
3

Summary
This paper describes design practices to synthesize high density designs (i.e. over 100k gates), composed of large
functional blocks, for today’s larger Xilinx FPGA devices using the Synopsys FPGA Compiler. The Synopsys FPGA
Compiler version 1998.02, Alliance Series 1.5, and the XC4000X family were used in preparing the material for this
application note.

Introduction
For smaller designs, optimal quality of results can often be
achieved by ungrouping hierarchical boundaries (compile
-ungroup_all). For high density designs, designers tra-
ditionally partition their circuits into small 5-10k gate mod-
ules. With todays version of FPGA Compiler (1998.02) and
currently available workstation hardware it is no longer nec-
essary to partition a design into small 5K to 10K blocks for
efficient synthesis. In fact, artificial partitioning the design
can worsen optimization results by breaking paths into sep-
arate partitions and preventing FPGA Compiler from being
able to optimize the entire path. Judicious partitioning into
larger blocks simplifies overall design budgeting and chip-
level synthesis methodology.

Compile Strategies
ASIC designers traditionally use the compile-charac-
terize-write_script-recompile method which
compiles lower level modules, and works up the hierarchy.
This methodology, though effective for ASIC designs which
have many complex timing requirements, is not as effective
for FPGAs. FPGA timing constraints are applied mainly for
RTL synthesis, post-synthesis static timing analysis and for
driving the place and route tool via TIMESPEC constraints
written by FPGA Compiler in the final netlist. This is
because FPGA timing constraints, while consulted during
synthesis, are used mainly by the place and route tool,
which receives the constraints via TIMESPEC parameters
written into the final netlist by FPGA compiler.

Selecting a Strategy
In this section several compile strategies and practical
examples are presented.

Design goals and timing requirements require selecting a
different compile strategy for each hierarchal block.

Selective flattening of hiearchical blocks is also discussed.
There are trade-offs to be made for preserving or removing
hiearchical boundaries. In most cases removing all hiear-
chical boundaries will lead to better post-synthesis quality
of results but require longer compile times. With larger

designs preserving some levels of hierarchy will lead to
better placement routing results and shorter compile times.

The designer must determine which trade-offs to make to
meet his design goals and timing requirements.

High density designs require greater selectivity on which
hierarchical boundaries to eliminate for synthesis. Flatten-
ing a 150k gate design can lead to long compile times, and
compromise results. The following guidelines will help in
choosing which blocks to flatten in a large design:

1. Eliminating boundaries between combinatorial blocks
allows the synthesis tool to optimize glue logic across
the hierarchy. Figure 1 illustrates this configuration. The
hierarchical blocks A, B and C are eliminated so that the
three combinatorial blocks can be merged and opti-
mized at once.

2. There is no need to flatten hierarchical boundaries
bounded by registers since combinatorial blocks are
already separated by register boundaries. Figure 2
shows two examples matching this description. The
boundaries of A and C can be preserved, especially if
they are large blocks.

3. Flatten deeply nested small hierarchical blocks and pre-
serve higher level module boundaries. In Figure 3 block
A in design_40k contains deeply nested small hierarchi-
cal blocks. It is best to flatten block A
into design_40k (current_design A; ungroup -
all -flatten). Block B should be flattened some
paths between A and B are not bounded by registers.
The four top level blocks should be preserved if
bounded by registers.

0

Synopsys/Xilinx High Density
Design Methodology Using FPGA
Compiler™

XAPP107 August 6, 1998 (Version 1.0) 0 3* Written by: Bernardo Elayda & Ramine Roane



Application Note
XAPP107 August 6, 1998 (Version 1.0) 1

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
Figure 2: Hierarchical Boundaries Bounded by Registers

Figure 3: Hierarchical Design

Writing DC Scripts
The full-chip design in Figure 3 will be used to illustrate dif-
ferent hierarchical compile methodologies. Different optimi-
zation strategies are used for each methodology to
demonstrate simple and efficient compile scripts which
have the ability to handle large designs.

Compile strategies described in this section are:

• Top-down compile
• Iterative compile: compile -incremental
• Bottom-up compile: compile-characterize-

write_script-recompile

These are general guidelines to better manage dc_shell
scripts:

• Create a “setup.scr” script containing user variables.
• Create a “constraint” file for each block. (These files

typically have a “.con” file extension.)

GLUE
LOGIC

GLUE
LOGIC

GLUE
LOGIC

A B C

>
REG
 C >

REG
 A

combine

Figure 1: Hierarchical Boundaries Between Combinatorial Logic

>
REG

GLUE
LOGIC

C

>
REG
 C

GLUE
LOGIC

A

>
REG
 A

>
REG

GLUE
LOGIC

A

>
REG
 A

GLUE
LOGIC

C

>
REG
 C

bound_combine

design_20kdesign_20k

design_60kdesign_60k

design_30kdesign_30k design_40kdesign_40k

TTop_Leop_Levvelel

AA BB

hierhierar_design.epsar_design.eps
2 XAPP107 August 6, 1998 (Version 1.0)

• Name constraint files generated by characterize
with a “.wscr” extension. This easily identifies that the
files are generated by characterize-
write_script.

• Keep action commands in the main script, i.e.:
compile, analyze, elaborate, link,
include, write, etc.

• For more efficient pad mapping (e.g. automatic use of
IOB registers), always run the insert_pads
command on top level primary ports before the
compile command.

Top-down Compile

This is the simplest, fastest and often most efficient way of
compiling a design. It can be combined with selective flat-

tening of hierarchical blocks. It is the preferred method for
Xilinx FPGAs. Figure 4 contains a script for compiling the
design illustrated in Figure 3, where the four top level hier-
archical blocks are preserved and the blocks within
design_40k are flattened.

Iterative Compile

Use this method when multiple designers work on the
same circuit, successfully compile different blocks of the
design, and need to link them together in a top-level
design. Figure 5 provides the script used by the designer
working on design_40k. Identical scripts are used on all
other blocks.

