
Summary This application note describes a high-speed, reconfigurable, full-precision Transposed Form 
FIR filter design implemented in the Virtex™ and Virtex-II series and Spartan™-II family of 
FPGAs. The VHDL reference design provided with this application note is easily modified to 
change filter parameters including coefficients and the number of taps. By illustrating a design 
methodology for digital filters, the advantages of using FPGAs for digital signal processing 
applications (DSP) are emphasized. The Core Generator tool provides a preoptimized 
alternative solution to this reference design (Core Generator Tool).

Introduction Digital filters are among the most significant components in digital signal processing 
applications. The function of a filter is to eliminate undesirable parts of the signal (random 
noise), or to extract signals in a particular frequency range. In other words, a filter selects, 
suppresses, or modifies certain frequency components of the signal, either to reduce noise or 
to shape the spectrum. This application note focuses on digital filters that are used widely in 
digital video broadcast, digital video effects, and digital wireless communication. Figure 1 is an 
example application of filters in a communication receiver.  

Application Note: Virtex and Virtex-II Series

XAPP219 (v1.1) January 10, 2001

Transposed Form FIR Filters
Author: Vikram Pasham, Andy Miller, and Ken Chapman

R

Figure 1:  Filter Applications: Communication Receiver
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Most of the traditional filters in DSP applications are implemented using highly specialized DSP 
processors. These DSP processors are capable of carrying out high-speed Multiply 
Accumulate (MAC) operations, but have bandwidth limitations. Only a fixed number of 
operations can be performed by these processors before the next sample arrives, thereby 
limiting the bandwidth. DSP processors are sequential in nature, and thus DSPs using a single 
processor can only perform one operation on a single set of data at a time. For example, in a 
16-tap filter, they can only calculate the value of a single tap at a time, while the other 15 taps 
wait for their turn. This also limits the overall frequency of the application. Due to resource 
limitations, operations cannot be performed in parallel.

FPGA based filters are implemented with parallel-pipelined architecture, enhancing the overall 
performance. Thus, a 16-tap filter will run as fast as a 64- or 128-tap filter implemented in an 
FPGA. The FPGA implementation enables total access to the precision of the signal at each 
stage of the algorithm. This is a significant difference between an FPGA-based filter and an 
equivalent DSP processor solution. Implementations of digital filters with sample rates of a few 
MHz are generally difficult and expensive to realize using standard DSPs. The potential for 
parallel processing and reprogrammability makes all Virtex series FPGAs an ideal solution. 
The flexible architecture of FPGAs permits optimum use of the available gates in the form of 
Constant Coefficient Multipliers (KCM). The reprogrammability of FPGAs enables tuning of the 
filter at any time.

Structures for 
FIR Filters

Digital filter algorithms are primarily composed of multipliers, adders, and registers. The basic 
structure of a Finite Impulse Response (FIR) filter is shown in Figure 2. The multipliers and 
adders form the heart of a FIR filter. The input data passes to the multiplier and then to the 
adder with interleaving delay elements.  

An alternate implementation structure called the Transposed Form FIR filter is shown in 
Figure 3. Utilizing the same resources, data samples are applied in parallel to all the tap 
multipliers through pipeline registers. The input registers are not required, because high fan-out 
input signals can be handled by the Virtex and Virtex-II architectures. The products are applied 
to a cascaded chain of registered adders, combining the effect of accumulators and registers. 
The order of tap coefficients must be reversed with the first tap closest to the output. This 
structure allows expansion of the number of taps required in a filter, since each "tap module" is 
identical. Since the structure is uniform, a single component can be designed and instantiated 
as many times as required by the number of taps.

Figure 2:  FIR Filter Structure Employing Tree of Pipelined Adders
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FIR vs. 
Transposed 
Form FIR

Both FIR and Transposed Form FIR filters have trade-offs and limitations. It is up to the 
designer to choose the style most appropriate to the application. For an 8-tap, 16-bit filter, the 
device utilization and performance obtained were nearly identical. In general, a smaller filter 
profits from the traditional approach, while a larger filter benefits from the Transposed Form FIR 
approach. This argument becomes more obvious when very large filters are implemented 
across multiple devices. The cascadable nature of the tap-slice modules allows for easy 
interdevice connections. The input-to-output latency is reduced with fully pipelined Transposed 
Form FIR filters. The filter selection also depends on the type of coefficients (symmetric or 
asymmetric). In symmetric systems, coefficients occur in pairs.

