
Summary The Constant (k) Coded Programmable State Machine (KCPSM) presented in this application
note is a fully embedded 8-bit microcontroller macro for the Virtex™ and Spartan®-II devices.
The module is remarkably small at just 35 CLBs, less than half of the smallest Spartan XC2S15
device, and virtually free in an XCV2000 device by consuming less than 0.37% of the device
CLBs.

This KCPSM provides 49 different instructions, 16 registers, 256 directly and indirectly
addressable ports, and a maskable interrupt at 35 million instructions per second (MIPs). This
performance exceeds that of traditional discrete microcontroller devices, making the KCPSM a
cost-attractive solution for data processing as well as control algorithms.

Fully embedded including the program memory, the KCPSM can be connected to many other
functions and peripherals tuned to a specific design. Processing distributed over multiple
KCPSM processors within a single device is suitable for applications such as neural networks.

Introduction Size constraint is a compelling factor for using the KCPSM module. An amazingly small
microcontroller can be designed to occupy under 35 Virtex CLBs, less than 10% of the smallest
Virtex device (XCV50) and less than 0.6% of an XCV1000 device. Besides the small logic
utilization, a single block RAM is used to form a ROM for storage of up to 256 programming
instructions. Even with such size constraints, the performance is maintained in the range of
25 MIPs to 35 MIPS, depending on the device speed grade. Figure 1 is a block diagram of a
KCPSM module.

The Virtex KCPSM modules require no external support and provide a flexible environment for
other logic connections into the KCPSM module.

Application Note: Virtex Series and Spartan-II family

XAPP213 (v1.1) October 4, 2000

8-Bit Microcontroller for Virtex Devices
Author: Ken Chapman

R

Figure 1: KCPSM Module Block Diagram
x213_01_062100

Interface to logic

Block Memory
(Program)

INPUT[7:0]

INTERRUPT

CLK

I[15:0]

Interface to logic

OUTPUT[7:0]

PORT[7:0]

READ_STROBE

WRITE_STROBE

ADDR[7:0]DO[15:0]

ADDR[7:0]

CLK

KCPSM
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

8-Bit Microcontroller for Virtex Devices
R

Understanding KCPSM
The KCPSM module is a soft macro for place and route tools to merge with the design logic.
Figure 2 is a plot from the EPIC viewer showing the macro in isolation in the XCV50 device. The
35 CLBs consume less than 10% of an XCV50 device.

Figure 2: EPIC View of a KCPSM Macro in an XCV50 Device
2 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

KCPSM
Architecture

Figure 3 shows the KCPSM architecture.

KCPSM
Feature Set

General Purpose Registers
The feature set includes 16 general purpose 8-bit registers, s0 to sF. The register operations
are completely flexible; no registers are reserved for special tasks or given priority over other
registers.

ALU
The Arithmetic Logic Unit (ALU) provides all the simple operations expected in an 8-bit
processing unit.

All operations are performed using an operand provided by any register. The result is returned
to the same register. For operations requiring a second operand, a second register is specified

Figure 3: KCPSM Architecture
X213_03_082300

INPUT[7:0]

16 8-bit
Registers

sF s7

s6

s5

s4

s3

s2

s1

 s0

sE

sD

sC

sB

sA

s9

s8

Port
Address
Control

PORT[7:0]

READ_STROBE

WRITE_STROBE

OUTPUT[7:0]

ALU

Add/Sub

Logical
Shift

Rotate

ZERO &
CARRY
Flags

Interrupt
Flag Store

Constant
Data

INTERRUPT
Interrupt
Control

Program
Flow

Control

Program
Counter

Program
Counter
Stack

ADDR[7:0]

Program
ROM/RAM

256 words

CLK

I[15:0]

Operational
Control &
Instruction
Decoding

16 bit instruction word

8 bit data path

8 bit port address

8 bit program address

8 bit Constant(k) information
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

or a constant 8-bit value is embedded in the instruction. The ability to specify any constant
value with no penalty to the program size or to its performance enhances the simple instruction
set. To clarify, the ability to "ADD 1" is the equivalent of a dedicated INCREMENT operation. For
operations requiring more than 8 bits, addition and subtraction operations include an option to
carry. Bit-wise operators (LOAD, AND, OR, XOR) provide the ability to manipulate and test
values. There is also a very comprehensive Shift and Rotate group.

Flags Program Flow Control
The ALU operation results affect the ZERO and CARRY flags. Using conditional and non-
conditional program flow control instructions, this information determines the execution
sequence of the program. JUMP commands specify absolute addresses within the program
space.

CALL and RETURN commands provide subroutine facilities for commonly used sections of
code. A CALL command is made to a specified absolute address, while a program counter
stack preserves the return address. The stack provides for a nested CALL with a depth of up to
15 levels, adequate for the program size supported.

Input/Output
The KCPSM has 256 input ports and 256 output ports. An 8-bit address value provided on the
PORT bus together with a READ or WRITE strobe signal indicates the accessed port. The port
address is either supplied in the program as an absolute value, or specified indirectly as the
contents of any of the 16 registers. Indirect addressing is ideal when accessing a block of
memory constructed from block or distributed RAM.

During an INPUT operation, the value provided at the input port is transferred into any of the 16
registers. An input operation is indicated by a READ_STROBE output pulse. Although using
this signal in the design input interface logic is not vital, it indicates that data has been acquired
by the KCPSM.

During an OUTPUT operation, the contents of any of the 16 registers are transferred to the
output port. A WRITE_STROBE output pulse indicates an output operation. This strobe signal
is used in the design output interface logic, ensuring that only valid data is passed to external
systems.

Interrupt
The process provides a single interrupt input signal. Using simple logic, multiple signals can be
combined and applied to this one input signal. By default, the effect of the interrupt signal is
disabled (masked) and is under program control to be enabled and disabled as required.

An active interrupt forces the KCPSM to initiate a "CALL FF" (i.e., a subroutine call to the last
program memory location) for the designer to define a suitable course of action. Automatically,
the interrupt process preserves the contents of the current ZERO and CARRY flags and
disables any further interrupts. A special RETURNI command is used to ensure that the end of
an interrupt service routine restores the status of the flags and controls.

Constant (k)
Coded Values

The KCPSM is in many ways a machine based on constants. Constant values are specified for
use in the following aspects of a program:

• Constant data value for use in an ALU operation

• Constant port address to access a specific piece of information or control logic external to
the KCPSM

• Constant address values for controlling the execution sequence of the program

The KCPSM instruction set coding is designed to allow constants to be specified within any
instruction word. Hence, the use of a constant carries no additional overhead to the program
size or its execution. This effectively extends the simple instruction set with a whole range of
"virtual instructions."
4 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Constant Cycles
All instructions under all conditions execute over two clock cycles. When determining the
execution time of a program, particularly when embedded into a real time situation, a constant
execution rate is of great value.

Constant Program Length
The program length is 256 instructions, conforming to the 256 x 16 format of a single Virtex
block RAM. All address values are specified as 8-bits contained within the instruction coding.
The fixed memory size promotes a consistent level of performance from the module.

Using the
KCPSM Macro

The KCPSM macro is provided in the form of an EDIF netlist. Figure 4 is a diagram of this
macro. The Foundation software tool has a schematic feature to "create" a macro symbol from
the netlist under the Hierarchy menu. The resulting symbol is editable. This symbol is inserted
as a "black box" into any Virtex design. A block RAM is utilized to store the program code and
must be connected to behave as a ROM. Figure 5 shows a RAM generated by the COREGen
Module using the <name>.coe file obtained from the KCPSMBLE assembler. The assembler
also provides an EDIF file for immediate use as a second "black box" for a block RAM to be both
initialized and pre-connected in the ROM configuration. This alternative "black box" ROM is
shown in Figure 6.

