
Summary

This introduction covers the basics of VHDL as applied to Complex Programmable Logic Devices. Specifically included are
those design practices that translate well to CPLDs, permitting designers to use the best features of this powerful language
to extract the best performance from CPLD designs.

Family

XC9500

Introduction
VHDL, is an extremely versatile tool developed to aid in
many aspects of IC design. The language allows a user to
express circuits in many levels of detail. Unfortunately, this
versatility also makes the VHDL synthesis tools job a lot
more difficult. There is room for interpretation depending on
the VHDL coding style. A particular synthesis tool may
implement the same code very differently from another. To
achieve the best results using VHDL, the designer should
work at the Register Transfer Level (RTL).

Although working at the RTL for designs may be more
tedious, all of the major synthesis tools on the market are
capable of generating a reasonable implementation of
designs for CPLDs when specified this way. Using higher
levels of abstraction may give adequate results, but tend to
be less efficient. Additionally, by expressing designs simply,
the designer also gains the ability to port VHDL designs
from one synthesis tool to another with minimal edits.

Overview
VHDL looks very similar to any other kind of programming
language. [Note VHDL is not case sensitive.] Let's look at
the composition of a typical design entered in VHDL. The
first thing you will notice are library statements. Libraries
allow a designer to use very common functions and
declarations without having to redefine them every time
they need to be used. Next, each design requires an
ENTITY declaration. This defines the designs I/O signals.
Following the entity is an ARCHITECTURE description
detailing the entity behavior. Within the architecture, the
designer declares internal signals, components, and
processes to describe the designs detailed behavior.

Figure 1 shows a complete VHDL design with a single D-
type Flip Flop.

library ieee;
use ieee.std_logic_1164.all;
--Comments are denoted by two - signs.
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
--Two very useful libraries. Use these if
--you use any kind of math function, such as
--building counters.
entity DFLOP is

port
(
my_clk : in std_logic;
D_input : in std_logic;
Q_output : out 1std_logic,
);

end DFLOP;

architecture behavior of DFLOP is
signal my_useless signal: std_logic;
--Additional internal signals and constants
--would be added here.
begin

process
begin

wait until my_clk'event and my_clk = '1';
Q_output <= D_input;

end process;
end behavior;

Figure 1: Simple VHDL Design for a D Flip Flop

Entity
The ENTITY declaration is similar to that of a C header file,
or a schematic symbol block. The ENTITY declares all of
the input and output ports of a particular component. The
port directions are defined as input, output, inout, or buff-
ers. Inputs are for declaring dedicated inputs, and outputs
declare dedicated outputs. Inouts define bi-directional sig-
nals, and a buffer is used when a dedicated output must
also be used as an internal signal. The type of signals

0

A CPLD VHDL Introduction

XAPP 105 January12, 1998 (Version 1.0) 0 4* Application Note



APPLICATION NOTE
XAPP 105 January12, 1998 (Version 1.0) 1

A CPLD VHDL Introduction
associated with these declarations should be of the
std_logic type. The std_logic types are defined in the library
STD_LOGIC.1164. Table 1 shows different port declara-
tions.

Architecture
The ARCHITECTURE statement in Figure 1 allows the
designer to define entity behavior. Multiple architectures
can be defined for the same entity. This allows a user to
assign different designs to the same entity block. Within the
architecture block, the designer can declare signals to be
used internally, additional components that the design will
require, and different processes to describe how the design
will respond to external signals.

Signals
Signal declaration is similar to the entity declarations. Sig-
nals are generally declared as bits, or vectors. See Table 2
for examples of proper syntax. The designer should also be
aware that these signals may or may not actually be used
after synthesis, depending on the level of optimization that
occurs.

Operators

Assignment
The most basic operator in VHDL is the assignment

operator, <=. For example:

A <= B;

means ‘A’ is assigned the value of ‘B’. Note that ‘A’ and ‘B’
must have the same number of elements, or bits, in order
for assignment to be valid, otherwise an error will be
flagged at compile time. Additionally, we can assign bit val-
ues.

Data_out <= "00001111";

And if Data_out was declared as an inout, we can also
assign the tristate value as well.

Data_out <= "ZZZZZZZ";

Logical Operators
In the previous examples, you may have noted that we use
the word "and " to perform a logical “and ” function. Unlike
many other HDLs, VHDL uses the following text to perform
the logical functions: and , or, xor , nor , nand and not .
Relational operators are simply: =, >, >=, <, <=, /=.

Arithmetic Operators
Binary arithmetic in VHDL must be defined. Luckily,

there are predefined libraries for the most common arith-
metic functions. The two IEEE libraries:

USE ieee.std_logic_arith.all,
USE ieee.std_logic_unsigned.all,

defines the binary add, subtract, multiply, and divide func-
tions. The operators are simply: +, -, * ,and / .