In Transposed Form FIR filters, multipliers can be completely avoided if the coefficients can be 
tuned to powers of two (2n) or values that are close to the powers of two (23 + 1 = 9.) In such 
cases, the multiplication can be achieved by shifting and adding.

Transposed 
Form Filter 
Design

In traditional DSPs, the FIR filters are implemented in dedicated hardware without any 
parallelism, thus limiting the sample rate. The Virtex FPGAs have abundant hardware 
resources to facilitate full parallelism (each TAP has a dedicated multiplier and adder). For 
multiplier performance improvement, the features of the filter have to be carefully studied. The 
efficiency of the multiplier determines the overall performance of the filter. Hence, the multiplier 
must be implemented for the best possible performance. 

The reference design is an 8-tap filter based on 16-bit input samples and 14-bit signed 
coefficients. The basic building blocks of the filter are KCMs, Adders, Registers, and a delay-
locked loop. 

Constant 
Coefficient 
Multiplier (KCM)

In a fully parallel implementation of a filter, each tap has a dedicated multiplier. The tap data is 
an input of this multiplier, the other a constant coefficient. Since one input is a constant, these 
multipliers are called KCMs. KCMs are efficiently implemented by storing pre-computed partial 
products of the fixed coefficient, thereby reducing the logic required as compared to traditional 
two-variable multipliers. As a result, better performance can be achieved. In Xilinx FPGAs, 
these partial products can be stored in ROMs using the distributed memory. 

The 16-bit input sample is separated into four 4-bit nibbles. Each nibble acts as an input to the 
ROM in different cycles. These ROMs store the product of the constant coefficient k, and a 
factor with variable values that change from 0 through 15. The ROM contents are 0 x k, 1 x k, 
2 x k, 3 x k, …, 15 x k. The word size in the ROM is:

(4-bit input nibble) x (14-bit coefficient) = 18 bits (ROM word size)

Figure 3:  Transposed Form FIR Filters Employing Cascaded Pipelined Adders
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Essentially this ROM functions as a times table of the constant coefficient, k. In this reference 
design, the value read from this ROM based on its 4-bit input is added to another partial product 
stored in an adjacent ROM. As a result, KCMs are less than one-third the size of full multipliers. 
A KCM block diagram is shown in Figure 4.

A KCM would be ideal for unsigned inputs and coefficients. There are a couple of options for 
handling signed numbers. The first approach is to implement two ROM tables, one for the 
signed MSB nibble and the other for the LSB nibbles. This approach requires two separate 
ROM tables per tap, as shown in Figure 5. This is not an optimal solution. 

The second approach, shown in Figure 6, is to convert the signed sample input data into an 
unsigned magnitude word and a sign bit, using a 2's-complement module. When a negative 
word is detected, it is complemented, and the magnitude decodes a value from the same ROM 
table that a non-negative data would use. The multiplier output is a negative value, which is 
incorrect; however, the accompanying sign bit causes a subtract operation in the ADD/SUB 
module resulting in the correct sign and magnitude.

In order to handle signed inputs and coefficients, a 2’s-complement component is used to 
convert negative numbers to positive. After all the operations, the final result is made positive or 
negative depending on the sign of the input and coefficient. 

Figure 4:  KCM Block Diagram
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Figure 5:  KCM Implementation with Two ROM Tables
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The third approach, as implemented in the reference design, uses three 2’s-complement 
modules to handle both signed inputs and coefficients. This is used to avoid signed 
multiplication and addition.

The operation of a KCM multiplier implemented using a ROM is explained with the following 
example:

16-bit input: 0001 0010 0000 0100 (Decimal equivalent 4612)

14-bit coefficient: 00 0000 0000 0010 (Decimal equivalent 2)

The 16-bit input is separated into four 4-bit nibbles: "0001", "0010", "0000", and "0100". All 
fifteen coefficient factors, 0 x 2, 1 x 2, 2 x 2, …15 x 2 are stored with an 18-bit (14-bit x 4-bit) 
word size in the ROM. Each 4-bit nibble of the 16-bit input acts as an address to the ROM. The 
corresponding ROM content at this address is read.

