
Summary This application note describes a high-speed, reconfigurable, full-precision Transposed Form
FIR filter design implemented in the Virtex™ and Virtex-II series and Spartan™-II family of
FPGAs. The VHDL reference design provided with this application note is easily modified to
change filter parameters including coefficients and the number of taps. By illustrating a design
methodology for digital filters, the advantages of using FPGAs for digital signal processing
applications (DSP) are emphasized. The Core Generator tool provides a preoptimized
alternative solution to this reference design (Core Generator Tool).

Introduction Digital filters are among the most significant components in digital signal processing
applications. The function of a filter is to eliminate undesirable parts of the signal (random
noise), or to extract signals in a particular frequency range. In other words, a filter selects,
suppresses, or modifies certain frequency components of the signal, either to reduce noise or
to shape the spectrum. This application note focuses on digital filters that are used widely in
digital video broadcast, digital video effects, and digital wireless communication. Figure 1 is an
example application of filters in a communication receiver.

Application Note: Virtex and Virtex-II Series

XAPP219 (v1.1) January 10, 2001

Transposed Form FIR Filters
Author: Vikram Pasham, Andy Miller, and Ken Chapman

R

Figure 1: Filter Applications: Communication Receiver

RF
Amplifier

Local
Oscillator

First
I.F.

First I.F.
Band Pass
Amplifier

A/D

r.f.

Processor

150 Ms/s 200 Ks/s

Digital Signal

Digital

D/A

Analog (Audio)Analog (RF)

Audio Signal

Amp

Numeric
Controlled
Oscillator

Decimation
Low Pass
FIR Filter

Mixer

Multiply

Decimation
Low Pass
FIR Filter

Decimation
Low Pass
FIR Filter

Multiply

Multiply

I data

Q data

Sine/Cosine
NCO

Processor
Interface

and
Data

Buffering

Parallel Methods Serial Methods Logic/RAM

A/D control

Xilinx FPGA

x219_01_080400
XAPP219 (v1.1) January 10, 2001 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/products/logicore/coregen/index.htm
http://www.xilinx.com/legal.htm

Transposed Form FIR Filters
R

Most of the traditional filters in DSP applications are implemented using highly specialized DSP
processors. These DSP processors are capable of carrying out high-speed Multiply
Accumulate (MAC) operations, but have bandwidth limitations. Only a fixed number of
operations can be performed by these processors before the next sample arrives, thereby
limiting the bandwidth. DSP processors are sequential in nature, and thus DSPs using a single
processor can only perform one operation on a single set of data at a time. For example, in a
16-tap filter, they can only calculate the value of a single tap at a time, while the other 15 taps
wait for their turn. This also limits the overall frequency of the application. Due to resource
limitations, operations cannot be performed in parallel.

FPGA based filters are implemented with parallel-pipelined architecture, enhancing the overall
performance. Thus, a 16-tap filter will run as fast as a 64- or 128-tap filter implemented in an
FPGA. The FPGA implementation enables total access to the precision of the signal at each
stage of the algorithm. This is a significant difference between an FPGA-based filter and an
equivalent DSP processor solution. Implementations of digital filters with sample rates of a few
MHz are generally difficult and expensive to realize using standard DSPs. The potential for
parallel processing and reprogrammability makes all Virtex series FPGAs an ideal solution.
The flexible architecture of FPGAs permits optimum use of the available gates in the form of
Constant Coefficient Multipliers (KCM). The reprogrammability of FPGAs enables tuning of the
filter at any time.

Structures for
FIR Filters

Digital filter algorithms are primarily composed of multipliers, adders, and registers. The basic
structure of a Finite Impulse Response (FIR) filter is shown in Figure 2. The multipliers and
adders form the heart of a FIR filter. The input data passes to the multiplier and then to the
adder with interleaving delay elements.