Figure 4: KCPSM Macro

Figure 5: RAM Generated by the Core Generator Module

INPUT[7:0]
OUTPUT[7:0]

PORT[7:0]

READ_STROBE

WRITE_STROBE

ADDR[7:0]

INTERRUPT

CLK

I[15:0]

Machine 1

KCPSM x213_04_062100

ADDR[7:0]

DI[15:0]

CLK

RST

EN

WE

VCC

I[15:0]
DO[15:0]Address[7:0]

COREGen Module

PROGRAM

COUNT1

x213_05_082100

All signals DI[15:0]
connect to GND
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

The KCPSM
Macro in VHDL

The KCPSM macro and the block RAM are instantiated to reflect the diagrams in Figures 4, 5,
and 6. In VHDL, the macro is instantiated using the following declaration.

The bus delimiter used within the EDIF file to specify bus pins might be incompatible with the
HDL tool. Since EDIF is a simple text format, use a test editor to globally replace the "<" and ">"
symbols with the appropriate brackets for the HDL tool. Figure 7 shows a small section of the
EDIF converted to square brackets.

Complete
KCPSM
Instruction Set

This section lists a complete instruction set representing all op-codes in hexadecimal.

1. "X" and "Y" refer to the definition of the storage registers "s" in range 0 to F.

2. "kk" represents a constant value in range 00 to FF.

3. "aa" represents an address in range 00 to FF.

4. "pp" represents a port address in range 00 to FF.

Program Control Group

81aa JUMP aa
91aa JUMP Z,aa
95aa JUMP NZ,aa
99aa JUMP C,aa
9Daa JUMP NC,aa

83aa CALL aa
93aa CALL Z,aa

Figure 6: Black Box ROM

ADDR[7:0]
I[15:0]

PROGRAM

CLK

Address [7:0]
Instruction[15:0]

x213_06_062100

component kcpsm is
 port map (addr: out std_logic_vector(7 downto 0);
 i: in std_logic_vector(15 downto 0);
 input: in std_logic_vector(7 downto 0);
 output: out std_logic_vector(7 downto 0);
 port: out std_logic_vector(7 downto 0);
 read_strobe: out std_logic;
 write_strobe: out std_logic;
 interrupt: in std_logic;
 clk: in std_logic);
 end component;

Figure 7: EDIF File Converted to Square Brackets

(port (rename ADDR1 "ADDR[1]")

(interface

(port (rename ADDR0 "ADDR[0]")

(interface

(port (rename ADDR0 "ADDR<0>")

(direction OUTPUT))

(direction OUTPUT))

(direction OUTPUT))

(direction OUTPUT))

(port (rename ADDR1 "ADDR<1>")

x213_07_062100
6 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

97aa CALL NZ,aa
9Baa CALL C,aa
9Faa CALL NC,aa

8080 RETURN
9080 RETURN Z
9480 RETURN NZ
9880 RETURN C
9C80 RETURN NC

Note: Call and Return supports a stack depth of up to 15.

Shift and Rotate Group

Dx0E SR0sX
Dx0F SR1sX
Dx0A SRXsX
Dx08 SRAsX
Dx0C RR sX

Dx06 SL0sX
Dx07 SL1sX
Dx04 SLXsX
Dx00 SLAsX
Dx02 RL sX

Logical Group

0xkk LOAD sX,kk
1xkk AND sX,kk
2xkk OR sX,kk
3xkk XOR sX,kk

Cxy0 LOAD sX,sY
Cxy1 AND sX,sY
Cxy2 OR sX,sY
Cxy3 XOR sX,sY

Arithmetic Group

4xkk ADD sX,kk
5xkk ADDCY sX,kk
6xkk SUB sX,kk
7xkk SUBCY sX,kk

Cxy4 ADD sX,sY
Cxy5 ADDCY sX,sY
Cxy6 SUB sX,sY
Cxy7 SUBCY sX,sY

Input/Output Group

Axpp INPUT sX,pp
Bxy0 INPUT sX,(sY)

Expp OUTPUT sX,pp
Fxy0 OUTPUT sX,(sY)

Interrupt Group

80F0 RETURNI ENABLE
80D0 RETURNI DISABLE

8030 ENABLE INTERRUPT
8010 DISABLEINTERRUPT
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Program
Control Group

JUMP
Under normal conditions, the program counter (PC) increments to point to the next instruction
(Figure 8). The address space is fixed to 256 locations (00 to FF hex), making the program
counter 8-bits wide. The top of the memory is FF hex and will increment to 00.

The JUMP instruction is used to modify the sequence by specifying a new address. However,
the JUMP instruction can be conditional. A conditional JUMP is only performed if a test
performed on either the ZERO flag or CARRY flag is valid. The JUMP instruction has no effect
on the status of the flags (Figure 9).

Each JUMP instruction must specify the 8-bit address as a two digit hexadecimal value. The
assembler supports labels to simplify this process.

81aa JUMP aa Unconditional JUMP to address "aa"
91aa JUMP Z, aa Conditional JUMP to address "aa" performed when ZERO

flag is set
95aa JUMP NZ, aa Conditional JUMP to address "aa" performed when ZERO

flag is reset
99aa JUMP C, aa Conditional JUMP to address "aa" performed when CARRY

flag is set
9Daa JUMP NC, aa Conditional JUMP to address "aa" performed when CARRY

flag is reset

Figure 8: Program Counter

Figure 9: JUMP Instruction

x213_08_062100

Normal Instruction+1

PC PC

x213_09_062100

a a a a a a a a
Unconditional or
condition valid

Condition
not valid

New Address

PC

+1

PC
8 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

CALL
The CALL instruction is similar in operation to the JUMP instruction. It modifies the normal
program execution sequence by specifying a new address. The CALL instruction is conditional.
In addition to supplying a new address, the CALL instruction also causes the current PC value
to be pushed onto the program counter stack. The CALL instruction has no effect on the status
of the flags (Figure 10).]

The program counter stack supports a depth of 15 address values, enabling a nested CALL
sequence to the depth of 15 levels to be performed. Since the stack is also used during an
interrupt operation, at least one of these levels should be reserved when interrupts are enabled.

The stack is implemented as a separate cyclic buffer. When the stack is full, it overwrites the
oldest value. Each CALL instruction must specify the 8-bit address as a 2-digit hexadecimal
value. To simplify this process, labels are supported in the assembler.

Hence, it is not necessary to reset the stack pointer when performing either a software or
hardware reset. Therefore, there are no instructions to control the stack and no program
memory is reserved for the stack.

83aa CALL aa Unconditional JUMP to address "aa"
93aa CALL Z, aa Conditional CALL to address "aa" performed when ZERO

flag is set
97aa CALL NZ, aa Conditional CALL to address "aa" performed when ZERO

flag is reset
9Baa CALL C, aa Conditional CALL to address "aa" performed when CARRY

flag is set
9Faa CALL NC, aa Conditional CALL to address "aa" performed when CARRY

flag is reset

Figure 10: CALL Instruction
x213_10_062100

Stack

a a a a a a a a

Unconditional or
condition valid

Unconditional or
condition valid

Condition
not valid

New Address

PC

PC
+1
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

RETURN
The RETURN instruction is the complement to the CALL instruction. The RETURN instruction
is also conditional. In Figure 11, the new PC value is formed internally by incrementing the last
value on the program address stack, ensuring the program executes the instruction following
the CALL instruction which resulted in the subroutine. The RETURN instruction has no effect
on the status of the flags.

The programmer must ensure that a RETURN is only performed in response to a previous
CALL instruction, so that the program counter stack contains a valid address. The cyclic
implementation of the stack continues to provide values for RETURN instructions that cannot
be defined. Each RETURN only specifies the condition for flag tests.