First partial product = 00 0000 0000 0000 1000 (ROM contents at address "0100")

Second partial product = 00 0000 0000 0000 0000 (ROM contents at address "0000")

Third partial product = 00 0000 0000 0000 0100 (ROM contents at address "0010")

Fourth partial product = 00 0000 0000 0000 0010 (ROM contents at address "0001")

All the partial products are then added after shifting them appropriately (shown below):

00 0000 0000 0000 1000 First partial product

00 0000 0000 0000 0000 0000 Second partial product

00 0000 0000 0000 0100 0000 0000 Third partial product 

+ 00 0000 0000 0000 0010 0000 0000 0000 Fourth partial product

00 0000 0000 0000 0010 0100 0000 1000 (Decimal equivalent 9224)

Pipelining and resource sharing of adders can further enhance the performance of KCM 
multipliers. An enhanced multicycle KCM schematic of the reference design is shown in 
Figure 7. The input sample arrives at clock frequency f1, while all the internal operations of the 
KCM can be performed at a much higher frequency of f2 (4 x f1). Four muxes are used to select 

Figure 6:  KCM Implementation with Add/Subtract Module
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4-bit input nibbles. A 2-bit counter clock operating at f2 frequency acts as the select signal for 
these muxes. For every 4-bit input nibble, a corresponding value is read from the ROM and 
corresponding partial products are added after taking care of the required shift operations. 

ROM 
Implementation

In HDL, there are two approaches to infer ROMs using the function generators or Look-Up 
Tables (LUTs) in Xilinx FPGAs. One approach is to use the case statement. With this approach, 
the code would require as many case statements as the number of ROMs required in the filter 
design, and each case statement would have to specify all 2n possibilities, n being the number 
of address bits. Although this can make the code lengthy and tedious, an advantage is the fact 
that the coefficients can be changed without an impact to the utilization or performance of the 
filter design.

The reference design xapp219.zip uses array declarations. This second approach results in a 
concise code that is easily editable, as well as a more optimal use of resources compared to the 
first approach. As a result, any changes in the coefficient values would cause the utilization, 
and thereby the performance, to be slightly changed.

DLL or DCM All of the Virtex devices have clock phase deskew and clock manipulation circuitry. In Virtex , 
Virtex-E, and Virtex-EM devices this circuitry is called Delay Locked Loop (DLL). In Virtex-II 
devices the Digial Clock Manager (DCM) is the clock management circuitry. As discussed 
earlier, multicycle KCM uses two clocks of frequency f1 and f2, where f1 = f2 / 4 or f2 = 4 t f1. 

In Virtex-II devices only one DCM is required for either the 4 t clock generation or for a divided 
by 4 clock output. 

Figure 7:  Multicycle KCM implementation
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In Virtex, Virtex-E, and Virtex-EM devices there are two approaches to generate f1 and f2 using 
DLLs: 

1. One DLL with an input frequency of f2 can be used to generate the frequency f1 = f2 / 4, 
using the clock division capability of the DLL. 

2. Two DLLs can be cascaded together to obtain 4 x f1 = f2. The clock with frequency f1 would 
be the input to the first DLL, and its output 2 x f1 would be the input to the second DLL. 
Please refer to XAPP132 for DLL details.

The reference design is based on the first option using a single DLL. In this case, the data 
streams at f2/4 and the KCM operates at f2. Alternatively, the second option can be used. The 
selection must be based on the external clock and the input sample rate. The clock output from 
the DLL is only valid after its lock signal is enabled. Similarly, in Virtex-II devices the DCM 
outputs are valid only after its lock signal is active. The lock signal is also used in this design to 
enable the 2-bit counter in the multicycle KCM.

Transposed 
Form FIR Filter 
Implementation

The complete filter is built by integrating the KCM multipliers, delay elements, and adders. The 
transposed form FIR filter block diagram is shown in Figure 8, and a more detailed schematic 
design with eight taps is shown in Figure 9. The precision of the filter is preserved at every tap 
of the filter. The MSB bit from the corresponding KCM multiplier is sign-extended by one bit to 
accommodate any sign overflow. 

The reference design implements the structural design shown in Figure 9. This design can be 
further optimized by sharing the common resource of all the KCM multipliers. The 4-to-1 muxes 
in the KCM multipliers are extracted and the adders are merged to optimize resources, as 
shown in Figure 10. As before, each tap multiplier is implemented by a 16 x 18 ROM. Each tap 
produces four 18-bit partial products at 4x clock frequency, rather than one 30-bit result in one 
clock frequency. Four partial products need to be stored between the adder chain taps to 
guarantee that only partial products with the same weighting are added together. 

Figure 8:  Transposed Form FIR Filter Block Diagram
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Figure 9:  Transposed Form FIR Filter with Eight Taps
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VHDL 
Reference 
Design

The reference design provided with this application note is ideal for asymmetric coefficients. 
Depending on the targetted device, the design is implemented structurally by instantiating 
KCMs and either a DLL or DCM. All the KCMs are identical in the filter, with different ROM 
contents for each tap. Instead of defining four KCMs, a single KCM is defined with an option of 
selecting different ROMs for each tap. The constant coefficients for eight taps are declared in 
the package. This makes it easier to change the constants. Figure 11 shows simulation 
waveforms of the reference design. The input is registered at the slower clock edge. The KCM 
output is obtained after six clock cycles of the faster clocks (f2), and the final filter output is 
obtained after a two-clock cycle latency of the slower clock, (f1 = f2 / 4.)  