An alternate implementation structure called the Transposed Form FIR filter is shown in
Figure 3. Utilizing the same resources, data samples are applied in parallel to all the tap
multipliers through pipeline registers. The input registers are not required, because high fan-out
input signals can be handled by the Virtex and Virtex-II architectures. The products are applied
to a cascaded chain of registered adders, combining the effect of accumulators and registers.
The order of tap coefficients must be reversed with the first tap closest to the output. This
structure allows expansion of the number of taps required in a filter, since each "tap module" is
identical. Since the structure is uniform, a single component can be designed and instantiated
as many times as required by the number of taps.

Figure 2: FIR Filter Structure Employing Tree of Pipelined Adders

X219_02_091800

QD

QD

QD

QD

QDQDQD

xk0 xk1 xk2 xk3

In

Out

n

m

2 www.xilinx.com XAPP219 (v1.1) January 10, 2001
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

FIR vs.
Transposed
Form FIR

Both FIR and Transposed Form FIR filters have trade-offs and limitations. It is up to the
designer to choose the style most appropriate to the application. For an 8-tap, 16-bit filter, the
device utilization and performance obtained were nearly identical. In general, a smaller filter
profits from the traditional approach, while a larger filter benefits from the Transposed Form FIR
approach. This argument becomes more obvious when very large filters are implemented
across multiple devices. The cascadable nature of the tap-slice modules allows for easy
interdevice connections. The input-to-output latency is reduced with fully pipelined Transposed
Form FIR filters. The filter selection also depends on the type of coefficients (symmetric or
asymmetric). In symmetric systems, coefficients occur in pairs.

In Transposed Form FIR filters, multipliers can be completely avoided if the coefficients can be
tuned to powers of two (2n) or values that are close to the powers of two (23 + 1 = 9.) In such
cases, the multiplication can be achieved by shifting and adding.

Transposed
Form Filter
Design

In traditional DSPs, the FIR filters are implemented in dedicated hardware without any
parallelism, thus limiting the sample rate. The Virtex FPGAs have abundant hardware
resources to facilitate full parallelism (each TAP has a dedicated multiplier and adder). For
multiplier performance improvement, the features of the filter have to be carefully studied. The
efficiency of the multiplier determines the overall performance of the filter. Hence, the multiplier
must be implemented for the best possible performance.

The reference design is an 8-tap filter based on 16-bit input samples and 14-bit signed
coefficients. The basic building blocks of the filter are KCMs, Adders, Registers, and a delay-
locked loop.

Constant
Coefficient
Multiplier (KCM)

In a fully parallel implementation of a filter, each tap has a dedicated multiplier. The tap data is
an input of this multiplier, the other a constant coefficient. Since one input is a constant, these
multipliers are called KCMs. KCMs are efficiently implemented by storing pre-computed partial
products of the fixed coefficient, thereby reducing the logic required as compared to traditional
two-variable multipliers. As a result, better performance can be achieved. In Xilinx FPGAs,
these partial products can be stored in ROMs using the distributed memory.

The 16-bit input sample is separated into four 4-bit nibbles. Each nibble acts as an input to the
ROM in different cycles. These ROMs store the product of the constant coefficient k, and a
factor with variable values that change from 0 through 15. The ROM contents are 0 x k, 1 x k,
2 x k, 3 x k, …, 15 x k. The word size in the ROM is:

(4-bit input nibble) x (14-bit coefficient) = 18 bits (ROM word size)

Figure 3: Transposed Form FIR Filters Employing Cascaded Pipelined Adders
X219_03_091800

QD

QD

QDQDQD

xk3 xk2 xk1 xk0

In

Out

n

m
QDQDQD

"0"
XAPP219 (v1.1) January 10, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

Essentially this ROM functions as a times table of the constant coefficient, k. In this reference
design, the value read from this ROM based on its 4-bit input is added to another partial product
stored in an adjacent ROM. As a result, KCMs are less than one-third the size of full multipliers.
A KCM block diagram is shown in Figure 4.

A KCM would be ideal for unsigned inputs and coefficients. There are a couple of options for
handling signed numbers. The first approach is to implement two ROM tables, one for the
signed MSB nibble and the other for the LSB nibbles. This approach requires two separate
ROM tables per tap, as shown in Figure 5. This is not an optimal solution.