Process
The process statement allows designers to define a set of
procedures the design must follow when a certain signal
changes. A behavioral description may contain several dif-
ferent processes to achieve the desired functionality. The
most distinguishing factor of any HDL compared to a stan-
dard programming language is the idea of concurrent eval-
uation, or parallel execution. Keeping this in mind, a
designer new to VHDL must remember that all processes
run in parallel. In order to process VHDL code, however, a
compiler must still decide when to evaluate the process in
order to successfully simulate and synthesize the code.
The concept of a sensitivity list is used where a process is
only considered when the state of a signal in the sensitivity

Table 1: Port Declaration Types

Signal Type Output
my_clock :in std_logic;

my_input :in std_logic;

my_address bus :in std_logic_vector (15 downto 0)

my_data_bus :inout std_logic_vector (31 downto 0);

my_output :out std_logic;

my_counter :buffer std_logic vector (7 downto 0);

Table 2: Signal Declaration

Signal Declaration Output
signal internal_clock :std_logic;

signal my_signal :std_logic;

signal my_register :std_logic_vector (15 downto 0);
2 XAPP 105 January12, 1998 (Version 1.0)

list changes. In the following example, myoutput will be
assigned myinput whenever myinput changes. This is
shown in Figure 2.

Synchronous logic can employ an implied sensitivity by
using the WAIT UNTIL statement. This allows a process to
idle until the function specified becomes true. This is conve-
nient for defining rising edge triggered flip-flops. Any design
utilizing the flip flops of the XC9500 can be coded as in Fig-
ure 3.

In this example, a D-type flip flop is generated where the
input comes from myinput, the output attaches to myoutput,
and the clock signal is tied to myclock.

Conditionals

Conditional statements in VHDL are handled primarily by
two statements, the "if-then-else", and "case" statements.

IF-THEN-ELSE Statements

You must completely specify the default conditions when
synthesizing designs. For example compare Figure 4 to
Figure 5.

The code shown in Figure 4 will implement a one-shot
circuit and set chip_sel when the address_bus is greater
than the bit pattern “00001111”. The code in Figure 5, how-
ever, will perform the proper address decode.

process (myinput)
begin
myoutput <= myinput;

end process;

Figure 2: Process Statement

process
begin
Wait until myclock'event and myclock = '1';
myoutput <= myinput;

end process;

Figure 3: Flip Flop

if my_address_bus > "00001111" then chip_sel <= '1';
end if;

Figure 4: One-shot Circuit

if my_address_bus > “00001111” then chip_sel <= '1';
else chip_sel <= ‘0’;

end if;

Figure 5: Correct If-Then-Else Decoder
XAPP 105 January12, 1998 (Version 1.0) 3

A CPLD VHDL Introduction
CASE Statements
For case statements, make sure there is a when others to
specify the default condition, even if it's a null statement.
Figure 6 shows how to code a simple 4 to 1 mux.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port
(
Ain : in std_logic_vector (15 downto 0);
Bin: instd_logic_vector (15 downto 0);

 Cin: instd_logic_vector (15 downto 0);
Din: instd_logic_vector (15 downto 0);
Muxout: outstd_logic_vector (15 downto 0);
sel: instd_logic_vector (1 downto 0)
);

end mux;

Architecture behavior of mux is:
begin
process (Ain, Bin, Cin, Din, sel)

begin
case sel is
when "00" => Muxout <= Ain;
when "01" => Muxout <= Bin;
when "10" => Muxout <= Cin;
when "11" => Muxout <= Din;
when others => null;
end case;

end process;

end behavior of mux

Figure 6: Case Statement Example
4 XAPP 105 January12, 1998 (Version 1.0)

State Machines
Writing an efficient state machine in VHDL can be a tricky
task. The easiest way to write a concise state machine with
a clean implementation is to use the CASE statement.