Include setup.scr /* environment setup: link libraries, path */
SRC_FILES = “file1 file2 [...]”
analyze -f <format> SRC_FILES

/* Flatten design_40k */
elaborate design_40k
uniquify /* if multiple instances of same component exist */
ungroup -all -flatten

/* Compile entire design top-down */
elaborate TOP_LEVEL
include TOP_LEVEL.con /* timing constraints */
uniquify
check_design /* summary of design issues and warnings */
set_port_is_pad *
insert_pads
compile -map_effort medium

report_fpga
report_timing
write -f db -o TOP_LEVEL_topdown.db
quit

Figure 4: Top-down Compile Script With Selective Flattening Iterative Compile
XAPP107 August 6, 1998 (Version 1.0) 3

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
Figure 6 shows the script used to link four blocks together
in TOP_LEVEL. Note: that compile -incremental is
used to map all unmapped logic that TOP_LEVEL itself
may contain, and eventually, to fix new timing violations
introduced while linking the four blocks.

Bottom-up: compile-characterize-
write_script-recompile

Bottom-up compile with timing characterization and time
budgeting is mainly used for ASIC designs. This method is
not recommended when using Xilinx FPGAs. Using this
methodology can result in long compile times, with little or
no improvement in timing. Note: the scripts for this method-
ology are provided for designers who use FPGAs for proto-
typing, but whose final target is an ASIC design.

Include setup.scr /* environment setup:link libraries, path ... */
SRC_FILES = “file1 file2 [...]”
analyze -f <format> SRC_FILES

/* Flatten and compile design_40k */
include design_40k.con
uniquify
check_design
set_port_is_pad out* /* primary ports in this example */
insert_pads
compile -map_effort medium -ungroup_all

report_fpga
report_timing
write -f db -o design_40k_flat.db
quit

Figure 5: Iterative Compile: Script Used For Design_40k

Include setup.scr /* environment setup: link libraries, path... */
SRC_FILES = “top level file”
analyze -f <format> SRC_FILES

read -f db design_60k.db
read -f db design_40k_flat.db
read -f db design_30k.db
read -f db design_20k.db
elaborate TOP_LEVEL
include design_40k.con
uniquify
compile -map_effort high -incremental

report_fpga
report_timing
write -f db -o TOP_LEVEL_incremental.db
quit

Figure 6: Iterative Compile: Incremental Update of TOP_LEVEL
4 XAPP107 August 6, 1998 (Version 1.0)

Include setup.scr /* environment setup: link libraries, path... */
SRC_FILES = “file1 file2 [...]”
analyze -f <format> SRC_FILES

/* First pass compile */
elaborate design_40k

current_design A
include A.con
compile -map_effort medium

current_design B
include B.con
compile -map_effort medium

current_design design_40k
include design_40k.con
compile -map_effort medium -incremental

report_fpga
report_timing
write -f db -hierarchy -o design_40k_pass1.db

/* Characterization */
characterize {A B}
current_design A
write_script > A.wscr
current_design B
write_script > B.wscr

remove_design -designs

/* Second pass compile */
elaborate design_40k

current_design A
include A.wscr
compile -map_effort medium

current_design B
include B.wscr
compile -map_effort medium

current_design design_40k
include design_40k.con
compile -map_effort high -incremental

report_fpga
report_timing
write -f db -hierarchy -o design_40k_pass2.db

quit

Figure 7: Bottom-up Compile With Characterization
XAPP107 August 6, 1998 (Version 1.0) 5

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
Timing constraints passed to the place and route tool with
Bottom-up: methodology are more realistic and will likely
improve the place and route process.

Bottom-up methodology performs a first pass bottom-up
compile using the designer’s timing constraints. Once the
entire circuit is mapped, the FPGA Compiler performs a
static timing analysis on the hierarchical design. A char-
acterize and write_script exports realistic timing
constraints. Finally, restarting from the RTL source, a sec-
ond pass of bottom-up compile is performed with the
write_script data. Figure 7 above shows a script using
this methodology to synthesize design_40k without flatten-
ing the hierarchy.

However we, still recommend a top-down or iterative com-
pile methodology along with using realistic top-level timing
constraints; methods can lead to similar results but with
faster compile times.

Describing Timing Constraints
Designers set performance objectives for a design to guide
FPGA Compiler’s optimization engine and Xilinx’s place
and route tools. It is necessary to set timing constraints to
perform static timing analysis. Note: It is extremely impor-
tant to set realistic constraints to avoid excessive runtimes
for both synthesis and place and route.

Design Constraint Commands

Timing constraints include:

- Input delay: set_input_delay
- Output delay: set_output_delay
- Clock specifications: create_clock,

set_clock_skew
- Path group specification: group_path

When synthesizing Xilinx to FPGAs, avoid using design-
rule commands such as: set_max_transition,
set_max_capacitance, set_max_fanout... since
place and route tools do not require any specific design
rules.

Timing Exception Commands

By default, FPGA Compiler calculates single cycle timing
for the clocked paths in a design. Designers can override
this with timing exceptions. Timing exceptions are used
when logic functions require more than one cycle to exe-
cute, or when some signals are considered non-critical.
FPGA Compiler allows designers to define multi-cycle
paths, false paths, and point-to-point delays. These com-
mands are only needed if designers have point-to-point
timing exceptions. Timing exception commands must be
specified on valid start and end points. A valid start point is
an input port, or the clock pin of a register. A valid end point
is an output port, or the data pin of a register. Timing excep-
tion commands include:

- set_multi_cycle_path
- set_false_path
- set_max_delay
- set_min_delay

Timing Versus Area
FPGA Compiler’s numerous commands provide flexibility
to target different optimization strategies based on design
goals. The most useful commands and variables affecting
compile are:

- uniquify: Creates a unique instance of the same
design. Typically used in situations with multiple
instantiations of the same design.