The second approach, shown in Figure 6, is to convert the signed sample input data into an
unsigned magnitude word and a sign bit, using a 2's-complement module. When a negative
word is detected, it is complemented, and the magnitude decodes a value from the same ROM
table that a non-negative data would use. The multiplier output is a negative value, which is
incorrect; however, the accompanying sign bit causes a subtract operation in the ADD/SUB
module resulting in the correct sign and magnitude.

In order to handle signed inputs and coefficients, a 2’s-complement component is used to
convert negative numbers to positive. After all the operations, the final result is made positive or
negative depending on the sign of the input and coefficient.

Figure 4: KCM Block Diagram

4

[15:12]

X [15:0] 4

[11:8]

4
[7:4]

4
[3:0]

X219_04_091800

16 x 18
ROM

16 x 18
ROM

16 x 18
ROM

16 x 18
ROM

0 x k
1 x k
2 x k
3 x k
4 x k
5 x k
6 x k
7 x k
8 x k
9 x k
10 x k
11 x k
12 x k
13 x k
14 x k
15 x k

18

18

18

[3:0]

[7:4]

[11:8]

18

"0"

[29:12]

Figure 5: KCM Implementation with Two ROM Tables
X219_05_091800

−1 = 1111

−5

+56 Addr15 = (15 x −5) = -75

Addr15 = (−1 x −5) = +5

Signed MSB
Nibble Value

 (−1)

Unsigned LSB
Nibble Value

 (+15)

0000 0101

1011 01011111

0000 0000 0101

Sign
Extended

4

8

12

Answer = +5 correct

Decode
Addr 15

Decode
Addr 15

+5

+56 + (+5) = 61

8 x 4 Multiplier

4 x 4 Multiplier

4 x 4 Multiplier

1111

Combined
with
appropriate
weightings
4 www.xilinx.com XAPP219 (v1.1) January 10, 2001
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

The third approach, as implemented in the reference design, uses three 2’s-complement
modules to handle both signed inputs and coefficients. This is used to avoid signed
multiplication and addition.

The operation of a KCM multiplier implemented using a ROM is explained with the following
example:

16-bit input: 0001 0010 0000 0100 (Decimal equivalent 4612)

14-bit coefficient: 00 0000 0000 0010 (Decimal equivalent 2)

The 16-bit input is separated into four 4-bit nibbles: "0001", "0010", "0000", and "0100". All
fifteen coefficient factors, 0 x 2, 1 x 2, 2 x 2, …15 x 2 are stored with an 18-bit (14-bit x 4-bit)
word size in the ROM. Each 4-bit nibble of the 16-bit input acts as an address to the ROM. The
corresponding ROM content at this address is read.

First partial product = 00 0000 0000 0000 1000 (ROM contents at address "0100")

Second partial product = 00 0000 0000 0000 0000 (ROM contents at address "0000")

Third partial product = 00 0000 0000 0000 0100 (ROM contents at address "0010")

Fourth partial product = 00 0000 0000 0000 0010 (ROM contents at address "0001")

All the partial products are then added after shifting them appropriately (shown below):

00 0000 0000 0000 1000 First partial product

00 0000 0000 0000 0000 0000 Second partial product

00 0000 0000 0000 0100 0000 0000 Third partial product

+ 00 0000 0000 0000 0010 0000 0000 0000 Fourth partial product

00 0000 0000 0000 0010 0100 0000 1000 (Decimal equivalent 9224)

Pipelining and resource sharing of adders can further enhance the performance of KCM
multipliers. An enhanced multicycle KCM schematic of the reference design is shown in
Figure 7. The input sample arrives at clock frequency f1, while all the internal operations of the
KCM can be performed at a much higher frequency of f2 (4 x f1). Four muxes are used to select

Figure 6: KCM Implementation with Add/Subtract Module

Alternative = Create Magnitude
with Sign bit and use adder/sub module Sign bit = 1 = (−) = Subtract

Sign bit = 0 = (+) = Add

x219_06_091800

−1 = (−) 0001

−5

+56 Addr1 = (1 x −5) = −5

Addr0 = (0 x −5) = 0

UnSigned
Value
 (+0)

UnSigned
Value

 (+1)

0000 0000

1111 10111111

1111 1111 1011

Sign
Extended

4

8

12

Multiplier output = −5, but this is accompanied
by the sign bit which is used to select subtract.
The add/sub signal can be used to feed CIN as a
subtracter has an "active Low" borrow.