Maintaining your state machine code this way allows any
other user (or even yourself a week later) to review your
code and understand it quickly. The following example
describes the operation of a generic traffic light controller.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity traffic is

port
(
My_clk: instd_logic;
Red_light: bufferstd_logic;
Yellow_light: bufferstd_logic;
Green_light: bufferstd_logic
);

end traffic;
architecture behavior of traffic is
signal my_counter : std_logic_vector (4 downto 0);
signal my_state : std_logic_vector (2 downto 0);
constant RED_STATE : std_logic_vector (2 downto 0) := "100";
constant YELLOW_STATE : std_logic_vector (2 downto 0) := "010";
constant GREEN_STATE : std_logic_vector (2 downto 0) := "001";

begin
Red_light <= my_state(2);
Yellow_light <= my_state(1);
Green_light <= my_state(0);

process
begin
wait until My_clk'Event and My_clk = '1';
case my_state is

when GREEN_STATE =>
my_counter <= my_counter + 1;
if my_counter = "11110" then

my_state <= YELLOW_STATE;
end if;

when YELLOW_STATE =>
my_counter <= my_counter + 1;
if my_counter = "11111" then

my_state <= GREEN_STATE;
end if;

when RED_STATE =>
if my_counter < "11110" then

my_counter <= my_counter + 1;
else

my_state <= GREEN_STATE;
my_counter <= "00000";

end if;

when others => my_state <= RED_STATE;
my_counter <= "00000";

end case;
end process;

end behavior;

Figure 7: State Machine Example
XAPP 105 January12, 1998 (Version 1.0) 5

A CPLD VHDL Introduction
Coding Techniques
Efficient synthesis of VHDL often depends on how the
design was coded. As different synthesis engines will pro-
duce different results, leaving as little as possible to chance
will increase the speed and improve the density of your
design. This, however, often trades off some of the advan-
tages of using higher level constructs and libraries.

Compare functions:

Address decodes often require a decode of a range of
address locations. It is inevitable to use the greater than or
less than test. Wait state generation, however, often waits a
known number of clock cycles. Consider this VHDL code.

when wait_state =>
if wait_counter < wait_time then

wait_counter <= wait_counter + 1;
my_state <= wait_state;

else
my_state <= next_state;

end if;

This generates extensive logic to implement the compare.
A more efficient implementation would be to branch on the
equality condition.

when wait_state =>
if wait_counter = wait_time then

my_state <= next_state;
else

wait_counter <= wait_counter + 1;
my_state <= wait_state;

end if;

Don't Care Conditions

When writing VHDL, it is easy to forget about signals that
are of no concern in the specific piece of code handling a
certain function. For example, you may be generating a
memory address for a memory controller that is important
when your address strobes are active, however, these out-
puts are essentially don't care conditions otherwise. Don't
forget to assign them as such, otherwise, the VHDL synthe-
sizer will assume that it should hold the output at the last
known value.

when RAS_ADDRESS =>
memory_address <= bus_address[31 downto 16]

RAS <= '0';
CAS <= '1';
my_state <= CAS_ADDRESS

when CAS_ADDRESS =>
memory_address <= bus_address[15 downto 0]

RAS <= '0';
CAS <= '0';
wait_count <= zero;
my_state <= WAIT_1

when WAIT_1 =>
RAS <= '0';
CAS <= '1';

if wait_count = wait_length then
my_state <= NEXT_ADDRESS;

else
wait_count <= wait_count + 1;

end if;

This design can be implemented much more efficiently if
coded as:

when RAS_ADDRESS =>
memory_address <= bus_address[31 downto 16]

RAS <= '0';
CAS <= '1';
wait_count <= "XXXX";
my_state <= CAS_ADDRESS

when CAS_ADDRESS =>
memory_address <= bus_address[15 downto 0]

RAS <= '0';
CAS <= '0';
wait_count <= "0000";
my_state <= WAIT_1

when WAIT_1 =>
memory_address <= "XXXXXXXXXXXXXXXX";

RAS <= '0';
CAS <= '1';

if wait_count = wait_length then
my_state <= NEXT_ADDRESS;

else
wait_count <= wait_count + 1;

end if;

Note that we add don't care for the wait_count register in
the RAS_ADDRESS state as well as adding a don't care
assignment for the memory address register in the WAIT_1
state. By specifying these don't cares, the final optimized
implementation will be improved.
6 XAPP 105 January12, 1998 (Version 1.0)

Using Specific Assignments

There is a temptation with VHDL to use language tricks to
compact code. For, example, using a counter to increment
a state variable. While this allows you to write quicker and
visually appealing code, the result is the synthesis tool gen-
erates more complex logic to implement the adder and try
to optimize the logic that is unused later. It is generally bet-
ter to simply assign your desired bit pattern directly. This
generates logic that is quicker to collapse during the subse-
quent fitter process.

Modularity

A designer can “rubber stamp” a design by instantiating
multiple instances of an existing design entity. Component
instantiation is basically the same as applying schematic
macros. First, apply the COMPONENT declaration to
define what the input and output ports are. The component
declaration must match the actual entity declaration of the
component. For example, if we reused the flip-flop from our
previous example from Figure 1 in another design, we can
declare it with:

The component can than be instantiated with the signals
necessary to connect the component to the rest of the
design. The signals can be mapped positionally or explic-
itly. Positional mapping is quicker to enter, but forbids omit-
ting unneeded logic. For example, if you had an 8 bit
loadable counter that was never reloaded, explicit mapping
allows you to omit signal assignment to the input ports and
still use the same 8 bit counter definition.

