
Summary This application note describes an implementation of IDCT in the Virtex family. DCT/IDCT are
used in the MPEG video standard to reduce the bandwidth requirements. IDCT is one of the
most computation-intensive parts of the MPEG decoding process. A fast, hardware based
IDCT implementation is crucial to speed the MPEG decoding process. In this implementation,
the inherent parallelism is exploited to achieve throughput as high as 3.28 Gbits/s, making it
suitable for real time video applications. The implementation is synthesizable Verilog code at
the RTL level.

Introduction MPEG stands for Moving Picture Expert Group. The MPEG video compression standard is
used in many current and emerging products. It is at the heart of digital television, set-top
boxes, DSS, HDTV decoders, DVD players, video conferences and Internet video.

Video applications need compressed information. A typical HDTV standard for broadcasting in
the US is 1,920 by 1,080 pixels at the rate of 30 frames/sec. Assuming eight bits for each of the
three primary colors in a pixel, the required transmission rate is 1.5 Gbit/sec. Bandwidth
limitations allow the transmission bandwidth for the video portion of the signal to be 18 Mbit/sec
per channel. This translates to a required compression ratio of 83:1. Considering the end-user
demand for very high quality video, the ratio is daunting. Compressed video information is
useful for both bandwidth and storage constraints.

MPEG video is divided into a hierarchy of layers. From the top level, the first layer is the video
sequence layer. This layer is defined as any self-contained bitstream, like a coded movie or
advertisement. The next layer is a series of frames. Each frame comprises a set of
macroblocks. Each macroblock comprises a set of blocks. A block is composed of pixels. We
know from research in Human Visual Systems that the eye is most sensitive to changes in
luminance and less to changes in chrominance. So, instead of the RGB color-space, the
YCBCR color-space is used where Y is the luminance signal, CB the blue-color difference
signal, and CR the red color difference signal. Reducing information in the CB and CR elements
has less of an effect on picture quality than reducing information in the Y portion. This fact is
used in MPEG video where different bit-level accuracy may be used for the Y and CBCR
components.

In general, there is a high correlation between neighboring pixels in an image. Therefore, the
Discrete Cosine Transform, an invertible transform, can be used to concentrate information into
fewer decorrelated parameters. A block of size 8x8 pixels is transformed to produce 8x8 DCT
coefficients. Out of the 64 coefficients, most of the higher order coefficients are small.

.

An Inverse Discrete Cosine Transform
(IDCT) Implementation in Virtex for
MPEG Video Applications

XAPP208 (v1.1) December 29, 1999 Application Note: K. Chaudhary, H. Verma and S. Nag

R

Application Note: Virtex Series
XAPP208 (v1.1) December 29, 1999 www.xilinx.com 1
1-800-255-7778

http://www.xilinx.com

An Inverse Discrete Cosine Transform (IDCT) Implementation in Virtex for MPEG Video Applications R

Figure 1: The Effect of a Discrete Cosine Transform

The example in Figure 1 shows the original information for luminance (shown on the left)
transformed to new coefficients (shown on the right) with just six out of 64 coefficients being
non-zero. Also, all the zero coefficients are grouped towards the bottom-right. The top-left
elements represent low-order coefficients and the bottom-right elements represent high-order
coefficients.Typically, the bottom right coefficients are small, but not necessarily zero.

The DCT process is used in conjunction with a quantization matrix. The quantization matrix has
larger numbers in the bottom right. Dividing the transformed coefficients with the corresponding
entry in the quantization matrix favors zeroing out the bottom-right elements. The quantization
matrix is dynamically updated to meet the objective of minimal picture degradation achievable
for an allowed bit-rate.

The DCT and IDCT equations are shown below. The original value is f(x,y). F(µ,ν) is the DC-
transformed value. F(0,0) is simply the summation of the f(x,y)'s and is thus the DC value.
F(0,1) is a correlation of f(x,y) values with a cosine wave of one cycle in the y dimension.

Use-case
Scenario

This Virtex based implementation has a huge speed advantage (3.28 Gbits/s) over software
and DSP processor based implementations, thereby making good quality, real-time video a
possibility on a PC. The use of this design is envisioned in the following scenario: A user has an
FPGA-based PC-card used for a myriad of applications (MPEG-decoding, DES/MD5-based

36 32 26 19 14 11 10 10 75 39 21 0 0 0 0 0

32 29 22 16 11 9 8 8 DCT 42 23 0 0 0 0 0 0

26 22 17 11 7 5 4 5 ⇒ 19 0 0 0 0 0 0 0

19 16 11 6 2 1 1 2 0 0 0 0 0 0 0 0

14 11 7 3 0 0 0 1 ⇐ 0 0 0 0 0 0 0 0

12 9 5 2 0 0 2 3 IDCT 0 0 0 0 0 0 0 0

11 9 5 2 1 2 4 6 0 0 0 0 0 0 0 0

11 9 6 3 3 4 6 8 0 0 0 0 0 0 0 0

C µ ν,() 1
4
---C µ()C ν()= (1)

ψ x µ,() 2x 1+()µπx
16

--------------------------------cos= (2)