−5

+56 − (−5) = 61

8 x 4 Multiplier

4 x 4 Multiplier

4 x 4 Multiplier

0000
XAPP219 (v1.1) January 10, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

4-bit input nibbles. A 2-bit counter clock operating at f2 frequency acts as the select signal for
these muxes. For every 4-bit input nibble, a corresponding value is read from the ROM and
corresponding partial products are added after taking care of the required shift operations.

ROM
Implementation

In HDL, there are two approaches to infer ROMs using the function generators or Look-Up
Tables (LUTs) in Xilinx FPGAs. One approach is to use the case statement. With this approach,
the code would require as many case statements as the number of ROMs required in the filter
design, and each case statement would have to specify all 2n possibilities, n being the number
of address bits. Although this can make the code lengthy and tedious, an advantage is the fact
that the coefficients can be changed without an impact to the utilization or performance of the
filter design.

The reference design xapp219.zip uses array declarations. This second approach results in a
concise code that is easily editable, as well as a more optimal use of resources compared to the
first approach. As a result, any changes in the coefficient values would cause the utilization,
and thereby the performance, to be slightly changed.

DLL or DCM All of the Virtex devices have clock phase deskew and clock manipulation circuitry. In Virtex ,
Virtex-E, and Virtex-EM devices this circuitry is called Delay Locked Loop (DLL). In Virtex-II
devices the Digial Clock Manager (DCM) is the clock management circuitry. As discussed
earlier, multicycle KCM uses two clocks of frequency f1 and f2, where f1 = f2 / 4 or f2 = 4 t f1.

In Virtex-II devices only one DCM is required for either the 4 t clock generation or for a divided
by 4 clock output.

Figure 7: Multicycle KCM implementation

A12

Clkx4

Clkx4

A4

A0

A8

A13

Clkx4 Addr[3:0]

A5

A1

A9

4

A14

Clkx4

A6

A2

A10

16

sign_in

16

Clk
ROM

16 x 18

A15

2-bit
Counter

2's
Complement

2's
Complement

2's
Complement

Clkx4

Clkx4

sign_coeff_regsign_coeff

Sign Value

KCM
Out

A7

A3

A11

Enable

 Clkx4

18

[17:0]

[3:0]

[3:0]

[7:4]

[11:8]

[17:4]
4

30

4

4

4

0
0
0
0

17
16
15
14
15

0

Clkx4

Clkx4

Clkx4

x219_07_091800
6 www.xilinx.com XAPP219 (v1.1) January 10, 2001
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp219.zip
http://www.xilinx.com

Transposed Form FIR Filters
R

In Virtex, Virtex-E, and Virtex-EM devices there are two approaches to generate f1 and f2 using
DLLs:

1. One DLL with an input frequency of f2 can be used to generate the frequency f1 = f2 / 4,
using the clock division capability of the DLL.

2. Two DLLs can be cascaded together to obtain 4 x f1 = f2. The clock with frequency f1 would
be the input to the first DLL, and its output 2 x f1 would be the input to the second DLL.
Please refer to XAPP132 for DLL details.

The reference design is based on the first option using a single DLL. In this case, the data
streams at f2/4 and the KCM operates at f2. Alternatively, the second option can be used. The
selection must be based on the external clock and the input sample rate. The clock output from
the DLL is only valid after its lock signal is enabled. Similarly, in Virtex-II devices the DCM
outputs are valid only after its lock signal is active. The lock signal is also used in this design to
enable the 2-bit counter in the multicycle KCM.

Transposed
Form FIR Filter
Implementation

The complete filter is built by integrating the KCM multipliers, delay elements, and adders. The
transposed form FIR filter block diagram is shown in Figure 8, and a more detailed schematic
design with eight taps is shown in Figure 9. The precision of the filter is preserved at every tap
of the filter. The MSB bit from the corresponding KCM multiplier is sign-extended by one bit to
accommodate any sign overflow.