- ungroup: Ungroups a level of hierarchy.
- set_dont_touch: Sets a “dont_touch” attribute

on a design or instance.
- set_structure: Selects between Boolean and

timing-driven structuring.
- compile_new_boolean_structure: Variable

which turns on the new Boolean structuring
algorithm. This is typically used on designs that are
area sensitive

Area-sensitive blocks should be separated from timing crit-
ical modules. Figure 8 shows an example of a script com-
piling design_40k, where only block A is critical for area.
Block B was successfully compiled for timing.

HDL Design Guidelines
When designing with HDL languages, always think of how
to implement complex functions with basic operators. For
instance:

1. Dividing a bit vector X by a multiple of 2, can be realized
by simply shifting bits to the right (X>>n). This is an opti-
mal implementation because it does not require any
gates, and can be realized by wire connections.

2. Multiplying a bit vector X by 1.8 can be approximated by
the following expression: X + 0.5*X + 0.25*X = 1.75*X =
X + X>>1 + X>>2, which only requires two adders to
implement.

3. For more accuracy, multiplying bit vector X by 1.8 can
use this expression: X*115/64 = 1.797*X = (X*115) >> 6.
This requires multiplication by a constant, which will be
reduced by FPGA Compiler by performing constant
pushing and gate optimization during compile.

For a better implementation, X*115 can also be realized
with 3 subtractors: X*115 = X*128 - X*8 - X*4 - X =
X<<7 - X<<3 - X<<2 - X.

4. More complex functions (FFT, sin, …) can be realized by
sampling data in a table lookup or using Xilinx Core-
GEN™ or LogiCORE™.
6 XAPP107 August 6, 1998 (Version 1.0)

.

Use STD_LOGIC Data Types in VHDL
Whenever possible use the STD_LOGIC data types for
both synthesis and simulation. Using INTEGER results in
increased compile times and poor results thus making the
simulation process very difficult. (An INTEGER type signal
is 32 bits wide. If the designer must use INTEGER, use it
with the correct RANGE statement.)

If-Then-Else and Case Statements
Though logically equivalent, if-then-else and case
statements are not implemented in the same way. Case
statements are more flexible in Verilog than VHDL, requir-
ing usage of Synopsys Verilog directives (e.g. //synop-
sys full_case parallel_case) to drive the final
implementation.

It is very important to define the value of all outputs for each
condition when using sequential blocks, (process in VHDL
and always@ in Verilog). Failing to do so will result in syn-
thesis of unwanted latches (in order to hold the value of the

missing outputs). Check for the detailed list of latches and
registers inferred, in the “elaborate” command log.

VHDL

The conditions of a case statement (Figure 9) in VHDL are
mutually exclusive constants; therefore, a case statement
is always implemented as a wide multiplexer. Figure 9
shows an example of VHDL case statement and its imple-
mentation. If all possible cases are enumerated the “when
others” statement is not required. When using an enumer-
ated type, it is recommended not to use the “when others”
statement.

If-then-else statements infer priority encoded logic,
yielding slower nested two-input multiplexer implementa-
tions. Figure 10 shows an example of a VHDL if-then-
else statement and its implementation. This description
can only be synthesized to a priority encoded implementa-
tion since the non-constant conditions of the if-then-
else statement cannot be assumed to be mutually exclu-
sive. Whenever possible case statements should be used
rather than if-then-else statements in VHDL.

elaborate design_40k
include design_40k.con

current_design design_40k
compile_new_boolean_structure = true
set_structure true -boolean true -boolean_effort high /*minimize area*/
set_dont_touch {B} /*but still compile block B for timing*/
check_design
compile -map_effort medium -ungroup_all

report_fpga
report_timing
write -f db -o -hierarchy design_40k_boolean.db
quit

Figure 8: Timing Versus Area

00
01

10
11

2
SEL

OUTCB

A

C

D

case_vhdl

\

process (SEL, A, B, C, D) begin
case SEL is
when “00” => OUTC <= A;
when “01” => OUTC <= B;
when “10” => OUTC <= C;
when others => OUTC <= D;
end case;

end process;

Figure 9: Case Statement Implementation in VHDL
XAPP107 August 6, 1998 (Version 1.0) 7

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
Verilog

Case statement conditions in Verilog can be variables, and
not mutually exclusive constants. Variables are not
assumed to be mutually exclusive. Implementation corre-
sponding to a case statement including variables will result
in priority encoded multiplexers. If a designer knows that,
by design, values of these variables are actually mutually
exclusive, they can use the //synopsys
parallel_case statement in Verilog code to force
FPGA Compiler to generate a wide multiplexer. Figure 11
illustrates where conditions of the case statement are vari-
ables (C1, C2, C3, C4), and the parallel_case directive
is used.

The designer does not have to specify a “default” statement
in Verilog (“when others” in VHDL). If the designer has
described all possible cases, the use of the full_case
statement (Figure 11) will enable FPGA Compiler to use
the other states as the “don’t care” set of the multiplexer
output. Using this directive normally leads to better optimi-
zation results. The equivalent construct in VHDL would be:

when others => outputs <= “----“
/* outputs assigned to don’t care */

As in VHDL, if-then-else statements are implemented
with priority encoded multiplexers.

Pipelining/Retiming
FPGA Compiler can apply retiming on a mapped design by
moving the registers across combinatorial logic in order to
minimize the critical combinatorial path. The command
used to perform this operation is balance_registers .

It is possible to automatically pipeline a purely combinato-
rial design (e.g. multiplier) by adding a chain of registers at
the outputs of the design at the RTL level, then applying
balance_registers . Figure 12 illustrates a case, where
the designer added a chain of three registers at the output
of a combinatorial circuit in order to pipeline the design with
balance_registers . This will nearly triple the through-
put performance of the design with almost no increase in
area but an increase in latency.