8080 RETURN Unconditional return to address following last CALL.
9080 RETURN Z Return to address following last CALL provided that ZERO flag

is set
9480 RETURN NZ Return to address following last CALL provided that ZERO flag

is reset
9880 RETURN C Return to address following last CALL provided that CARRY

flag is set
9C80 RETURN NC Return to address following last CALL provided that CARRY

flag is reset

Figure 11: RETURN Instruction

x213_11_062100

Stack

Unconditional or
condition valid

Condition
not valid

PC

PC

+1

+1
10 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Interrupt Group RETURNI
The RETURNI instruction is a special variation of the RETURN instruction (Figure 12). It
concludes an interrupt service routine. The RETURNI is unconditional and always loads the
program counter (PC) with the last address on the program counter stack. The address does
not increment in this case, because the instruction at the address stored needs to be executed.
The RETURNI instruction restores the flags to the point of interrupt condition. It also
determines the future ability of interrupts using ENABLE and DISABLE as an operand.

A RETURNI is only performed in response to an interrupt. Each RETURNI must specify if a
further interrupt is enabled or disabled.

80F0 RETURNIENABLE Return from interrupt routine and enable a future
interrupt

80D0 RETURNIDISABLE Return from interrupt routine and disable a future
interrupt

ENABLE INTERRUPT and DISABLE INTERRUPT
These instructions are used to set and reset the INTERRUPT ENABLE flag. Before using
ENABLE INTERRUPT, a suitable interrupt routine must be associated with the interrupt
address vector (FF). Never enable interrupts while performing an interrupt service (Figure 13).

8030 ENABLE INTERRUPT Enable future interrupt
8010 DISABLE INTERRUPT Disable future interrupt

Figure 12: RETURNI Instruction

Figure 13: ENABLE INTERRUPT Instruction

x213_12_062100

Stack

PC

CARRY

ZERO

Preserved
CARRY

Interrupt
Enable

Preserved
ZERO

"1"

"0"

ENABLE

DISABLE

x213_10_062100

Interrupt
Enable "1"

"0"

ENABLE

DISABLE
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Logical Group LOAD
The LOAD instruction specifies the contents of any register. The new value is either a constant
or the contents of any other register. The LOAD instruction has no effect on the status of the
flags (Figure 14).

Since the LOAD instruction does not affect the flags, it is used to reorder and assign register
contents at any stage of the program execution. Because the load instruction is able to assign
a constant with no impact to the program size or performance, the load instruction is the most
obvious way to assign a value or clear a register.

Some implied "virtual" instructions are listed.

LOAD s0,s0 Loading any register with its own contents achieves nothing and hence is
a NO OPERATION consuming two clock cycles. This is used to form a
delay in the program.

LOAD sX,00 Loading zero is the equivalent of a CLEAR register command.

Each LOAD instruction specifies the destination register as "s" followed by a single
hexadecimal digit (sX). It then specifies the source register value in a similar way (sY), or as an
8-bit constant using two hexadecimal digits (kk). The assembler supports labels to simplify the
use of constants.

Cxy0 LOAD sX,sY Load Register X with the contents of Register Y
0xkk LOAD sX,kk Load Register X with a constant value

Figure 14: LOAD Instruction

x213_14_062100

ConstantsX

sYsX

k k k k k k k k
12 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

AND
The AND instruction performs a bit-wise logical AND operation between two operands. For
example, 00001111 AND 00110011 produces the result 00000011. The first operand is any
register, and it is the register assigned the result of the operation. A second operand is also any
register, or an 8-bit constant value (Figure 15). Flags are affected by this operation.

The AND operation is useful in performing tests on the contents of a register. The status of the
ZERO flag controls the flow of the program.

INPUT s5, 56 This example reads an input port (address 56).

AND s5, 04 It then tests bit 2 of the captured byte stored in register 5.
The contents are overwritten.

CALL NZ, input active A non-zero result indicates that the tested bit was set and causes
a CALL to a service routine.

Each AND instruction must specify the first operand register as "s" followed by a single
hexadecimal digit (sX). This register also forms the destination for the result. The second
operand specifies a second register value in a similar way (sY), or specifies an 8-bit constant
using two hexadecimal digits (kk). The assembler supports labels to simplify the use of
constants.

Cxy1 AND sX,sY Bit-wise AND of Register X with the contents of Register Y
1xkk AND sX,kk Bit-wise AND of Register X with a constant value

Figure 15: AND Instruction
x213_15_062100

ConstantsX

sYsX

sX

sX

k k k k k k k k

0CARRY ?ZERO

AND

AND

Set if all bits of result are zero.
Reset in all other cases.
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

OR
The OR instruction performs a bit-wise logical OR operation between two operands. For
example, 00001111 OR 00110011 produces the result 00111111. The first operand is any
register. This register is assigned as the result of this operation. A second operand is also any
register, or an 8-bit constant value (Figure 16). Flags are affected by the OR operation.

Useful in forming control signals, the OR instruction provides a way to force setting any bit of
the specified register. The use of OR sX,00 determines if the contents of a register are zero
without changing the contents of the register.

A useful virtual instruction is

OR sX,00 Clear CARRY flag and test register for ZERO.

Each OR instruction must specify the first operand register as "s" followed by a single
hexadecimal digit (sX). This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way (sY), or specify an 8-bit
constant using two hexadecimal digits. The assembler supports labels to simplify the use of
constants.

Cxy2 OR sX,sY Bit-wise OR of Register X with the contents of Register Y
2xkk OR sX,kk Bit-wise OR of Register X with a constant value

Figure 16: OR Instruction
x213_16_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

0CARRY ?ZERO

OR

OR

Set if all bits of result are zero.
Reset in all other cases.
14 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

XOR
The XOR instruction performs a bit-wise logical XOR operation between two operands. For
example, 00001111 XOR 00110011 produces the result 00111100. The first operand is any
register, and this register is assigned the result of the operation. A second operand is also any
register, or an 8-bit constant value. Flags are affected by this operation (Figure 17).

The XOR operation is useful for inverting bits contained in a register. This operation is useful in
forming control signals.

LOAD s5,01
loop: XOR s5,03

OUTPUT s5,56
CALL delay
JUMP loop

In this example, the XOR instruction keeps writing the contents of register "s5" to port 56 at
intervals set by a delay subroutine. The XOR operation is used to modify the polarity of bit0 and
bit1 during each cycle. The initial load value of register 5 has ensured that bit0 and bit1 are
different.

Each XOR instruction must specify the first operand register as "s" followed by a single
hexadecimal digit (sX). This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way (sY), or specify an 8-bit
constant using two hexadecimal digits (kk). The assembler supports labels to simplify the use
of constants.

Cxy3 XOR sX,sY Bit-wise XOR of Register X with the contents of Register Y
3xkk XOR sX,kk Bit-wise XOR of Register X with a constant value

Figure 17: XOR Instruction
x213_17_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

0CARRY ?ZERO

XOR

XOR

Set if all bits of result are zero.
Reset in all other cases.
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Arithmetic
Group

ADD
The ADD instruction performs an 8-bit unsigned addition of two operands. The first operand is
any register, and it is this register that is assigned the result of the operation. A second operand
is also any register, or an 8-bit constant value (Figure 18). Flags are affected by this operation.

The ADD operation has many applications of which real addition is just one. Note that this
instruction does not use the CARRY as an input, and hence, there is no need to condition the
flags before use.

The ability to specify any constant is useful in forming control sequences or counters. An
obvious virtual instruction is

ADD sX,01 Equivalent to INCREMENT the register value

Each ADD instruction must specify the first operand register as "s" followed by a single
hexadecimal digit (sX). This register forms the destination for the result. The second operand
must then specify a second register value in a similar way (sY), or specify an 8-bit constant
using two hexadecimal digits (kk). The assembler supports labels to simplify the use of
constants.

Cxy4 ADD sX,sY Addition of Register X with the contents of Register Y
4xkk ADD sX,kk Addition of Register X with a constant value

Figure 18: ADD Instruction
x215_18_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

?CARRY Set if result of addition exceeds FF.
Reset in all other cases. ?ZERO Set if all bits of result are zero.

Reset in all other cases.

+

+

16 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

ADDCY
The ADDCY instruction performs an unsigned addition of two 8-bit operands together with the
contents of the CARRY flag. The first operand is any register, and this register is assigned the
result of the operation. A second operand is also any register, or an 8-bit constant value
(Figure 19). Flags are affected by this operation.