The reference design implements the structural design shown in Figure 9. This design can be
further optimized by sharing the common resource of all the KCM multipliers. The 4-to-1 muxes
in the KCM multipliers are extracted and the adders are merged to optimize resources, as
shown in Figure 10. As before, each tap multiplier is implemented by a 16 x 18 ROM. Each tap
produces four 18-bit partial products at 4x clock frequency, rather than one 30-bit result in one
clock frequency. Four partial products need to be stored between the adder chain taps to
guarantee that only partial products with the same weighting are added together.

Figure 8: Transposed Form FIR Filter Block Diagram

Tap7

"0"

K2

Tap 1

K1

S2

S1

S0

S2

S1

S0

S2

S1

S0

Tap 0

K0
14 14 14

Cycle 1
(0) + S0k0
Cycle 2
(S0k1) + S1k0
Cycle 3
(S0k2 + S1k1) + S2k0

Transposed Form
FIR Filter Output

Samples go to all
taps simultaneously

Taps are re-ordered

System level Ζ-1 delay implemented by registered adders
x219_08_091800
XAPP219 (v1.1) January 10, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp132.pdf

Transposed Form FIR Filters
R

Figure 9: Transposed Form FIR Filter with Eight Taps

16

Tap 7

"0"

Tap 1 Tap 0

x219_09_091800

Figure 10: Optimized Transposed Form FIR Filter

4

16

k0k2
14

Tap 0

4 x 14
Multiplier

14

18 1818

4

4

4

4 delays after
the MAC

4 delays after
the MAC

4 delays after
the MAC

16 x 18
ROM

 Tap 1 Tap 2

x219_10_091800
8 www.xilinx.com XAPP219 (v1.1) January 10, 2001
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

VHDL
Reference
Design

The reference design provided with this application note is ideal for asymmetric coefficients.
Depending on the targetted device, the design is implemented structurally by instantiating
KCMs and either a DLL or DCM. All the KCMs are identical in the filter, with different ROM
contents for each tap. Instead of defining four KCMs, a single KCM is defined with an option of
selecting different ROMs for each tap. The constant coefficients for eight taps are declared in
the package. This makes it easier to change the constants. Figure 11 shows simulation
waveforms of the reference design. The input is registered at the slower clock edge. The KCM
output is obtained after six clock cycles of the faster clocks (f2), and the final filter output is
obtained after a two-clock cycle latency of the slower clock, (f1 = f2 / 4.)

Synthesis Tool
Results

The reference design was synthesized using different commercial synthesis tools. The results
are presented in Table 1. The filter has 8 taps, 16-bit inputs, 14-bit signed coefficients, and was
targeted to one of the smaller members of the Virtex family, XCV100-TQ144. The input data
samples at one-quarter of the clock frequency in Table 1.

S

Figure 11: Simulation Waveform

(/ 4)

0

0

3

3

8515

8515

-28351

-28351

coefficients [Tap0 ... Tap7] = 2, 10, 20, 30, −30, −20, −10, −2

4588

4588

170306

8515030

6 17060

0

0

Input Sample Data

Registered Input Data

KCM_out (Tap 0)

0

0

KCM_out (Tap 1)

KCM_out (Tap 2)

KCM_out (Tap 3)

KCM_out (Tap 4)

KCM_out (Tap 5)

KCM_out (Tap 6)

KCM_out (Tap 7)

fir_out

x219_11_091800

17030060

25545090

−255450

−170300

−85150

−17030

−90

0

0

0

0 −30

−60

−60

f1 f2

f2

Table 1: Performance/ Utilization Using XCV100-6TQ144

Synthesis Tool
Number of

Slices
Number of

4-input LUTs
Number of

Slice Registers

Clock
Frequency

(Timing Report)

Synplify 6.0 584 931 755 70.78 MHz

FPGA Express 3.4 654 977 807 72.15 MHz

Exemplar 2000.1a 703 792 677 56.0 MHz
XAPP219 (v1.1) January 10, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

MATLAB
FIR Filter
Implementation

Three different FIR filters were implemented using the MATLAB tool to prove that the impulse
responses for the traditional-form FIR and the Transposed Form FIR filter were identical. Note
that the coefficients for these filters are symmetric. The reference design provided with this
application note does not realize an optimal implementation for symmetric coefficients.

