called a JEDEC file

XChecker - one version of a Xilinx serial download cable

SVF - Serial Vector Format, an industry standard data for-
mat

XSVF - modified SVF with some data compression to
reduce code storage requirements

Introduction

In system field upgrades to an XC9500 CPLD are tradition-
ally done by field engineers using a portable PC. The PC
will have either the EZTag or JTAG Programmer Software,
an XChecker or JTAG Parallel Cable with flying wires to
connect to the target application, and an updated JEDEC
programming file. Once all the cables, software, and files
are in place, the engineer begins the field upgrade. This
application note goes one step further in not requiring the
field engineer to be present where the upgrade occurs. It
will require advanced planning and building circuitry into
the embedded system in advance, but that should be
expected.

As an example of making the upgrade when the system is
distant from the field engineer, the design presented com-
bines existing embedded download technology with an
infrared transceiver to introduce the remote nature of the
process. Clearly, the idea can be extended to other media

such as telephone/modem links, cables, laser or radio.
Many off the shelf communication devices are available
today. From another point of view, “remote” is relative. Sev-
eral companies have expressed a desire to simply isolate
their upgrade engineer from the end system, and in that
sense, a simple cable to the outside world via a connector
or a floppy disk interface would also qualify. In this last situ-
ation, customer service personnel have noted the benefit of
making the upgrade without “opening the box.”

Design Description

This application note, coupled with the existing Xilinx Appli-
cation Note XC9500 In-System Programming Using an
Embedded Microcontroller, XAPP058, uses a Siemens
Infrared Data Transceiver (IRM3105), to demonstrate the
concept of a remote field upgrade.

The Siemens infrared transceiver receives updated
XC9500 programming information in the form of an XSVF
(Xilinx Serial Vector Format File) file wrapped in RS232 for-
mat (8nl). Figure 1 shows a block diagram of the XC9500
Remote Field Upgrade design. The XC95108 CPLD con-
tains the functionality described in the VHDL code. The
VHDL design contains a UART receiver (entity UART), tim-
ing interface control engine (entity TIMING), bus controller
(entity BUS_CNTL), and top level connectivity file (entity
IRDNLD).

At the beginning, a CPLD JEDEC design file must first be
transformed into a corresponding XSVF file. Details of this
are provided in XAPPO058. Then, that file must be driven by
software through a serial port connected to the Siemens IR
data transceiver. The receiver end of the transceiver is
attached to the XC95108 where the bit-stream will be inter-
cepted by the UART receiver and loaded into the XSVF
RAM. This is done with a two step protocol process. First,
the UART captures each data byte, then passes it to the
timing interface control engine which manages the data
arrangement in the XSVF RAM memory. Once the data
transfer is complete, the interface control engine flags the

XAPP 102 January 13, 1998 (Version 1.0)

XC9500 Remote Field Upgrade

embedded microcontroller, indicating that the updated
XSVF data is ready in XSVF RAM. The microcontroller will
drive the data down the JTAG port which is attached to the

ISP parts to be upgraded. In Figure 1, the EPROM holds
the 8051 code which performs the embedded download
operation detailed in XAPP058.

pcontroller Latch EPROM
ADO-7 0'2 8
- ADO-7 @©
- wml M la -
©
a 1 oN
o _ AD8-15 | o
JAG T | * P2 [<
Port control)
|:11 Infrared
i Data In
clock
\ \
XC95108
- B ADDR -
RAM [RAM
Scratch XSVF B DATA I
~ ADO7
select

Figure 1. Block Diagram

UART Design

The UART design contains 4 states: MARK, DATA,
STOP_BIT, and ERR, and is designed to parse the XSVF
file, stripping out the start and stop bits, while registering
the 8 data bits. The MARK state is essentially the rest state
once the XSVF data transfer is complete, but also serves to
verify the start bit in an RS232 data sequence. A start bit is
verified by 8 counts while input IR_IN is "low". Once the
start bit is verified, the state machine moves to the DATA
state. A data bit is registered into an 8 bit register contain-
ing an "offset" that is incremented by one each time a bit is
registered. Data bits are registered after 16 counts. Once
the 8 data bits are registered, the state machine moves to
the STOP_BIT state. In the STOP_BIT state, the counter
counts to 16 and verifies that IR_IN is "low". If IR_IN is
"low", the state machine will advance to the MARK state
when IR_IN transitions to a "high". If IR_IN is "high" after 16
counts, the state machine will enter the ERR state to signal
that a transmit error has occurred. While in the STOP_BIT

state, the UART flags the timing interface control engine to
indicate that data is ready to be written into XSVF RAM.