C µ() 1 for µ 1 2 …7, ,=()=

f x y,() C µ ν,()F µ ν,()ψ x µ,()ψ y ν,()
ν 0=

7

∑
µ 0=

7

∑=
(4)

F µ ν,() C µ ν,() f
y 0=

7

∑ x y,()ψ x µ,()ψ y ν,()
x 0=

7

∑= (3)

C µ() 1

2
------- for µ 0=()=
2 www.xilinx.com XAPP208 (v1.1) December 29, 1999
1-800-255-7778

http://www.xilinx.com

An Inverse Discrete Cosine Transform (IDCT) Implementation in Virtex for MPEG Video Applications R

encryption/decryption, speech analyzer). Each application has a tremendous utility in this age
of explosive internet growth. ASIC based implementations require an ASIC for each application
and also a hardware replacement for any updates. The FPGA card based methodology
provides cost effective flexibility for both upgrades and new applications. The application based
FPGA reprogramming can be made transparent to the end user with a web-browser plug-in
model.

Implementation
Details

This section describes the details for IDCT implementation in Virtex FPGAs. 2D IDCT deals
with the variation in both x and y dimensions. It is defined in terms of two 1D IDCTs, one for the
y dimension and the other for the x dimension. F(u,v) denotes DCT coefficients used to
reconstruct f(x,y); the original pixel value. The derivation for representing 2D IDCT in terms of
two 1D IDCTs is shown in the following equations. By combining the terms containing v and
defining G(u,y), f(x,y) is written using G(u,y). Notice the similarity of the two equations
representing 1D IDCTs.

Equation four shows the 2D IDCT performed using the two identical 1D IDCT modules in
equations five and six. Next, a look at the implementation details of 1D IDCTs in Virtex devices.
The 1D IDCT equations (equations 5 and 6) can be written in the simplified form shown in
equation 7.

This equation comprises a set of multiply-by-constant and add terms. It is ideally suited for
distributed arithmetic [2], where partial solutions are stored in DALUTs (Distributed Arithmetic
Look-Up Tables). The two parts of this equation are the F(v) part defined as either the DCT
coefficients F(u,v) or the 1D IDCT output G(u, y); in either case, it is just a stored value. The
other more interesting part is the cosine term. This equation is pictorially shown in Figure 2.
Inputs for each column F(0) etc., get multiplied by the corresponding cosine terms C0 etc., to
produce the outputs G(0) etc., for each row. Ck is a concise definition for the cosine term
cos(kπ/16).

G µ y,() 1
2
--- C ν()F µ ν,()ψ y ν,()

ν 0=

7

∑=

Using the notation:

(5)

f x y,() 1
2
--- C µ()G µ y,()ψ x µ,()

µ 0=

7

∑= (6)

Rewrite Equation 4 as:

G y() F ν() 2y 1+()νπ
16

----------------------------cos

ν 0=

7

∑=
(7)
XAPP208 (v1.1) December 29, 1999 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

An Inverse Discrete Cosine Transform (IDCT) Implementation in Virtex for MPEG Video Applications R

Any Ck can be equated to CP where:

P = [k mod 16] - 16 [(k mod 16) mod 8].

Examples; C10 = -C6 and C105 = -C7.

Using this, the simplified set of coefficients are shown in Figure 3

There is a useful symmetry in these new coefficients. For example, the odd entries of the 3rd
row and 6th row are the same in magnitude but the opposite in sign; the even entries are
identical. Using this symmetry, the 64 coefficients form eight groups of four entries each.
Figure 4 illustrates a block diagram implementation in a Virtex device using DALUTs. The
DALUTs are addressed by F(0) through F(7). The even and odd inputs are separated and their
partial products (stored in the DALUTs) are added to form the eight outputs G(0) through G(7).
The computation can be done either in a bit-serial fashion or a bit-parallel fashion. G(0) through
G(7) are computed for the 12 bits of the F inputs in bit-serial fashion to reduce the area
requirements.

Figure 2: 1D IDCT Equation Coefficients

x208_02_081699

C0 C1 C2 C3 C4 C5 C6 C7

C0 C3 C6 C9 C12 C15 C18 C21

C0 C5 C10 C15 C20 C25 C30 C35

C0 C7 C14 C21 C28 C35 C42 C49

C0 C9 C18 C27 C36 C45 C54 C63

C0 C11 C22 C33 C44 C55 C66 C77

C0 C13 C26 C39 C52 C65 C78 C91

C0 C15 C30 C45 C60 C75 C90 C105

F(0) F(1)

G(0)

G(7)

x208_03_081699

C0 C1 C2 C3 C4 C5 C6 C7

C0 C3 C6 -C7 -C4 -C1 -C2 -C5

C0 C5 -C6 -C1 -C4 C7 C2 C3

C0 C7 -C2 -C5 C4 C3 -C6 -C1

C0 -C7 -C2 C5 C4 -C3 -C6 C1

C0 -C5 -C6 C1 -C4 -C7 C2 -C3

C0 -C3 C6 C7 -C4 C1 -C2 C5

C0 -C1 C2 -C3 C4 -C5 C6 -C7

Figure 3: Simplified Coefficients
4 www.xilinx.com XAPP208 (v1.1) December 29, 1999
1-800-255-7778

http://www.xilinx.com

An Inverse Discrete Cosine Transform (IDCT) Implementation in Virtex for MPEG Video Applications R