Ideal FIR Filter
The Ideal FIR filter implemented in MATLAB is a full-precision floating point implementation
using the Equiripple FIR (Remez Algorithm).

Ideal FIR filter coefficients:

H(z) = [0.0112 –0.1308 0.0390 0.5236 0.5236 0.0390 –0.1308 0.0112]

where F3dB = 4 MHz, F20dB = 6 MHz, FS = 16 MHz

The impulse response for this filter is shown in Figure 12.

Traditional FIR Filter
The fixed-point, traditional-form FIR filter was implemented using the Xilinx System Generator
tool, which is a simulink blockset. It is a signed, single-rate CoreGen filter.

The fixed-point FIR filter coefficients:

H(z) = [0.112 –1.308 0.390 5.236 5.236 0.390 –1.308 0.112]

Figure 12: Ideal FIR Filter Impulse Response

X219_12_010101
10 www.xilinx.com XAPP219 (v1.1) January 10, 2001
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

Quantization is 14 bits with the binary point at the 10th bit. The impulse response for this filter
is shown in Figure 13. The quantization error for this filter is shown in Figure 14.

Transposed Form FIR Filter
The fixed-point Transposed Form FIR filter was also built with the Xilinx System Generator tool
using the math primitives in the Xilinx blockset. It is a signed, single-rate filter.

Fixed-point Transposed Form FIR filter coefficients:

Figure 13: Traditional FIR Filter Impulse Response

Figure 14: Traditional FIR Filter Quantization Error

X219_13_010101

X219_14_010101
XAPP219 (v1.1) January 10, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

H(z) = [0.1123 –1.308 0.3896 5.236 5.236 0.3896 –1.308 0.1123]

The slight discrepancy in the coefficients is due to quantizing these coefficients. As can be
seen, this has no impact on the quantization error or impulse response for this filter.
Quantization is 14 bits with the binary point at the 10th bit.The impulse response for this filter is
shown in Figure 15. The quantization error for this filter is shown in Figure 16.

Figure 15: Transposed Form FIR Filter Impulse Response

Figure 16: Transposed Form FIR Filter Quantization Error

X219_15_010101

X219_16_010101
12 www.xilinx.com XAPP219 (v1.1) January 10, 2001
1-800-255-7778

http://www.xilinx.com

Transposed Form FIR Filters
R

Conclusion FIR filters are commonly used in DSP applications. The FIR filters implemented in Virtex,
Virtex-E, Virtex-EM, Virtex-II and Spartan-II FPGAs provide the designer tremendous flexibility
in terms of the number of filter taps and changes in existing coefficients. It may be necessary to
"tune" a filter in an existing system, or to have multiple filter settings. The reconfigurability of
FPGAs is exploited by making necessary coefficient changes in the synthesizable HDL code. In
a KCM, the coefficients are constant; therefore, they are stored as partial products in ROM
elements that are implemented in function generators or LUTs. This implementation permits
any coefficient values to be programmed into the same logic, thereby reducing the impact on
place and route or performance. The HDL reference design provided with this application note
is easily modified to achieve specific requirements.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

9/21/00 1.0 Initial Xilinx release.

01/10/01 1.1 Addition of Virtex-II series and updates.
XAPP219 (v1.1) January 10, 2001 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Structures for FIR Filters
	FIR vs. Transposed Form FIR
	Transposed Form Filter Design
	Constant Coefficient Multiplier (KCM)
	ROM Implementation
	DLL or DCM
	Transposed Form FIR Filter Implementation
	VHDL Reference Design
	Synthesis Tool Results
	MATLAB FIR Filter Implementation
	Ideal FIR Filter
	Traditional FIR Filter
	Transposed Form FIR Filter

	Conclusion
	Revision History