Timing Interface Control Engine

The timing interface control engine is the heart of the
remote field upgrade design. It contains 4 states: HIGH,
LOW, DOWNLOAD, and ISP. The first two bytes of the
XSVF file represent the number of XSVF file bytes to be
transferred. States HIGH, and LOW, register the high, and
low bytes, respectively, into signal "length_count”. While in
the DOWNLOAD state, the "length_count" is decremented
each time a byte is written into XSVF RAM. The timing
interface control engine also increments the internal
address counter, "add_cntr", and controls the "write" signal
allowing data to be written into XSVF RAM. Once the entire
XSVF file has been written into XSVF RAM, the timing
interface control engine enters the ISP state. The ISP state
interrupts the embedded processor, which eventually vec-
tors off to it's interrupt service routine to reconfigure an in-

XAPP 102 January 13, 1998 (Version 1.0)

& XILINX

ir in=0
counter =7
reset=1

reset =0
stopok = true

reset=0

offset =7 reset=1

counter = 15 ¢ bit counter = 15

reset=1 Stop_Dl ir in=1
Figure 2: UART Receiver State Machine

datardy = 0 interrupt = 1

loadbit =1 stat=1

reset=1 reset = 1

datardy = 0 datardy = 1
loadbit = 0 length_count =1
reset =1 download reset = 1

Figure 3: Timing Interface Controller State Diagram

system XC9500 CPLD with the updated information in
XSVF RAM.

The timing interface control engine works in concert with
the bus controller. The bus controller monitors the timing
interface control engine's state bits, and passes control of
the XSVF data bus accordingly. The DOWNLOAD state

allows the XC95108 to retain control of the XSVF data bus
while keeping the processor data bus in high impedance.
The ISP state passes control of the XSVF data bus to the
processor when the appropriate conditions are met (i.e.,
PSE =1, UC_ADD(15) = 1, and READN = 0). The remain-

XAPP 102 January 13, 1998 (Version 1.0)

XC9500 Remote Field Upgrade

ing states, HIGH and LOW, keep the XSVF data bus, and
processor data bus in high impedance.

In the VHDL design, the top level connectivity file IRDNLD)
logically connects the VHDL design using named-order
association. The state bits for the UART, and timing inter-
face control engine are defined in a package called
"datatype". See the comments in the VHDL code.

Programming In-System XC9500
CPLDs via a Remote Source

Serial Vector Format (SVF) is a syntax specification for
describing high level IEEE 1149.1 (JTAG) bus operations.
Xilinx Serial Vector Format (XSVF) is a compressed, binary
version of the SVF file designed specifically for embedded
applications. XC9500 CPLDs use the IEEE 1149.1 Bound-
ary Scan Standard for in-system programming (ISP). Appli-
cation note XAPPO058 describes how to create both the
SVF, and XSVF file. This application note extends the
XSVF file with a Perl script to calculate the number of XSVF
file bytes . Once the binary XSVF file is complete with num-
ber of bytes, the reader should use the binary to Intel Hex
translator in Appendix D (XAPP058) to create an Intel Hex
file suitable for embedded applications. The Intel Hex con-
verted XSVF file is then transferred remotely to the embed-
ded application described herein, and thereby upgrades an
in-system XC9500 CPLD. The remote system should use a
simple UART, coupled with the Siemens Infrared Data
Transceiver to transfer the XSVF file.

Additional Hardware Details

As shown in Figure 1, this design requires only an 8051
microcontroller, address latch, XC9500 CPLD to decode
and upgrade the XSVF RAM, and enough EPROM or non-
volatile memory to contain the embedded C code detailed
in application note, XAPP058.

The VHDL allows the XC95108 CPLD to operate in the
background, receiving infrared data and updating the XSVF
RAM, while the embedded processor works in the fore-
ground on other bus operations. In Figure 1, the 8051 mul-
tiplexes it's port O for both data and address bus operations.
The ALE signal causes the 74x373 to latch the lower order
address, and the higher order address is output on port 2.
The 8051's port 0 then floats, allowing the selected mem-
ory to drive the data inputs. The !PSEN signal goes low to
activate an 8051 program read operation from the EPROM,
or the SEL_RAM signal from the XC95108 CPLD goes
“low” to activate a memory read from the scratch pad RAM.
The EPROM contains the embedded C code detailed in
XAPPO058. The clock is a TTL type crystal rated at 16MHz
which provides global clocking in the XC95108, and the
8051 microcontroller. The 16MHz crystal is also 16 times
the infrared data transfer rate.