0

1

0

1

0

1

SEL[0]='1'SEL[0]='1'

SEL[1]='1'SEL[1]='1'

SEL[2]='1'SEL[2]='1'

OUT1OUT1
A

B

SELSEL

C

D

if_then_vhdlif_then_vhdl

process (SEL, A, B, C, D)
begin

if (SEL (0) = ‘1’) then
OUT1 <= C;

elsif (SEL (1) = ‘1’) then
OUT1 <= B;

elsif (SEL (2) = ‘1’) then
OUT1 <= A;

else
OUT1 <= D;

end if;

end process;

Figure 10: If-then-else Statement Implementation in VHDL

00
01

10
11

2
SELSEL

OUTCOUTCB

A

C

D

case_vhdlcase_vhdl

\

always @ (SEL or A or B or C or D or C1
or C2 or C3 or C4)

begin
case (SEL)
//synopsys full_case parallel_case

C1 : OUTC <=A;
C2 : OUTC <= B;
C3 : OUTC <= C;
C4 : OUTC <= D;

end case
end

Figure 11: Case Statement Implementation With Verilog Directives
8 XAPP107 August 6, 1998 (Version 1.0)

Because Xilinx FPGAs are extremely rich in registers, pipe-
lining and retiming can dramatically improve the perfor-
mance of a design with little or no increase in area.

Note: balance_registers does not apply to the
XC4000 family, since the corresponding FPGA libraries are
composed of CLBs and IOBs. The absence of individual
registers in the library makes retiming impossible. Pipelin-
ing for XC4000 designs must be programmed in HDL code
by the user.

Coding Style

Hierarchical Partitioning
It is important to hierarchically partition a design for best
results and faster compile times, so that:

• Related functional blocks are grouped under a level of
hierarchy. Recall Figure 3’s block diagram of a
hierarchically partitioned design. Each one of the four
top-level blocks represents a different function in the
design (e.g. FSM, decoder, PCI interface, ALU…).
Partitioning the chip this way may greatly improve the
place and route process.

• The portions of the design that have different design

goals (performance, area) are separated in different
hierarchical blocks. This enables the designer to apply
different compile strategies to these blocks.

• Boundaries of hierarchical blocks are registered as
shown in Figure 2. This can be realized by partitioning
the design into blocks that have registered outputs. In
this case, hierarchical boundaries can be preserved
and FPGA Compiler will be given smaller blocks to
optimize at once, which will result in a gain in compile
time and eventually in improved quality of results.

FSM Encoding
The encoding of Finite State Machines (FSM) can have
dramatic repercussions on the performance and area of the
circuit. FPGA Compiler has the ability to extract an FSM
from a mapped design using a list of user-provided regis-
ters. The FSM can be automatically re-encoded and
relinked in the design.

This methodology is not recommended for Xilinx designs.
Though very flexible, it is not easy to use and has limita-
tions for large FSMs. Note: this is not applicable to the
XC4000 series. For the XC4000 series, it is best to explic-
itly encode state machines.

>>>

>

>

>

balance

>>

Figure 12: Effect of Balance_Registers
XAPP107 August 6, 1998 (Version 1.0) 9

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
The recommended method is to encode the FSMs in the
HDL code. The advantage of this method, is that the
designer has full control over state encoding and can chose
different encodings for each FSM.

VHDL
Here are some guidelines to follow for FSMs described in
VHDL:

- Use enumerated types for the states.
- Use the ENUM_ENCODING directive to assign the

states to the desired values.
- Use a CASE statement to describe the logic of the

next state (and eventually the logic of the outputs).
- To create smaller and faster circuits do not use the

WHEN OTHERS statement. To be able to use this
statement all states need to be described in the
CASE statement. Using the WHEN OTHERS
statement will synthesize a state machine that can
recover from unreachable states, at the expense of
area and circuit speed. For an example see
Figure 13, an One-hot Encoded FSM.

Verilog
The use of the Verilog parameter command enables
manual state encoding. Figure 14 shows an example of an

One-hot Encoded FSM written in Verilog. Even though the
full_case and parallel_case directives are used in
this example, parallel_case is not required since the
states are mutually exclusive constants. Using full_case
prevents synthesis of unwanted latches leaving room for
optimization since it marks all other possible state values
as “don’t care” for the OUT1 function.

Miscellaneous Coding Guidelines
These factors can have crucial effects on the area and per-
formance of a design:

Comparators
Always include one of these arithmetic packages
ieee.std_logic_unsigned.all or ieee.std_log
ic_signed.all before each entity declaration. If no arith-
metic package is used, comparators inferred in the corre-
sponding architecture will be synthesized with glue logic,
as magnitude comparators, and mapped to lookup tables.
Including an arithmetic package infers an implementation
that uses the fast carry chain. The implementation may be
slightly larger, but will be much faster than the magnitude
comparator.

architecture FSM of EXAMPLE6 is
type STATE_TYPE is (IDLE, GO, YIELD, STOP);
signal CURRENT_STATE, STATE_NEXT: STATE_TYPE;
attribute ENUM_ENCODING: STRING;
attribute ENUM-ENCODING of STATE_TYPE: type is
“0001 0010 0100 1000”;

begin
COMBO: process (CURRENT_STATE) begin

case CURRENT_STATE is
when IDLE => STATE_NEXT <= GO; OUT1 <= “01”;
when GO => STATE_NEXT <= YIELD; OUT1 <= “11”;
when YIELD => STATE_NEXT <= STOP; OUT1 <= “10”;
when STOP => STATE_NEXT <= IDLE; OUT1 <= “00”;

end case;
end process COMBO;
SEQ: process (CLOCK, RESET) begin

if (RESET = ‘0’) then
CURRENT_STATE <= IDLE;

elsif (CLOCK’EVENT and CLOCK = ‘1’) then
CURRENT_STATE <= STATE_NEXT;

end if;
end process SEQ;
end FSM;

Figure 13: VHDL Example of One-hot Encoded FSM
10 XAPP107 August 6, 1998 (Version 1.0)

Parenthesis in Arithmetic Expressions
Parenthesis in expressions can dramatically modify the
critical paths in the design. For example, Figure 15 shows
that (A*B)*(C*D) will infer a balanced tree of three multipli-
ers. This is ideal if all inputs have the same arrival time.
(A*B*C*D) infers an unbalanced tree, which is useful if the
inputs have different arrival times.