The ADDCY operation is used in the formation of adder and counter processes exceeding eight
bits.

ADD s7,01 Here, a 16-bit counter is formed by a pair of registers. First, the lower byte
(s7) increments.

ADDCY s8,00 Next, the effect of a carry from the lower byte is used to increment the
upper byte (s8).

Each ADDCY instruction must specify the first operand register as "s" followed by a single
hexadecimal digit (sX). This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way (sY), or specify an 8-bit
constant using two hexadecimal digits (kk). The assembler supports labels to simplify the use
of constants.

Cxy5 ADDCY sX,sY Addition of Register X with the contents of Register Y
and CARRY

5xkk ADDCY sX,kk Addition of Register X with a constant value
and CARRY

Figure 19: ADDCY Instruction

x213_19_0623

ConstantsX

sYsX

sX

sX

k k k k k k k k

CARRY

CARRY

?CARRY Set if result of addition exceeds FF.
Reset in all other cases. ?ZERO Set if all bits of result are zero.

Reset in all other cases.

+

+

+

+

XAPP213 (v1.1) October 4, 2000 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

SUB
The SUB instruction performs an 8-bit unsigned subtraction of two operands. The first operand
is any register, and this register is assigned the result of the operation. The second operand is
also any register, or an 8-bit constant value (Figure 20). Flags are affected by this operation.

The SUB operation has many applications, of which real subtraction is just one. Note that this
instruction does not use the CARRY as an input, and hence there is no need to condition the
flags before use. The CARRY flag now indicates when an underflow has occurred and that the
result is actually negative. For example, if "s5" contains 27 hex and the instruction SUB s5,35
is performed, then the stored result is F2 hex and the CARRY flag is set.

The ability to specify any constant is useful in forming control sequences or down counters. An
obvious virtual instruction is, therefore,

SUB sX,01 Equivalent to DECREMENT the register value

Each SUB instruction must specify the first operand register as "s" followed by a single
hexadecimal digit (sX). This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way (sY), or specify an 8-bit
constant using two hexadecimal digits (kk). The assembler supports labels to simplify the use
of constants.

Cxy6 SUB sX,sY Subtract contents of Register Y from contents of Register X
6xkk SUB sX,kk Subtract a constant value from contents of Register X

Figure 20: SUB Instruction

x213_20_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

?CARRY Set if result is negative.
Reset in all other cases. ?ZERO Set if all bits of result are zero.

Reset in all other cases.
18 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

SUBCY
The SUBCY instruction performs an 8-bit unsigned subtraction of two operands together with
the contents of the CARRY flag. The first operand is any register, and this register is assigned
the result of the operation. The second operand is also any register, or an 8-bit constant value
(Figure 21). Flags are affected by this operation.

The SUBCY operation is used in the formation of subtract and down-counter processes
exceeding 8 bits.

SUB s7,01 Here, a 16 bit down counter is formed by a pair of registers. First the lower
byte (s7) is decremented.

SUBCY s8,00 Next, the effect of a "borrow" from the lower byte is used to decrement
the upper byte (s8).

Each SUBCY instruction must specify the first operand register as "s" followed by a single
hexadecimal digit (sX). This register also forms the destination for the result. The second
operand must then specify a second register value in a similar way (sY), or specify an 8-bit
constant using two hexadecimal digits (kk). The assembler supports labels to simplify the use
of constants.

Cxy7 SUBCY sX,sY Subtract contents of Register and CARRY from contents of
Register X

7xkk SUBCY sX,kk Subtract a constant value and CARRY from contents of
Register X

Figure 21: SUBCY Instruction
x213_21_062300

ConstantsX

sYsX

sX

sX

k k k k k k k k

CARRY

CARRY

?CARRY Set if result of addition exceeds FF.
Reset in all other cases. ?ZERO Set if all bits of result are zero.

Reset in all other cases.
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Shift and Rotate
Group

SR0, SR1, SRX, SRA, RR
The shift and rotate right group all modify the contents of a single register to the right
(Figure 22). All instructions in the group have an effect on the flags.

Each instruction must specify the register as "s" followed by a single hexadecimal digit.

Dx0E SR0 sX Shift register X right by one place injecting "0"
Dx0F SR1 sX Shift register X right by one place injecting "1"
Dx0A SRX sX Shift register X right by one place performing sign extension
Dx08 SRA sX Shift register X right by one place injecting CARRY flag
Dx0C RR sX Rotate register X right by one place replacing MSB with LSB

SL0, SL1, SLX, SLA, RL
The shift and rotate left group all modify the contents of a single register to the left (Figure 23).
All instructions in the group have an effect on the flags.

Figure 22: Right Shift Register Instructions

Figure 23: Left SHIFT Register Instructions

x213_22_090100

sX CARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

"0"

sX CARRY

sX CARRY

"1"

SR0 sX

0ZEROSR1 sX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SRX sX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SRA sX

?ZERO Set if all bits of result are zero.
Reset in all other cases.

RR sX

sX CARRY

sX CARRY

x213_23_062300

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

"0"SL0 sX

sXCARRY

0ZERO"1"SL1 sX

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SLX sX

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

SLA sX

sXCARRY

?ZERO Set if all bits of result are zero.
Reset in all other cases.

RL sX
20 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Each instruction must specify the register as "s" followed by a single hexadecimal digit.

Dx06 SL0 sX Shift register X left by one place injecting "0"
Dx07 SL1 sX Shift register X left by one place injecting "1"
Dx04 SLX sX Shift register X left by one place performing sign extension
Dx00 SLA sX Shift register X left by one place injecting CARRY flag
Dx02 RL sX Rotate register X left by one place replacing LSB with MSB
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Input and
Output Group

INPUT
The INPUT instruction enables data values external to the KCPSM to be transferred into any
one of the internal registers (Figure 24). The port address (in the range 00 to FF) is defined by
a constant value, or indirectly as the contents of the any other register. The flags are not
affected by this operation.

The user interface logic is required to decode the port address value and supply the correct
data. The signal waveforms are shown in Figure 25. Note that the READ_STROBE provides an
indicator that a port has been read, but it is not vital to qualify a valid address.

Each INPUT instruction must specify the destination register as "s" followed by a single
hexadecimal digit (sX). It must then specify the input port address using a register value in a
similar way (sY), or specify an 8-bit constant using two hexadecimal digits (pp). The assembler
supports labels to simplify the use of port address constants.

Bxy0 INPUT sX,sY Transfer value from port specified by contents of
register Y to register X

Axpp INPUT sX,pp Transfer value from port specified by constant to
register X

Figure 24: INPUT Instruction
x213 24 062300

ConstantsX Port Value Port Address

p p p p p p p p

sYsX Port Value Port Address

Figure 25: INPUT Signal Waveform
x213_24_062300

Input data captured

Valid Valid

Clock

Port (addr)

Read_strobe
22 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

OUTPUT
The OUTPUT instruction enables the contents of any register to transfer to logic external to the
KCPSM. The port address (in the range 00 to FF) is defined by a constant value, or indirectly
as the contents of the any other register (Figure 26). The flags are not affected by this
operation.

The user interface logic is required to decode the port address value and enable the correct
logic to capture the data value. The WRITE_STROBE is used in this case to ensure the transfer
of valid data only. The signal waveforms are shown in Figure 27.

Each OUTPUT instruction must specify the source register as "s" followed by a single
hexadecimal digit (sX). It must then specify the output port address using a register value in a
similar way (sY), or specify an 8-bit constant using two hexadecimal digits (pp). The assembler
supports labels to simplify the use of port address constants.

Fxy0 OUTPUT sX,sY Transfer value from register X to port specified by
contents of register Y

Expp OUTPUT sX,pp Transfer value from register X to port specified by
constant.