To instantiate the component requires a unique label. Then
we state the component name being instantiated followed
by the positional signal assignments we are attaching to the
component. An example of position signal mapping would
be:

my_flop: DFF port map(clk, my_input, my_output);

The same flop mapped explicitly is shown below. Note: that
the order can be altered when mapping explicitly.

my_second_flop: DFLOP port map (my_clk => clk,
Q_output => my_other_output,
D_input => my_other_input);

Multiple Instances

Generating many instances of the same component can be
done with the looping construct. The for loop in this case
generates our index for vectored signals. In this example,
we first define how a latch will operate.

library ieee;
use ieee.std_logic_1164.all;
entity latch is

port
(
Din: instd_logic;
enable: instd_logic;
Qout: inout std_logic
);

end latch;

architecture behavior of latch is:

begin
process (Din, enable)
begin
if enable = '1' then Qout <= Din;
end if;
end process;

end behavior;

In this example, we first define how a latch will operate. We
will use this latch as a component in our loadable counter.

Figure 8: Loadable Counter

The value it loads will either be from the latched inputs
(Din), or a set of direct inputs (Syncin). This will be selected
by the sel signal. See Figure 9 next page.

component DFLOP port

(

my_clk :in std_logic;

D_input :in std_logic;

Q_output :out std_logic

);

Select
Din Count

Out

Counter

(7 downto 0)

Latch
Din

ena

Qout

Load

Clk

Din

load

Latchout (7 downto 0)
XAPP 105 January12, 1998 (Version 1.0) 7

A CPLD VHDL Introduction
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use WORK.ALL;
entity counter is:

port
(
Din :instd_logic_vector (7 downto 0);
Syncin:instd_logic_vector (7 downto 0);
load:instd_logic;
sel :instd_logic;
clk :instd_logic;
enable:instd_logic;
Count_out:bufferstd_logic_vector (7 downto 0)
);

end counter;
architecture behavior of counter is:

signalcounter:std_logic_vector (7 downto 0);
signallatchout:std_logic_vector (7 downto 0);
component latch port (Din, enable:in_ std_logic; Qout:out_ std_logic);
end component;

begin
Count_out <= counter(7 downto 0);
--Here, we map 8 instances of our latch with a FOR
--loop.
--Note: The label sync. EachFOR loop must have a
--unique label.

sync: for i in 0 to 7 GENERATE
latch_load: latch port map (Din(i), enable, latchout(i));

end GENERATE sync;

process
begin

wait until clk'Event and clk = '1';
if (load = '1' and sel = '0') then counter

<= latchout;
elsif (load = '1' and sel = '1') then counter

<= Syncin;
else counter <= counter + 1;
end if;

end process;
end behavior;

Figure 9: Counter Example
8 XAPP 105 January12, 1998 (Version 1.0)

Bi-Directional Ports

To implement bi-directional ports (Figure 10), we must first
define the port to be of type inout. Then, we must define
when the port is driving, and when it is in a high-Z mode.
The example in Figure 11 implements this structure.

library ieee;
use ieee.std_logic_1164.all;
entity bidi is

port
(
Data:inoutstd_logic_vector (7 downto 0);
direction in std_logic;
clk:in std_logic
);

end bidi;

architecture behavior of bidi is:

signal my_register : std_logic_vector (7 downto
0);

begin
process (direction, my_register)
begin

if (direction = '1') then
Data <= "ZZZZZZZZ";
else
Data <= my_register;
end if;

end process;
process

begin
wait until clk'event and clk = '1';
my_register <= Data;

end process;
end behavior;

Figure 10: Bi-directional Port Definition

Summary
The basic structure of a VHDL design has been shown, as
well as numerous examples of basic building blocks. The
examples provided are independent of specific third party
synthesis tools. By using these basic constructs, you can
implement your own designs and generate a netlist for the
Xilinx M1 software.

Figure 11: Bidirectional Port

my_register

Data
D Q

Clk
XAPP 105 January12, 1998 (Version 1.0) 9

	Introduction
	Overview
	Entity
	Architecture
	Signals

	Operators
	Assignment
	Logical Operators
	Arithmetic Operators

	Process
	Conditionals
	CASE Statements

	State Machines
	Coding Techniques
	Compare functions:
	Don't Care Conditions
	Using Specific Assignments
	Modularity
	Multiple Instances
	Bi-Directional Ports

	Summary