Designing With XC4000X I/O
FPGA Compiler is capable of inferring input buffers, output
buffers, and non-registered bi-directional I/O. With the
XC4000X IOB structure, there are input and output
registers that can be used in input, output, and bi-
directional I/O. Certain types of I/Os or coding styles
require special handling in FPGA Compiler, e.g, if an I/O
port uses IOB registers or if the HDL code tri-state behavior
is not in the top-level HDL file.

Generally FPGA Compiler can infer simple I/O defined as a
top-level port which requires an input buffer, output buffer,
output tri-state, input register, or output register. If the
designer wants to use an input or output register for a top-
level port, the HDL that infers the register must not describe
an asynchronous set or reset. The XC4000X I/O flip-flops
do not have an asynchronous set or reset which a designer
can toggle. A bi-directional pin which uses only an input
buffer and tri-stateable output buffer is also a simple I/O.

To infer simple bi-directional I/O using FPGA Compiler, the
HDL describing this type of I/O must reside at the top-level.
An abnormal termination for insert_pads will be reported
if the I/O is not described at the top-level HDL, or FPGA
Compiler may also write out an IOB_4000 cell into the Xil-
inx .SXNF file. In the Xilinx place and route environment,
the presence of an IOB_4000 cell will create an unex-
panded block error from ngdbuild and M1 will not pro-
cess the design.

module EXAMPLE6 (RESET, CLK, OUT1);
input RESET, CLK;
output [1:0] OUT1;
parameter [3:0] IDLE=4’b0001, GO=4’b0010, YIELD=4’b0100, STOP=4’b1000;
reg [1:0] CURRENT_STATE, STATE_NEXT;
always @ (CURRENT_STATE)
begin: COMBO

case (CURRENT_STATE) // synopsys full_case parallel_case
IDLE : begin STATE_NEXT = GO; OUT1 = 2’b01; end
GO: begin STATE_NEXT = YIELD; OUT1 = 2’b11; end
YIELD: begin STATE_NEXT = STOP; OUT1 = 2’b10; end
STOP: begin STATE_NEXT = IDLE; OUT1 = 2’b00; end

endcase
end
always @ (posedge CLK or negedge RESET)
begin: SEQUENTIAL

if (RESET == 1’b0)
CURRENT_STATE <= IDLE;

else
CURRENT_STATE <= STATE_NEXT;

end
end module

Figure 14: Verilog Example of One-hot Encoded FSM

X

X

X

X

X

X

(A*B)*(C*D)(A*B)*(C*D) A*B*C*DA*B*C*D

parent.epi

Figure 15: Effect of Parenthesis In Arithmetic
Expressions
XAPP107 August 6, 1998 (Version 1.0) 11

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
For both Verilog and VHDL, a conditional assignment state-
ment which shares a common port with a continuous
assignment statement will infer a simple bi-directional I/O,
a bi-directional pin composed of an IBUF and an OBUFT.

For Verilog, a simple bi-directional pin would be described
in Figure 16.

A simple bi-directional pin for VHDL would be described in
Figure 17.

For both Verilog and VHDL, the HDL code that describes
the input path, output path, and control signal are at the
top-level. If one or more of the three mentioned HDL struc-
tures is in a lower-level of hierarchy, FPGA Compiler may
not be able to infer the simple bi-directional I/O.

The following compile strategies can be tried when it is not
possible to move the entire behavior of the simple bi-direc-

tional I/O to the top-level HDL (Using one or more may pro-
duce a workable solution.):

1. Execute the set_port_is_pad/insert_pads com-
mands after compile.

2. Execute the set_port_is_pad/insert_pads com-
mands before compile.

3. Run the insert_pads command with the
thru_hierarchy option.

4. Flatten the design using compile -ungroup_all. Fol-
low up compile with set_port_is_pad and
insert_pads commands.

5. On bi-directional ports where 10B_4000 cells were not
replaced with the proper IBUF/OBUFT combination,
instantiate the IBUF/OBUFT cells. Do not place a
port_is_pad attribute on that port.

module top (a,b,c.....);

input a;
input b;
.
.
.
assign internal_sig = a;
assign a = (control) ? (output_sig) : 1bz;
.
.
endmodule

Figure 16: Verilog Bi-directional Pin

entity top is
port(A: inout STD_LOGIC; B: in STD_LOGIC,...);
end top;
architecture inside of top is
.
.
begin

internal_sig <= A;
process
begin
if(control == 1) then
A<=output_sig;
else
A<=z;
end if;
end process;
.
.
end inside;

Figure 17: VHDL Bi-directional Pin
12 XAPP107 August 6, 1998 (Version 1.0)

Any type of bi-directional I/O that uses an IOB register, an
IOB register with an IOB tri-state, and/or a registered and
non-registered version of an input/output signal, cannot be
inferred via FPGA Compiler. FPGA Express™ does not
have this limitation. If using FPGA Express is not an option
the best way to handle complex I/Os is to instantiate the
cells. For names of I/O cells and their pins, refer to Appen-
dix A of the XSI User Guide.

Designing Complex Muxes
Large XC4000X designs with high resource utilization can
have problems with fanout and H-function utilization.
Fanout problems can be detected using the trace com-
mand in M1. They can be solved by careful use of global
buffers and duplication of logic. Higher use of H-function
generators in a XC4000X design can reduce the number of
combinational logic levels and increase design speed.

Minimizing Fanout Problems
Reduction of fanout can improve the overall speed of a
design. There are two basic methods to reduce fanout.
Choosing either method for a particular design is highly
subjective. Using global buffers may not solve a fanout
problem, especially if global buffers are already in use.
Duplication of logic may not be possible, since it may
increase resource utilization beyond the capacity of the tar-
get XC4000X device.