Figure 26: OUTPUT Instruction

X213_26_062300

ConstantsXPort Value Port Address

p p p p p p p p

sYsXPort Value Port Address

Figure 27: OUTPUT Signal Waveform
x213_27_082100

Valid

Clock

Port (addr)

ValidOutput Data

Write_strobe

External Circuit
Captures Data
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

KCPSMBLE
Assembler

To simplify the generation of programs, an assembler called KCPSMBLE is provided. Programs
are best written with either the standard Notepad or Word tools. The file is saved with a .psm
file extension (eight character name limit). Figure 28 illustrates the process for using the
KCPSMBLE files.

kcpsmble <prog_name>[.psm]

Place the KCPSMBLE.EXE file in the same directory as the program file. Open a DOS box and
navigate to the directory. Then run the assembler kcpsmble <filename>[.psm]. The
assembler executes very quickly and the display often appears immediately.

Direct EDIF netlist (<prog_name>.edn).

This immediately provides a "black box" in which the block RAM which has been initialized and
connected in the ROM configuration (Figure 6).

Coefficient File (<prog_name>.coe).

This file is easily read and modified and used in conjunction with the Core Generator to include
the program in any block RAM configuration. This is useful for accessing dual port block RAM
configurations.

Figure 28: KCPSMBLE Assembler
x213_28_082100

INSTRUCTION[15:0]ADDRESS[7:0]

CLK
CLK

I[15:0]PROGRAMADDR[7:0]

Xilinx Core or
Similar IP
24 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Assembler Errors
The assembler stops as soon as an error is detected. A short message is displayed to help
determine the reason for the error. The assembler also displays the line it was analyzing when
the problem was detected. Since the execution of the assembler is very fast, the display often
appears to be immediate. Fix each reported problem in turn and re-execute the assembler.

FORMAT.PSM File
When a program passes through the assembler, additional files to the .coe and .edn files are
produced to assist the programmer. One of these files is called FORMAT.PSM, which is the
original program reformatted. The FORMAT.PSM file provides:

• Separate labels and comments

• Puts all commands in upper case and correctly spaces operands

• Gives registers an "sX" format

• Converts constants to upper case

Looking at this file shows if the expected interpretation has occurred. This utility is an easy way
to write programs, while KCPSMBLE formats the work.

Figure 29: Assembler Error Display

Line being processed

Error message

Previous Progress

x213_29_062600
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

<prog_name>.log File
The .log file provides the assembly process detail. It is possible to observe how each
instruction and directive is used. Address and op-code values are associated with each line of
the program and displays a list of the constants declared (Figure 31).

Figure 30: FORMAT.PSM File
26 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

The log file helps confirm that all the labels have been correctly applied. In Figure 31, the label
"display" is associated with address 02, and hence, the op-code for the JUMP is assigned the
operand value of 02.

Foundation Simulation (.hex File)
When using the Foundation simulator, the contents of the block RAM used to hold the program
are not automatically initialized.

The KCPSMBLE assembler provides a file called <prog_name>.hex to initialize the block
RAM. The loading sequence is shown in Figure 32. Each time the simulation is reset to time
zero, the block RAM is loaded again. The Edit option is used to verify that the memory content
is loaded. Then the block RAM component in the design hierarchy is highlighted, Select is
pressed and the hex file is located.

Figure 31: <prog_name>.log File

x213_31_062600
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 27
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Program Syntax
Probably the best way to understand what is and what is not valid syntax is to look at the
examples and try the assembler. However, some simple rules are of assistance from the
beginning. To assure that the correct program syntax is used, the following suggestions are
recommended:

No blank lines. A blank line is ignored by the assembler and removed from any formatted files.
A blank comment is the appropriate way to document a blank line.

Comments. Any item on a line following a semi-colon (;) is ignored by the assembler. Concise
comments should be used to keep the program manageable for the relatively simple
assembler.

Registers. All registers are defined as the letter "s" immediately followed by a single
hexadecimal character in the range of 0 to F. The assembler accepts any mixture of upper and
lower case characters and automatically converts them to the "sX" format, where "X" is one of
the following: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Constants. A constant is specified in the form of a two-digit hexadecimal value (range 00 to
FF). The assembler accepts any mixture of upper and lower case characters and automatically
converts them to upper case.

Figure 32: Foundation Simulation
28 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Labels. Labels are comprised of any user-defined text string, and are case sensitive for
additional flexibility. No spaces are allowed, but the underscore character is supported. Valid
characters are 0 to 9, a to z, and A to Z. Labels are used to identify a program line for reference
in a JUMP or CALL instruction ended by a colon, as in the following example:

 wait_loop1: INPUT s0, event_port ;read input
 AND s0, 01 ;test bit0
 JUMP Z, wait_loop1 ;wait for an event

Program Syntax
Instructions

The instruction format is described under Complete KCPSM Instruction Set, page 6. The
assembler is very forgiving over the use of spaces and <TAB> characters, but instructions and
the first operand must be separated by at least one space. Instructions with two operands must
ensure that a comma (,) separator is used.

The assembler accepts any mixture of upper and lower case characters for the instruction and
automatically converts them to upper case. The following examples all show acceptable
instruction specifications, but the formatted output shows how it was expected.

Most other syntax problems are solved by reading the error messages provided by the
assembler.

Assembler
Directives

The KCSPMBLE assembler currently supports two directives. These commands are used
purely by the assembly process and do not correspond to any instructions executed by KCPSM
macro.

CONSTANT (k) Directive
This directive provides a way to assign an 8-bit constant value to a label. In this way, the
program can declare constants such as port addresses and particular values before they are
needed in the program. By predefining constant values (rather than entering them as actual
values in the program commands), it is both easier to work with them and easier to understand
the meaning of the program. The following example illustrates the constant directive syntax and
its uses.

load s5,7E

KCPSMBLE

LOAD s5, 7E

AddCY s8,SE ADDCY s8, sE

ENABLE interrupt ENABLE INTERRUPT

Output S2, (S8) OUTPUT s2, (s8)

jump Nz, 67 JUMP NZ, 67

ADD sF, step_value ADD sF, step_value

INPUT S9,28 INPUT s9, 28

sl1 se SL1 sE

RR S8 RR s8
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 29
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

16-bit Counter Example

CONSTANT event_port, 02 ;input port (bit0 will be data)
CONSTANT lower_byte, 10 ;counter low bits
CONSTANT upper_byte, 20 ;counter high bits
CONSTANT zero, 00 ;counter high bits

;
start: LOAD sA, zero ;clear 16 bit counter in sB/sA

LOAD sB, zero
display: OUTPUT sA, lower_byte ;output count value

OUTPUT sB, upper_byte
wait_loop1: INPUT s0, event_port ;read input

AND s0, 01 ;test bit0
JUMP Z, wait_loop1 ;wait for an event
ADD sA, 01 ;increment counter
ADDCY sB, 00

still_active: INPUT s0, event_port ;read input
AND s0, 01 ;test bit0
JUMP NZ, still_active ;wait for an event to end
JUMP display

In this example, zero is used to specify a data constant for clearing some registers. The other
constants are used to define port addresses, and subsequent use in I/O operations makes it
easy to understand which ports are being accessed. Notice that the event_port is used
multiple times, and hence, the CONSTANT directive enables a single point of change.

ADDRESS Directive
The ADDRESS directive provides a way to force the assembly of the following instructions
commencing at a new address value. This is useful for separating subroutines into specific
locations and is vital for handling interrupts. The following log file shows the same 16-bit
counter example modified to use subroutines to clear and increment the registers that are used
as a counter. Although not absolutely necessary, the subroutines have been forced to specific
memory locations. The simple syntax of the ADDRESS directive can also be observed in this
example.