Modifying the Design

This application note can be used as-is to reconfigure any
in-system XC9500 CPLD. If your system contains multiple
CPLDs, or you are doing more then the typical ERASE/
PROGRAM operations (i.e. ERASE/PROGRAM/VERIFY,
or BYPASS), you may need to modify the VHDL code to
include 4 bytes for the "length_count", and replace the
existing XSVF RAM with a larger one. Check the size of the
XSVF file generated by the M1 JTAG Programmer first. If
the file is larger than 65,536 bytes, you will need to modify
the VHDL code as described above. Also, you must modify
the XSVF sizing utility (Perl script) with the following:

$ss=pack("l", $size);
The original code contains an "S" to signify SHORT INTE-
GER. Replacing the "S" with an "I" yields a 4 byte integer.

Finally, add one address line to the VHDL code. In other
words,

XSVF_ADD: standard_logic_vector(15 downto 0).

Planning for Field Upgrade

One additional address line may or may not cause prob-
lems. If the designer didn't leave room for growth and
packed the design to 100%, the additional address line can
cause problems. Some designers weigh cost and leaving
room for growth as two separate entities. Printed circuit
rework can be costly, and typically results from a hasty
design change that expands the design.

Pin-locking refers to allowing the CPLD software to fit a
design based on an algorithm that tends to spread equa-
tions throughout the CPLD. Once the design is fit, future
design changes can be made without compromising the
original pin-out. The XC9500 CPLD has a very robust pin-
locking architecture, designed for ISP. However, it's still
important to recognize that if a design is likely to grow, it's
best not to force the software to override the pin-locking
algorithm, and pack the design. Some techniques key to
leaving room for growth are:

1. Don't pack a design more than 85%. Figure 4 below
shows a partial summary of the fitting results for the
VHDL code in this application note

Notice that the Macrocells Used is 79%, or 86 out of
108. Also notice that out of 69 total user I/O, 9 are left
over. This leaves a cushion for future changes.

2. Provide traces on your circuit board that physically con-
nect 1/0O to future applications. If it doesn't alter the oper-
ation, tie the trace to a known logic level. Xilinx
recommends not using unused 1/O to board ground, and
use the "Create Programmable Grounds" option in the
Xilinx CPLD Software.

3. If specific /0O pins need to be reserved, provide
“dummy” functions such as:

OUT =IN

XAPP 102 January 13, 1998 (Version 1.0)

& XILINX

Or, if using a schematic capture package, be sure to 4. Allow the CPLD software to perform an “auto device

attach the appropriate LOC constraint to the output pad select” when initially fitting your design. This may
and input pads, respectively. See the Xilinx on-line help increase run time slightly, but the software will automati-
system for more information on the LOC keyword. cally select the best device for pin-locking.

XACT: version M1.3.7 Xilinx Inc

Fitter Report
Design Name: irdnid
Fitting Status: Successful

*kkkkkkkhkkkkhkkkkhhkkkhhkhkhhkhkkkhkhkhkhkkhxhhrhxhhrrx Resou rce S um mary *

nnnnnnnnnnnnnnnnnnnnnnnn

Design Device Macrocells Product Terms Pins
Name Used Used Used Used
irdnid XC95108-10-PC84 86/108 (79%) 362/540 (67%) 60/69 (86%)

PIN RESOURCES:

Signal Type Required Mapped Pin Type Used Remaining
Input :20 20 I/0 :58 5
Output :30 30 GCK/IO 1 2
Bidirectional 8 8 GTS/IO :0 2
GCK 1 1 GSR/IO 1 0
GTS 0 0
GSR 1 1
Total 60 60

Figure 4: Partial Resource Summary

Summary

The XC9500 Remote Field Upgrade design was verified
using the VHDL test bench provided in Appendix B, with the
Synopsys VHDL Debugger Software. The design was
translated using the Synopsys Design Compiler, v3.4b. It
was fit to an XC95108-10PC84 CPLD with the M1.3.7
XACTcpld Software using default settings, and no time-
specs. It was assembled on a generic prototyping board.
Figure 5 shows a photo of the Remote Field Upgrade pro-
totype described in this application note.

Figure 5: Field Upgrade Prototype

XAPP 102 January 13, 1998 (Version 1.0) 5

	Introduction
	Design Description
	UART Design
	Timing Interface Control Engine
	Programming In-System XC9500 CPLDs
	Additional Hardware Details
	Modifying the Design
	Planning for Field Upgrade
	Summary