The M1 timing tool, trce, can be used to detect high
fanout nets in a design. When using trce, there are two
ways to determine high fanout nets in a design. The first
method lists all nets by their delays, worst-case net delay.
The second method lists all worst-case net delays per
timespec. A third method can be created using both meth-
ods.

In cases where a designer wants to list the delays of all
nets in a design, starting with the worst-case delays, the
designer only needs to use the routed .ncd file and trce.
The syntax to use for this methodology is:

trce -a design_routed.ncd

The trce -a option lists all paths with combinational logic,
ordered by delay. The .twr file generated by trce -a can
be used to evaluate worst-case net delays. Names of the
net will come from the design. Additional information on the
list of worst-case delays can be gained if the designer
views the nets with EPIC, the graphical editor in M1. Based
on the list of worst-case delays and the sources and loads
of these worst-case delays which can be listed by EPIC, a
designer can select which high fanout net to optimize.

The second method of evaluating high fanout nets uses
timing constraints specified by the designer. One likely
cause of high fanout nets is when specified timing con-
straints are not met. The designer tool lists the worst-case

net delays per constraint using the following trce com-
mand-line syntax:

trce -v 1 -a design_routed.ncd design.pcf

With the above command line syntax, the worst-case delay
per timespec will be listed. If the timing constraints are
combinational, then this method yields the same informa-
tion as the previous method. If timing constraints involve
timespec endpoints, like RAM, FF, and/or LATCHes, high
fanout nets will be indirectly implied. Where timespecs
have timespec endpoints, the high fanout nets are either
the clock nets for these paths or the source/loads of these
paths. As with the previous method, use the .twr report or
Epic to select which high fanout nets to optimize.

There are two basic strategies to minimize high fanout:
Global buffers or logic can be duplicated. Each has its own
advantages and disadvantages. In some cases, using both
methods may improve overall design performance.

The use of global buffers is an easy strategy to implement
in HDL. Once identified, high fanout nets which degrade
performance can be improved by instantiating a global
buffer that will source that net. By default a high fanout
sourced by an external source will cause FPGA Compiler
to infer a global buffer when the create_clock synthesis
constraint is used. Any clock pin which is directly con-
nected to a top-level port is a candidate for global buffer
insertion. In cases where a high fanout net is internally
sourced, the global buffer must be instantiated.

When instantiating global buffers in the XC4000X architec-
ture, keep the following limits in mind: there are only 8 glo-
bal buffers in the XC4000X, and there are two types of
global clock buffers in the XC4000X, the BUFGLS and
BUFGE. The designer should let the software decide which
global buffer to use by instantiating the BUFG in the HDL
code. For a net that has its source from an external pin, a
dedicated clock buffer IOB should be used. It is possible to
connect a global buffer to a non-dedicated IOB, but two
IOBs will be used for a global buffer instead of one. Simi-
larly, whenever a global buffer is used for sourcing internal
logic, the dedicated global clock buffer IOB is no longer
available as a designer I/O.

Using the global net resources may not help all fanout
cases. For example, if a design has a clock divider that is
the source for all logic in a design, adding global buffers to
the clock divider outputs may only have minimal effect. In
this case, the best solution is to duplicate logic. FPGA
Compiler was designed to minimize logic, and generally
does not duplicate logic to reduce fanout. From experience,
the best way to implement duplicate logic is to duplicate the
logic in the HDL. Using the clock divider as an example,
instead of making one clock divider in the design, make
four. In general, duplication of logic means duplicating the
HDL code that created the logic, and placing a
dont_touch on the code to prevent FPGA Compiler from
removing the duplicate logic.
XAPP107 August 6, 1998 (Version 1.0) 13

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
Like global buffer usage, duplication of logic can also cause
problems. In cases where the original source logic was
loaded from external I/O, each time the logic is duplicated
the amount of I/O used increases. Similarly, duplication of
logic may limit the amount of resources available for addi-
tional design enhancements later.

Improving H-function Use
A design that has high CLB utilization, a large number of
logic levels per path, or poor design performance may suf-
fer from poor H-function use. The H-function generator is a
3-input function generator in the XC4000X CLB. The H-
function generator can assist in the implementation of func-
tions up to nine variables in size in one XC4000X CLB.

A typical cause of poor H-function utilization in the HDL
FPGA Compiler flow is any design with muxes larger than
8:1. An 8:1 mux can be implemented in two-levels of logic,
but FPGA Compiler is not designed to utilize the H-func-
tion. 8:1 muxes inferred by FPGA Compiler use three levels
of logic instead of two. Another situation which can have
poor H-function use involves counters. FPGA Compiler
creates counters by creating a bank of registers in front of
an incrementer/decrementer. This implementation of a
counter is functionally correct, but occupies two columns of
CLBs instead of one.

H-function utilization in a design can be improved by using
LogiBLOX or instantiation of H-MAPs. LogiBLOX is a M1
tool which builds bit-slices optimized for Xilinx architecture
based on designer requirements. The LogiBLOX tool can
build muxes and counters more efficiently than FPGA Com-
piler. (Note: for more information on LogiBLOX, please
refer to the LogiBLOX User Guide in the M1 on-line docu-
mentation.) H-function generators can be increased by
instantiating the HMAP_PUC primitive in the HDL code.
The HMAP_PUC used in the HDL code connects the nets
of combinational logic the designer wants implemented in
the H-function. For example, if there was an AND gate that
was connected to two input nets a1 and a2, and the output
of the AND gate was connected to net a3, a designer could
map this function to the H-function by instantiating the
HMAP_PUC in the HDL code and connecting nets a1, a2 to
pins i3 and i2 of HMAP_PUC. Net a3 would be connected
to the O pin of the HMAP_PUC.