00 83B0 start: CALL clear_count16
01 EA10 display: OUTPUT sA,lower_byte ;output count value
02 EB20 OUTPUT sB,upper_byte
03 A002 wait_loop1: INPUT s0,event_port ;read input
04 1001 AND s0, 01 ;test bit0
05 9103 JUMP Z, wait_loop1 ;wait for an event
06 83A0 CALL inc_count16
07 A002 still_active: INPUT s0, event_port ;read input
08 1001 AND s0, 01 ;test bit0
09 9507 JUMP NZ, still_active ;wait for an event to end
0A 8101 JUMP display
0B ;Subroutines
A0 ADDRESS A0 ;increment counter
A0 4A01 inc_count16: ADD sA, 01
A1 5B00 ADDCY sB, 00
A2 8080 RETURN
B0 ADDRESS B0 ;clear counter
B0 0A00 clear_count16: LOAD sA, 00
B1 0B00 LOAD sB, 00
B2 8080 RETURN
B3 ;
30 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Design Example
The following design and coding example illustrates the KCPSM in action. No attempt has been
made to optimize the code. In fact, the opposite is true, in order to show as many aspects as
possible in a small example.

The example shows how 8-bit data values are read, stored, sorted, and finally output in
ascending order. The complete circuit diagram is shown in Figure 33. Besides illustrating
reading and writing data to ports, this example shows a separate memory implemented in
distributed RAM.

Figure 33: Design Example: Complete Circuit

RAM_OUT[7:0]

DATA7

RAM_OUT7
0 INPUT7

M2_1
D0

D1

S0

DATA6

RAM_OUT6
0 INPUT6

M2_1
D0

D1

S0

DATA5

RAM_OUT5
0 INPUT5

M2_1
D0

D1

S0

DATA4

RAM_OUT4
0 INPUT4

M2_1
D0

D1

S0

DATA3

RAM_OUT3
0 INPUT3

M2_1
D0

D1

S0

DATA2

RAM_OUT2
0 INPUT2

M2_1
D0

D1

S0

DATA1

RAM_OUT1
0 INPUT1

M2_1

M2_1

0

D0

D1

S0

DATA0

STROBE

INPUT[7:0]

DATA[7:0]

PORT0

PORT7

RAM_OUT0
0 INPUT0

M2_1
D0

D1

S0

D0

D1

S0

OPAD

OPAD

IPAD

IPAD

IPAD

x213_33_062600

RAM

Register

KCPSM
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 31
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Output Logic
The PORT bus is decoded to ensure correct access to the results register and distributed RAM
module. Careful allocation of port addresses reduces the decoding logic. In all cases, the
WRITE_STROBE ensures that only valid data is stored.

RAM is written for all addresses 80 hex and above. Since there are only 32 RAM locations, the
program does not exceed address 9F hex for correct access.

The Data register is written when PORT5 address bit is asserted. This is address 20 Hex
(32 decimal). This minimum decoding is safe as it cannot conflict with the RAM space during
normal operations.

Input Logic
The PORT bus is decoded to ensure correct selection of input data to the KCPSM input port.
Careful allocation of port addresses reduces the decoding logic. There is no actual requirement
to use the READ_STROBE to qualify the port address.

A main 8-bit wide 2:1 multiplexer is controlled by PORT7, such that all read accesses of 80 hex
and above are taken from the 32 x 8 RAM. The PORT[4:0] signals are also being used by the
RAM (as an address) to provide the correct data.

Addresses below 80 hex select the input data samples. However, the LSB is provided with a
further multiplexer under the control of PORT0. Hence, EVEN addresses correctly access the
8-bit input samples; ODD addresses giving access to the input strobe (but require masking the
upper bits). The program uses address 00 for data and address 01 for the strobe.

Figure 34: Design Example: Detail for Output

OUTPUT

PORT[7:0]

ADDR[7:0]

READ_STROBE

WRITE_STROBE

OPAD

PORT4

PORT3

PORT2

PORT1

PORT0

CLK

RAM WE
RAM32X8S

WE

D[7:0]

A0

A1

A2

A3

A4

WCLK

O[7:0]

PORT7

AND2

OBUF

P READ

PORTS

WE REGISTER

CLK

CE

C

AND2

CLR

D[7:0] Q[7:0]

FD8CE

PORT32DATA[7:0]

OUTPUT[7:0]

PORT[7:0]

ADDR[7:0]

READ STROBE

WRITE STROBE

32x8
RAM

Output
Data

Register

PORTS & WRITE_STROBE

PORT7 & WRITE_STROBE

x213_34_062600

GND
32 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Coding
Example

The PSM program is provided below (and supplied as a file). It is not an optimum
implementation in order to illustrate various techniques and instructions in action. Even so, the
program only consumes 41 locations of the 256 available in the program memory. The program
is divided over the next few pages to add explanations.

In the first portion, the constants are used to define port addresses. A constant sets the number
of samples to collect and sort. Note the number of references to this constant in the program
(must be a hex value). The 20-input samples are collected and stored in external RAM. "sA" is
the incremented memory pointer, and "s2" is counting (down) as the samples are being
collected. Subroutine collect_data actually fetches a data sample into register "s1."

Figure 35: Design Example: Detail for Output

RAM_OUT[7:0]

DATA7

RAM_OUT7
0 INPUT7

M2_1
D0

D1

S0

DATA6

RAM_OUT6
0 INPUT6

M2_1
D0

D1

S0

DATA5

RAM_OUT5
0 INPUT5

M2_1
D0

D1

S0

DATA4

RAM_OUT4
0 INPUT4

M2_1
D0

D1

S0

DATA3

RAM_OUT3
0 INPUT3

M2_1
D0

D1

S0

DATA2

RAM_OUT2
0 INPUT2

M2_1
D0

D1

S0

DATA1

RAM_OUT1
0 INPUT1

M2_1

M2_1

0

D0

D1

S0

DATA0

STROBE

INPUT[7:0]
INPUT[7:0]

MACHINE1

DATA[7:0]

PORT0

PORT7

RAM_OUT0
0 INPUT0

M2_1
D0

D1

S0

D0

D1

S0

From
32x8 RAM

8-bit
Input Samples

Input Strobe

PORT0

Data input to KCPSM

x213_35_062600
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 33
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

CONSTANT data_input_port, 00
CONSTANT strobe_input_port, 01;lsb contains strobe
CONSTANT data_output_port, 20
CONSTANT ram_base_addr, 80
CONSTANT data_sets, 14 ;work with 20 values

;
start: LOAD sA, ram_base_addr ;point to first memory location

LOAD s2, data_sets
collect_data: CALL read_data ;fetch data into ’s1’

OUTPUT s1, (sA) ;write to external RAM
ADD sA, 01 ;next RAM address
SUB s2, 01 ;check data collected
JUMP NZ, collect_data

The following section covers a standard bubble sort of the data stored in external memory. At
completion, the lowest values are at the lowest addresses and highest values at highest
addresses.

The memory is scanned 19 times (the number of samples less one). Registers "sA" and "sB"
are used as memory pointers. Each scan of memory starts at the base address (80) and works
upwards, taking with it the largest value to the highest address. Subsequent scans access one
less memory location each time, as the largest values are already at the top of memory. The
result port is defined by a constant.

In the following subroutine, "sC" determines the number of scans to be performed and the
number still remaining to be completed. Data is read from memory and compared. Subroutine
"sC" swaps data using "sA" and "sB" pointers. Note the conditional CALL. "sD" determines the
number of stages to perform in each scan and the number still remaining in the current scan.

sort_data: LOAD sC, data_sets ;define number scans
SUB sC, 01

start_scan: LOAD sD, sC ;checks per scan
LOAD sA, ram_base_addr ;set ram pointers

scan_loop: LOAD sB, sA
ADD sA, 01
INPUT s0, (sB) ;read 2 values
INPUT s1, (sA)
SUB s1, s0 ;compare
CALL C, swop ;swap values in s0 > s1
SUB sD, 01 ;check scan progress
JUMP NZ, scan_loop
SUB sC, 01 ;check number of scans
JUMP NZ, start_scan

Finally, the sorted values are written to the output register. The subroutines are then defined.