Synthesis Tool 
Results

The reference design was synthesized using different commercial synthesis tools. The results 
are presented in Table 1. The filter has 8 taps, 16-bit inputs, 14-bit signed coefficients, and was 
targeted to one of the smaller members of the Virtex family, XCV100-TQ144. The input data 
samples at one-quarter of the clock frequency in Table 1.

S

Figure 11:  Simulation Waveform
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Table  1:  Performance/ Utilization Using XCV100-6TQ144

Synthesis Tool
Number of 

Slices
Number of 

4-input LUTs
Number of 

Slice Registers

Clock 
Frequency 

(Timing Report)

Synplify 6.0 584 931 755 70.78 MHz

FPGA Express 3.4 654 977 807 72.15 MHz

Exemplar 2000.1a 703 792 677 56.0 MHz
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MATLAB 
FIR Filter 
Implementation

Three different FIR filters were implemented using the MATLAB tool to prove that the impulse 
responses for the traditional-form FIR and the Transposed Form FIR filter were identical. Note 
that the coefficients for these filters are symmetric. The reference design provided with this 
application note does not realize an optimal implementation for symmetric coefficients.

Ideal FIR Filter
The Ideal FIR filter implemented in MATLAB is a full-precision floating point implementation 
using the Equiripple FIR (Remez Algorithm).

Ideal FIR filter coefficients: 

H(z) = [ 0.0112 –0.1308 0.0390 0.5236 0.5236 0.0390 –0.1308 0.0112 ]

where F3dB = 4 MHz, F20dB = 6 MHz, FS = 16 MHz

The impulse response for this filter is shown in Figure 12.

Traditional FIR Filter
The fixed-point, traditional-form FIR filter was implemented using the Xilinx System Generator 
tool, which is a simulink blockset. It is a signed, single-rate CoreGen filter.

The fixed-point FIR filter coefficients: 

H(z) = [ 0.112 –1.308 0.390 5.236 5.236 0.390 –1.308 0.112 ]

Figure 12:  Ideal FIR Filter Impulse Response
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Quantization is 14 bits with the binary point at the 10th bit. The impulse response for this filter 
is shown in Figure 13. The quantization error for this filter is shown in Figure 14.

Transposed Form FIR Filter
The fixed-point Transposed Form FIR filter was also built with the Xilinx System Generator tool 
using the math primitives in the Xilinx blockset. It is a signed, single-rate filter.

Fixed-point Transposed Form FIR filter coefficients: 

Figure 13:  Traditional FIR Filter Impulse Response

Figure 14:  Traditional FIR Filter Quantization Error
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H(z) = [ 0.1123 –1.308 0.3896 5.236 5.236 0.3896 –1.308 0.1123 ] 

The slight discrepancy in the coefficients is due to quantizing these coefficients. As can be 
seen, this has no impact on the quantization error or impulse response for this filter. 
Quantization is 14 bits with the binary point at the 10th bit.The impulse response for this filter is 
shown in Figure 15. The quantization error for this filter is shown in Figure 16.

Figure 15:  Transposed Form FIR Filter Impulse Response

Figure 16:  Transposed Form FIR Filter Quantization Error
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Conclusion FIR filters are commonly used in DSP applications. The FIR filters implemented in Virtex, 
Virtex-E, Virtex-EM, Virtex-II and Spartan-II FPGAs provide the designer tremendous flexibility 
in terms of the number of filter taps and changes in existing coefficients. It may be necessary to 
"tune" a filter in an existing system, or to have multiple filter settings. The reconfigurability of 
FPGAs is exploited by making necessary coefficient changes in the synthesizable HDL code. In 
a KCM, the coefficients are constant; therefore, they are stored as partial products in ROM 
elements that are implemented in function generators or LUTs. This implementation permits 
any coefficient values to be programmed into the same logic, thereby reducing the impact on 
place and route or performance. The HDL reference design provided with this application note 
is easily modified to achieve specific requirements. 

Revision 
History

The following table shows the revision history for this document.  

Date Version Revision

9/21/00 1.0 Initial Xilinx release.

01/10/01 1.1 Addition of Virtex-II series and updates.
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