Use of LogiBLOX and/or instantiation of HMAP_PUC will
increase the utilization of the H-function generator. Keep
the following drawback in mind: when using LogiBLOX, the
LogiBLOX -created component must be instantiated. When
using the HMAP_PUC through instantiation, there are cer-
tain uses of the H-function generator that are not sup-
ported. See pages 10 through 12 of the Xilinx Software
Conversion Guide from XACTstep v5.x to XACTstep vM1.x
for more information on unsupported H-function generator
use. Typically, a designer who instantiates an HMAP_PUC
may try to insure H-function use by additional constraints

via a UCF file. The designer must keep in mind some of the
unsupported H-function uses when doing this.

As a final option, H-function generator use can be per-
formed by specifying the -c option to the map tool. The -c
option tells the M1 map tool how much of the target FPGA
resources to use. By default, map tries to use 97% of the
resources of a target device. By telling map to use fewer
resources, Map will attempt to use the function generators,
including the H-function, more aggressively. The default
level of 97% can be changed by specifying a new percent-
age, e.g.:

map -c 50 design.ngd

which means use 50% of the designs resources.

Decreasing the default -c option may prevent a design
from routing. Several different -c options should be tried for
a given design. The -c option may impact design speed as
well.

Specifying M1 Timing Constraints in
the M1 XSI Flow
In the M1 XSI flow a designer will apply two sets of con-
straints. One set of constraints is applied in the Synopsys
FPGA Compiler synthesis environment. The other is
applied via a UCF file in the Xilinx M1 place and route soft-
ware. These two sets of constraints are not compatible,
since synthesis constraints and M1 place and route con-
straints use different name spaces. Despite their differ-
ences, there is a way to develop M1 UCF file timing
constraints which will be compatible with the designer’s
synthesis constraints.

Make UCF Methodology - An Overview
The overall M1 XSI design flow is as follows:

• RTL simulation
• Synthesis
• Place and route
• Static timing analysis and/or gate-level timing

simulation
• Bit file or prom file generator for download to device

The designer specifies all necessary constraints to get the
synthesis tool to meet the area, speed, and quality of
results requirements of the design. Timing constraints used
in the synthesis process should be used as a guide for cre-
ating the UCF timing constraints. Generating more con-
straints than needed is, in general, a good design practice
with Synopsys’ FPGA Compiler because it is a constraint
driven tool which tends to make assumptions when it can.
To achieve optimal quality of results, the developer must
apply constraints to synthesis.

In place and route, the synthesized netlist is converted into
the M1 data format. In this step of the design process, the
designer may need to specify timing constraints which
14 XAPP107 August 6, 1998 (Version 1.0)

reflect the area, timing, and quality of results desired.
Unlike the synthesis constraints, where over constraining a
design is often an effective way to meet performance, in the
place and route step, it is more effective to use fewer and
more general constraints, like PERIOD or OFFSET. If a
designer chooses a place and route timing constraint strat-
egy similar to his synthesis constraint strategy, specifying a
large number of constraints and overly aggressive (impos-
sible to meet) timing constraints, the place and route step
will fail to meet performance goals. Keep in mind that in M1,
the tools work hard to meet performance specifications. If
an impossible goal is specified, the M1 tools will attempt to
meet this impossible goal. In the M1 place and route flow
fewer and more general timing constraints means better
performance. Sometimes general and few timing con-
straints are not enough. An example of this type of situation
is when the design has multiple clocks, and/or multi-cycle
timing paths. In a case like this, it is necessary to be spe-
cific and increase the number of timing constraints by using
the original synthesis constraints as a guide.

When place and route is finished, the routed .ncd is con-
verted into either a .bit file or prom file which can be
downloaded into the FPGA.

There are two UCF methodologies available, the first
“Using OFFSET and PERIOD in a UCF FIle Only,” gener-
ates a netlist using OFFSET and PERIOD only, the second
“Using makeucf.pl” uses top level ports, inferred latches,
and instantiated RAM primitives.

Methodology 1: Using OFFSET and PERIOD
in a UCF File Only
In this methodology, the UCF file for the synthesized netlist
is limited to two types of constraints: OFFSET and
PERIOD. OFFSET is equivalent to set_input_delay
and set_output_delay constraints. PERIOD is equiva-
lent to create_clock constraint. Regardless of how
many synthesis constraints are specified for synthesis, the
designer restricts his UCF file to only contain OFFSET and
PERIOD constraints. To use this timing constraint strategy,
the designer has only to know the top-level port names.

Details of Methodology 1

Methodology 1 takes advantage of the ability for Synopsys
FPGA Compiler to preserve the top-level port names in the
resulting Verilog/VHDL netlist. Thus if a designer has a top-
level port called CLK, the port CLK can be referenced in a

UCF file. An example of how to write the Verilog part list is
shown in Figure 18.

The VHDL counterpart is shown in Figure 19.

Based on the these HDL examples, the synthesized netlist
will contain five pins which can be referenced as A, B, C, D,
and CLK in a UCF file. Remember, M1 is case-sensitive.
When referencing a top-level port, make sure that the cor-
rect spelling and case is always used.

After writing the HDL code for a design based on the
designer’s specific top-level port names, the designer can
create a UCF file before synthesis is finished since the
resulting top-level pin names in the FPGA design are
known. In this example, the design must run at 40MHz.
Input port A has an input delay of 5 ns. Input port B has an
input delay of 5 ns. Input port C has an input delay of 10 ns.
Output port D has an output delay of 15 ns. Based on these
timing requirements, the UCF file for these requirements is
as shown in Figure 20.

module top (A,B,C,D,CLK);
input A;
input B;
input C;
output D;
input CLK:
.
.
.
endmodule

Figure 18: Verilog Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity top is
port(A,B,C: in STD_LOGIC; D: out
STD_LOGIC; CLK: in STD_LOGIC);
end top;

architecture inside of top is
.
.
.
begin
.
.
.
end inside;

Figure 19: VHDL Example
XAPP107 August 6, 1998 (Version 1.0) 15

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
Methodology 1 is a good method to try as a first attempt in
meeting performance requirements. Based on the results
from Methodology 1, the designer will be able to assess
how easy or difficult it will be to achieve the desired perfor-
mance.