Figure 36: Code Example, Bubble Sort Arrangement

sA
sB

RAM

80
81
82
83
84
85
86
87

Scan
Direction

x213_36_062700
34 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

In the following subroutine, the loop is using "sA" to point at memory locations. The result port
is defined by a constant. At the end, the whole program is repeated.

;write data
LOAD sA, ram_base_addr ;point to first memory location
LOAD s2, data_sets

next_out: INPUT s1, (sA) ;read RAM
OUTPUT s1, data_output_port ;write to port
ADD sA, 01 ;next RAM address
SUB s2, 01 ;check progress
JUMP NZ, next_out
;
JUMP start

The following subroutine reads the input sample in response to a strobe signal. It starts with a
loop waiting for the strobe signal to be High. Next it reads the data into "s1" followed by a loop
waiting for the strobe signal to be Low.

;subroutine to collect input data into ’s1’
read_data:INPUT s0, strobe_input_port

AND s0, 01 ;test strobe
JUMP Z, read_data
INPUT s1, data_input_port ;read data

end_strobe: INPUT s0, strobe_input_port
AND s0, 01 ;test strobe
JUMP NZ, end_strobe
RETURN

The following subroutine is called when values in memory need to be exchanged. Temporary
use is made of "s0" and "s1" registers.

;subroutine to swop memory contents
swop:INPUT s0, (sA)

INPUT s1, (sB)
OUTPUT s1, (sA)
OUTPUT s0, (sB)
RETURN

Interrupt Handling
Effective interrupt handling, and how and when an interrupt is used, are not covered in this
document. The information supplied, however, is adequate to assess the capability of KCPSM
and to create interrupt-based systems.

Default State. By default, the interrupt input is disabled. This means that the entire 256 words
of program space are used without any regard to interrupt handling or use of the interrupt
instructions.

Enabling Interrupts. For an interrupt to take place, the ENABLE INTERRUPT command must
be used. At critical stages of program execution where an interrupt is unacceptable, a DISABLE
INTERRUPT is used. Since an active interrupt automatically disables the interrupt input, the

Figure 37: Code Example, Data Swop Process

80
81
82
83
84

80
81
82
83
84

x213_37_062700

s0

s1

Temporary use made of
"s0" and "s1" registers.

RAM

sA
sB
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 35
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

interrupt service routine ends with a RETURNI instruction, which also includes the option to
ENABLE or DISABLE the interrupt input as it returns to the main program.

During an interrupt, the program counter is pushed onto the stack and the values of the
CARRY and ZERO flags are preserved (for restoration by the RETURNI instruction). The
interrupt input is automatically disabled. Finally, the program counter is forced to address FF
from which the next instruction is executed.

Basics of Interrupt Handling
Since the interrupt forces the program counter to address FF, a jump vector to a suitable
interrupt handling routine should be located at this address. Without such a JUMP instruction,
the program will "roll over" to address zero. This is a valid way to provide KCPSM with a
hardware reset, because the program counter stack is cyclic and the currently preserved
addresses are ignored.

In normal cases, an interrupt service routine is provided. The routine can be located at any
position in the program and jumped to by the interrupt vector located at the FF address. The
service routine performs the required tasks and then ends in RETURNI with ENABLE or
DISABLE.

Simple Example
The example in Figure 39 illustrates a very simple interrupt handling routine. The KCPSM is
generally involved with generating waveforms to an output by writing the values 55 and AA to
the waveform_port (port address 02). This is done at regular intervals and decrements a
register (s0) counter in a loop.

When an interrupt is asserted, the KCPSM breaks off from the waveform generation,
increments a separate counter register (sA), and writes the counter value to the
counter_port (port address 04).

Figure 39 shows the external circuits used to capture port data. Note the simplified port
decoding through careful selection of port addresses.

Figure 38: Effects of an Active Interrupt

x213_39_082100

Stack

PC New Address

ZERO

CARRY
Preserved

CARRY

Interrupt
Enable

Preserved
ZERO

"0"

1 1 1 1 1 1 1 1
36 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Basic Interrupt
Service Routine

The assembler log file below shows that the interrupt service routine has been forced to
compile at address B0, and the waveform generation is based in the normal lower addresses.
This makes it easier to observe the interrupt in action in the operation waveforms.

In the file, Addr starts the main program delay loop where most time is spent. The interrupt
service routine is located at address B0 onwards. The interrupt vector is set at address FF and
causes a JUMP to the service routine.

Addr Code

00 ;Interrupt example
00 ;
00 CONSTANT waveform_port,02;bit0 will be data
00 CONSTANT counter_port,04
00 ;
00 0A00 start: LOAD sA, 00 ;reset interrupt counter
01 02AA LOAD s2, AA ;initial output condition
02 8030 ENABLE INTERRUPT
03 ;
03 E202 drive_wave: OUTPUT s2, waveform_port
04 0007 LOAD s0, 07 ;delay size
05 6001 loop: SUB s0, 01 ;delay loop
06 9505 JUMP NZ, loop
07 32FF XOR s2, FF ;toggle waveform
08 8103 JUMP drive_wave
09 ;
B0 ADDRESS B0
B0 4A01 int_routine: ADD sA, 01 ;increment counter
B1 EA04 OUTPUT sA, counter_port
B2 80F0 RETURNI ENABLE
B3 ;
FF ADDRESS FF ;set interrupt vector
FF 81B0 JUMP int_routine

Figure 39: Circuit for Interrupt Example

PORT2

PORT1

PORT[7:0]

Waveforms

D Q

CE

D Q

CE

Counter

INPUT[7:0]

INTERRUPT

CLK

I[15:0]

OUTPUT[7:0]

PORT[7:0]

READ_STROBE

WRITE_STROBE

ADDR[7:0]
KCPSM

Interrupt events

x213_40_082100
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 37
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

Interrupt
Operation

Figure 40 is an actual simulation of the KCPSM performing the example program at the time of
an interrupt.

By observing the address bus, it is possible to see that the program is busy generating the
waveforms and writing the 55 pattern value to the port (02). While in the delay loop, which
repeats addresses 05 and 06, it receives an interrupt pulse.

It can be seen that the KCPSM took a few cycles to respond to this particular pulse (see Timing
of Interrupt Pulses, below) before forcing the address bus to FF. From FF, the obvious JUMP
to the service routine can be seen to follow, and a resulting counter value representing a first
interrupt event is written to the port (04).

The operation of an interrupt in KCPSM is also visible. The last active address before the
interrupt is 06. The JUMP instruction obtained at this address (op-code 9505) is not executed.
The preserved flags are those that were set at the end of the instruction at the previous address
(SUB s0,01). The RETURNI has restored the flags and returned the program to address 06,
so that the instruction can be executed at last.

Timing of Interrupt Pulses
In Figure 41, a constant two cycles per instruction are maintained at all times. Since this
includes an interrupt, the use of a single cycle pulse for an interrupt can be risky. However, this
figure shows the exact cycle in which the interrupt is observed and the true reaction rate of the
KCPSM.

The interrupt pulses, like all signals, are sampled on the rising edge of the clock. It can be seen
that the pulses are active at different times relative to the address cycle, with one being
captured and the other ignored.

Figure 40: Simulation of Waveforms

08 03 04 05 06 05 06 05 06 FF B0 B1 B2 06 05

FF 8103 E202 0007 6001 9505 6001 9505 6001 9505 81B0 4A01 EA04 80F0 9505 6001

AA 00 55 00 07 00 06 00 05 00 01 04 00 04

FF 03 02 07 01 05 01 05 01 05 B0 01 04 F0 05 01

0

Delay loop
Service
RoutineIn

te
rr

up
t

V
ec

to
r

Point of
interrupt

addr. (hex)#8

i.(hex)#16
ouput. (hex)#8
port.(hex)#8

CLK.
INTERUPT.

WRITE_STROBE..

Write to ‘waveform_port’ Write to ‘counter_port’

x213_41_062700
38 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

.