In this implementation there are 16 entities of the block shown in Figure 4, eight for row
computations and eight for column computations. The synthesizable Verilog code reference
design, xapp208.zip, is on Xilinx’s web site at:

http://www .xilinx.com/tec hdocs/htm_inde x/app_xapp.htm

The block in Figure 4 corresponds to module one_d_idct. To process a 8x8 data block, 13 clock
cycles are required for row computations (12 clock cycles for bit serial computation and one
clock cycle for handshaking), and another 13 for column computations. This results in a latency
of 26 clock cycles. Row computation and column computation stages are pipelined. A new data
block can be fed every 13 clock cycles.

Top Level
Module
Description

The input, DIN, is a bit vector of size 768 obtained by concatenating a 8x8 matrix of 12-bits wide
DCT coefficients in two's complement form. LSB of the input data from row i and column j is
DIN(12 x [i + j]) and the MSB is DIN(12 x [i + j +11]). Similarly, the output DOUT is a bit vector
obtained by concatenating the output from the IDCT. A High signal at RST pin resets all the flip-
flops in the design. A pulse at the GO pin starts the IDCT computation. This pulse is given when
the input data is valid. The DONE pin is asserted High when the computation of a block is over
and the data on DOUT pin is valid. The timing diagram is shown in Figure 6.

Figure 4: Block Diagram of Reference Design Implementation

x208_04_080999

+

−

+

−

+

−

+

−

C0, C2, C4, C6

C0, C2, C4, C6

C0, C2, C4, C6

C0, C2, C4, C6

C0, C2, C4, C6

C0, C2, C4, C6

C0, C2, C4, C6

C0, C2, C4, C6

8 DALUTsF(0 2 4)

F(1 3 5)

G(0)

G(7)

G(1)

G(6)

G(2)

G(5)

G(3)

G(4)

x208_05_122999

DIN

GO

RST

CLK

IDCT

DOUT

DONE

768
768

Figure 5: IDCT Top Level Module
XAPP208 (v1.1) December 29, 1999 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com/techdocs/htm_index/app_xapp.htm
http://www.xilinx.com

An Inverse Discrete Cosine Transform (IDCT) Implementation in Virtex for MPEG Video Applications R

Implementation

The results in Table 1 include two extra modules to reduce external pin requirements. The
Verilog code for these modules are not included in the reference design since the system level
requirements typically determine their design. A serial-to-parallel module at the input converts
16 sets of 48 bits to a 768-bit bus. A parallel-to-serial module at the output converts a 768-bit
IDCT output into 16 sets of 48-bits each.

Conclusion In this application note, an IDCT implementation based on the Virtex family is described. The
inherent parallelism in the transformation algorithm has been exploited to achieve a throughput
of 3.28 Gbits/sec. This high speed can be used to provide good quality, real-time video for
internet applications.

The Verilog code can be found as a reference design file entitled xapp208.zip at:

http://www .xilinx.com/tec hdocs/htm_inde x/app_xapp.htm

Figure 6: Timing Diagram

DONE

DOUT

GO

DIN

CLK

VALID DATA

RST

VALID DATA0 X

26 cycles

XX

x208_6_122999

Table 1: Results

Exemplar Synplicity

Part XCV600

BG560-5

XCV600

BG432-5

Utilization 88%

(6140 slices)

95%

(6617 slices)

Performance 55.6 MHz 53.2 MHz

Latency 467.9 ns 489 ns

Throughput (data blocks/sec) 4.27 M 4.09 M

Throughput (bits/sec) 3.28 G 3.14 G
6 www.xilinx.com XAPP208 (v1.1) December 29, 1999
1-800-255-7778

http://www.xilinx.com/techdocs/htm_index/app_xapp.htm
http://www.xilinx.com

An Inverse Discrete Cosine Transform (IDCT) Implementation in Virtex for MPEG Video Applications R

References

1. J. Wiseman, An Introduction to MPEG Video Compression, DSP World, 1998, pp. 45-66.

2. Les Mintzer, The role of Distributed Arithmetic in FPGAs, available at:

http://www .xilinx.com/appnotes/theor y1.pdf

Revision
History

© 1999 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaim-
ers are as listed at http://www .xilinx.com/legal.htm . All other trademarks and registered trademarks are
the property of their respective owners.

Date Version # Revision

08.31.99 1.0 Initial release.

12.29.99 1.1 Reformatted from initial release.
XAPP208 (v1.1) December 29, 1999 www.xilinx.com 7
1-800-255-7778

 http://www.xilinx.com/appnotes/theory1.pdf
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

	An Inverse Discrete Cosine Transform (IDCT) Implementation in Virtex for MPEG Video Applications
	Summary
	Introduction
	Use-case Scenario
	Implementation Details
	Top Level Module Description
	Implementation
	Conclusion
	References

	Revision History