Methodology 1 allows creation of an UCF file at the same
time as the HDL code. This method works well for designs
that are highly synchronous and do not have multi-cycle
timing paths. Even if a design is highly synchronous and
doesn’t have multi-cycle timing requirements, the use of
only PERIOD and/or OFFSET may not be enough. It may
be necessary to use FROM:TO, and FROM:TO:TIG, espe-
cially if a design has multi-cycle timing paths or there are
paths in the design the M1 tools should not optimize. When
method 1 fails, there is a method 2, which uses additional
commands in the Synopsys synthesis script and a Perl
script to create a UCF file.

Methodology 2: Using makeucf.pl
In Methodology 2, the UCF file that is created has a list of
all top-level ports, inferred registers, inferred latches, and

instantiated RAM primitives. The Perl script, makeucf.pl,
lists these.

Details of Methodology 2

Begin using methodology 2 by modifying the basic M1
compile script as shown in Figure 21, to include the com-
mands all_registers, all_inputs, and
all_ports.

The dc_shell commands ungroup -all -flatten,
all_inputs, all_outputs and all_registers
must always be executed after replace_fpga and before
writing out the synthesized netlist.

Next, use the above compile script template for synthesiz-
ing the design. If Synopsys Design Analyzer is used to run
the script, do not delete the view_command.log file that
is created. Keep this file. It is part of methodology 2. If
dc_shell is used to run the script, be sure to create a log
file called view_command.log. This can be done by exe-
cuting dc_shell with the following options (In this example,
the compile script is called run.script, Figure 22).

NET “CLK” TNM=”CLK”;
TIMESPEC TS01 = PERIOD:”CLK” 25;
NET “A” OFFSET = IN : 5 : BEFORE : “CLK”;
NET “B” OFFSET = IN : 5 : BEFORE : “CLK”;
NET “C” OFFSET = IN : 10 : BEFORE : “CLK”;
NET “D” OFFSET = OUT : 15 : AFTER : “CLK”;

Figure 20: UCF File Requirements

read-f VHDL “design.vhd.”

set_port_is_pad “*”
insert_pads

/* Place synthesis and timing constraints here */
compile
replace_fpga

ungroup -all -flatten
all_inputs
all_outputs
all_registers

write -f xnf -h -o “design.sxnf”

Figure 21: Script Modifications for Example of Methodology 2
16 XAPP107 August 6, 1998 (Version 1.0)

When synthesis is finished and the view_command.log has
been created, place the view_command.log file in the same
directory as the Perl script makeucf.pl.

Invoke the Perl script by typing at the UNIX prompt:

makeucf.pl

A file called inst.tnm will be created. inst.tnm will con-
tain a list of INST-TNM statements that a designer can use
to attach TNMs. After creating the desired TNMs, the
designer can cut and paste the INST-TNM lines into a UCF
file for creating FROM:TO and/or FROM:TO:TIG
timespecs. For more information on TNMs, FROM:TO, and
TIG, please refer to the constraints chapter of the Xilinx
Libraries Guide.

Note, if the designer has instantiated FDP, FD, FDC flip-
flops, the name for these flip-flops name listed by
makeucf.pl in the inst.tnm file will not be correct. For
any instantiated FDP, FD, or FDC the string /$1I13 must
be appended to the end of the instance name if a TNM is to
be attached. The makeucf.pl script is available via the Xil-
inx web site at www.xilinx.com. An example script is
shown in Figure 23.

Conclusion
This paper has detailed several methods which can be
used to fully utilize the capabilities of the FPGA Compiler. It

has shown how to use the compiler in the most efficient
manner possible over a broad range of issues. In the event
that you desire further information contact your local sales
representative or on the World Wide Web at: www.xil-
inx.com or www.synopsys.com.

The Perl script makeucf.pl is available at the Xilinx web-
site at www.xilinx.com.

The techniques in this application note are suggestions for
achieving high performance with high density FPGA’s using
Synopsys’ FPGA Compiler. All of these techniques were
gathered from many Xilinx/Synopsys users. None, some,
or all of the techniques in this section can be used. To be
successful at high density FPGA design with high density
synthesis software, keep things simple. The designer
should write his HDL code for the hardware in the FPGA
technology. If it isn’t clear to a designer what types of logic
should be synthesized, chances are the synthesis tool
won’t make a good choice. Use careful and well considered
judgement when creating Synopsys synthesis constraints,
and/or M1 constraints. Over constraining or using con-
straints that are not relevant to design performance can
unnecessarily lengthen synthesis/place and route time.
High density FPGA design requires careful pre-planning of
the synthesis and place and route process.

dc_shell -f run.script|tee view_command.log

Figure 22: Example Compile Script
XAPP107 August 6, 1998 (Version 1.0) 17

Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™
Figure 23: Example Makeucf.pl Script
18 XAPP107 August 6, 1998 (Version 1.0)

	Summary
	Introduction
	Compile Strategies
	Selecting a Strategy
	Writing DC Scripts
	Top-down Compile
	Iterative Compile

	Bottom-up: compile-characterize-write_script-recompile
	Describing Timing Constraints
	Design Constraint Commands
	Timing Exception Commands

	Timing Versus Area

	HDL Design Guidelines
	Use STD_LOGIC Data Types in VHDL
	If-Then-Else and Case Statements
	VHDL
	Verilog

	Pipelining/Retiming
	Coding Style
	Hierarchical Partitioning
	FSM Encoding
	VHDL
	Verilog
	Miscellaneous Coding Guidelines
	Comparators
	Parenthesis in Arithmetic Expressions

	Designing With XC4000X I/O
	Designing Complex Muxes
	Minimizing Fanout Problems
	Improving H-function Use

	Specifying M1 Timing Constraints in the M1 XSI Flow
	Make UCF Methodology - An Overview
	Methodology 1: Using OFFSET and PERIOD in a UCF File Only
	Details of Methodology 1

	Methodology 2: Using makeucf.pl
	Details of Methodology 2

	Conclusion