Therefore, it is advisable that an interrupt signal be active for a minimum of two KCPSM rising
clock cycle edges. An improvement would be for the interrupt service routine to acknowledge
the interrupt to the external logic. There are three ways to achieve this:

1. Service routine writes to a specific port to acknowledge interrupt and reset the driving
pulse. Some may consider this method wasteful.

2. Read a specific port to determine the reason for the interrupt and use READ_STROBE to
reset pulse generation circuit.

3. Decode the address bus to verify that the address FF has been enforced. This is probably
the most elegant solution, as it exploits the embedded use of the processor in the FPGA.

Continuous Interrupt
In the event that the interrupt remains active, or has become active again by the time the
interrupt service routine has been completed, the KCPSM is able to respond immediately as
soon as control has been passed back to the main program.

The following illustration uses the same example, but this time with an interrupt pulse of longer
duration.

Figure 41: Interrupt Pulse Timing

6001 9505 6001 81B0 4A01 EA04 80F0 6001 9505 6001 9505 6001 9505 6001 9505

05 00 04 00 06 07 04 00 03 00 02 00 01 00

01 05 01 B0 01 04 F0 01 05 01 05 01 05 01 05

06 05 FF B0 B1 B2 05 06 05 06 05 06 05 06 05

Delay loop
Service
RoutineIn

te
rr

up
t

V
ec

to
r

addr. (hex)#8

i.(hex)#16
ouput. (hex)#8
port.(hex)#8

CLK.
INTERUPT.

WRITE_STROBE..

Pulse captured Pulse ignored

x213_42_062700

Figure 42: Continuous Interrupt Timing

05 06 05 FF B0 B1 B2 05 FF B0 B1 B2 05 06

6001 9505 6001 81B0 4A01 EA04 80F0 6001 81B0 4A01 EA04 80F0 6001 950007

07 00 06 00 02 03 06 00 03 04 06 000

01 05 01 B0 01 04 F0 01 B0 01 04 F0 01 057

Service
Routine

Service
RoutineIn

te
rr

up
t

V
ec

to
r

In
te

rr
up

t
V

ec
to

r

addr. (hex)#8

i.(hex)#16
ouput. (hex)#8
port.(hex)#8

CLK.
INTERUPT.

WRITE_STROBE..

Value ‘04’ to ‘counter_port’

x213_43_062700

Value ‘03’ to ‘counter_port’
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 39
1-800-255-7778

http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

The instruction at address 05 is abandoned by the interrupt process the first time. The
RETURNI (with ENABLE) restores the flags and again fetches the instruction at address 05
(op-code 6001). However, the interrupt is still active, so the instruction is abandoned again.
Finally, after this service routine, the instruction is fetched and able to execute.

Future
Developments

This first version of the 8-bit microcontroller (KCPSM) for Virtex devices is supplied in a basic
usable package (xapp213.zip). Much of the future of this small module depends on how it is
used and the feedback received. The following list indicates likely developments, but in no
preferred order.

SMART-IP Version
The SMART-IP version of the module, in which relative placement is predetermined, may be
necessary to consider two layouts for the macro ("left-hand" and "right-hand") associated with
the block RAM on each side of the Virtex device.

Testing Version
This version of the macro has received more testing than the SMART-IP version. The test
version includes real executions in silicon of some relatively complex mathematical
calculations. However, just as it is difficult to actually test software, the testing of software
running on hardware is even more difficult. As more test programs are written and executed
both in simulation and on hardware, potential problems and misunderstandings are revealed.

Likewise, the more the assembler and macro are used by various people, the more
improvements can be implemented. Any issues found should be sent by e-mail to:
support@xilinx.com.

VHDL Behavioral Model
An HDL-based simulation model is a useful tool in the development of embedded systems
where the KCPSM can play an active role in the control of its surroundings. A behavioral model
helps to demonstrate the processes being executed and provide reasonable simulation run-
time performance.

Examples

Code examples are needed to build up a library of applications and useful subroutines to
provide with the module. These examples demonstrate how the KCPSM works with additional
logic.

Support Functions

Providing add-on block functions, such as a counter-timer, UART, and multiple interrupt control
port, will bring further predefined functionality to the KCPSM designer.

Code Debugger

A very simple code emulation program is needed to allow program code operation to be verified
before compiling into the embedded design. Almost certainly using the <prog_name>.log
file output from KCPSMBLE as an input.

Conclusion A microprocessor module does not have to be large or expensive when implemented in a Virtex
or Spartan-II device. The Virtex architectural features (block memory, distributed memory,
dedicated multiplexers, and carry logic) are ideal for the construction of fully embedded
microprocessor modules.

The KCPSM macro is a simple 8-bit processor with an instruction set for basic control functions
and data manipulation. This is achieved with just 35 CLBs and one block RAM. Even with a
silicon utilization over performance objective, over 30 MIPs of processing power shows the very
high performance provided by Xilinx devices. This simple 8-bit processor achieves significant
40 www.xilinx.com XAPP213 (v1.1) October 4, 2000
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/
mailto:support@xilinx.com
http://www.xilinx.com

8-Bit Microcontroller for Virtex Devices
R

data processing algorithms and control. For example, performance measurements of 150,000
16-bit multiplications per second are available for audio and control digital signal processing.

When a processor is completely embedded within an FPGA, no I/O resources are required to
communicate with other modules in the same FPGA. Additionally, system design flexibility is
included along with savings on PCB requirements, power consumption, and EMI. Whenever a
special type of instruction is required, it can be created in hardware (other CLBs) and
connected to the KCPSM as a kind of coprocessor. Indeed, there is nothing to prevent a
coprocessor from being another KCPSM module. In this way, even the 256-instruction program
length is not a limitation.

Finally, the optimal processor results when the instruction set is tuned to the system algorithms.
By creating individual processor architectures with flexible software inside the hardware, the
KCPSM shows how programmable state machines are very silicon efficient.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/25/00 1.0 Initial Xilinx release.

10/04/00 1.1 Minor text edits to make the copy more readable.
XAPP213 (v1.1) October 4, 2000 www.xilinx.com 41
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Understanding KCPSM

	KCPSM Architecture
	KCPSM Feature Set
	General Purpose Registers
	ALU
	Flags Program Flow Control
	Input/Output
	Interrupt

	Constant (k) Coded Values
	Constant Cycles
	Constant Program Length

	Using the KCPSM Macro
	The KCPSM Macro in VHDL
	Complete KCPSM Instruction Set
	Program Control Group
	Shift and Rotate Group
	Logical Group
	Arithmetic Group
	Input/Output Group
	Interrupt Group

	Program Control Group
	JUMP
	CALL
	RETURN

	Interrupt Group
	RETURNI
	ENABLE INTERRUPT and DISABLE INTERRUPT

	Logical Group
	LOAD
	AND
	OR
	XOR

	Arithmetic Group
	ADD
	ADDCY
	SUB
	SUBCY

	Shift and Rotate Group
	SR0, SR1, SRX, SRA, RR
	SL0, SL1, SLX, SLA, RL

	Input and Output Group
	INPUT
	OUTPUT

	KCPSMBLE Assembler
	kcpsmble <prog_name>[.psm]
	Direct EDIF netlist (<prog_name>.edn).
	Coefficient File (<prog_name>.coe).
	Assembler Errors
	FORMAT.PSM File
	<prog_name>.log File
	Foundation Simulation (.hex File)
	Program Syntax

	Program Syntax Instructions
	Assembler Directives
	CONSTANT (k) Directive
	16-bit Counter Example

	ADDRESS Directive
	Design Example
	Output Logic
	Input Logic

	Coding Example
	Interrupt Handling
	Basics of Interrupt Handling
	Simple Example

	Basic Interrupt Service Routine
	Interrupt Operation
	Timing of Interrupt Pulses
	Continuous Interrupt

	Future Developments
	SMART-IP Version
	Testing Version
	VHDL Behavioral Model
	Examples
	Support Functions
	Code Debugger

	Conclusion
	Revision History

