
Summary This document describes an implementation of a low-overhead data synchronization and
framing method to use with the LVDS capability of Virtex-E devices described in XAPP233.

Introduction There are two general methods for synchronizing serial data: exclusive pattern and repetitive
pattern. Exclusive pattern synchronization excludes the sync pattern as a data pattern. This
method uses very simple sync recognition logic, but at the expense of 50 percent of the data
space. Typically, a bit is prefixed to the basic unit of data. For example, if the data unit is a byte,
it is expanded to nine bits (eight bits plus a control bit). If the control bit is "0", then the byte is
data. If the control bit is "1", then the byte is a control word (sync for example). In this 8-bit data
example, the overhead of the sync is greater than 11 percent and the payload is less than
89 percent. (Table 1 shows more comparisons.)

The second method for synchronizing serial data uses a repetitive pattern, allowing the sync
pattern to be included as a data pattern. "Sync" is defined as a particular pattern appearing at
regular intervals (see Figure 1). For example, sync pattern 0xF00D is inserted into the data
stream every 256 data words. While this method entails complex sync-detection logic that must
look at multiple data frames before it can identify the location of the sync word, once
synchronized, it is more efficient (see Table 2).

Application Note: Virtex-E Family

XAPP238 (v1.0) December 18, 2000

LVDS System Data Framing
R

Table 1: Efficiency Using Exclusive Pattern

Word Size Overhead % Payload %

4-bit data 20.00 80.00

8-bit data 11.10 88.90

16-bit data 05.90 94.10

32-bit data 03.00 97.00

Table 2: Efficiency Using Repetitive Sync Pattern

Sync Word Every. . . Overhead % Payload %

128 data words 0.78 99.20

256 data words 0.39 99.60

512 data words 0.19 99.80

1024 data words 0.10 99.90
XAPP238 (v1.0) December 18, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp233.pdf
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

LVDS System Data Framing
R

Figure 1 shows an example of a repetitive pattern-based sync. With this scheme, the following
two parameters must be specified by the designer:

1. a sync bit pattern (x), for example 0xF00D

2. a sync repetition rate (y), for example 257 clocks

The sync pattern x is inserted every y clocks. In a typical repetitive pattern scheme, more than
99 percent of the bits transferred are data.

In real applications, data frames and garbage frames are differentiated by validated checksums
or some other application-specific characteristic of the data. For this example application, non-
data frames are characterized by containing only the filler pattern (0xDEAD and 0xC0DE).

The sync bit pattern used in this application is 1111 0000 0000 1101 (0xF00D) and the sync
repetition rate (frame size) is 256 16-bit words plus sync. Figure 2 shows a typical frame
bounded by the 16-bit sync words.

This application note and accompanying reference designs present a general data
synchronization solution (using the repetitive sync pattern method) and is a companion to the
LVDS reference design presented in XAPP233. Together, these documents are the basis of a
complete LVDS transmitter and receiver design, with data framing and synchronization, for use
in a commercial product. These reference designs are based on a 16-bit data word with a 256-
word data frame. While the designs are scalable, permitting users to decide on the appropriate
word widths, frame sizes, and sync patterns, this document addresses neither customization
nor queue management.

Figure 1: Generic Repetitive Sync Pattern

Figure 2: Typical Frame

Fixed amount of time

Bit Pattern (x) Bit Pattern (x)Data* Data*

Fixed amount of time

*May contain Bit Pattern (x)
X238_01_091500

(y)

F
0
0
D

D
a
t
a
2
5
5

D
a
t
a
2
5
4

D
a
t
a
2

D
a
t
a
3

F
0
0
D

D
a
t
a
1

D
a
t
a
0

X238_02_050900
2 www.xilinx.com XAPP238 (v1.0) December 18, 2000
1-800-255-7778

http://www.xilinx.com/xapp/xapp233.pdf
http://www.xilinx.com

LVDS System Data Framing
R

General LVDS
Operation

Figure 3 shows the seven major elements of a typical LVDS-based system, however, only
frame alignment (Table 3, element 3) and frame insertion (Table 3, element 5) are covered in
this document and accompanying reference designs. The frame insertion logic contains all the
logic necessary to insert framing information into the user data stream. The frame alignment
logic is used to realign and frame an LVDS data stream.

Figure 3: Typical LVDS-Based System

Table 3: Description of Typical LVDS Elements

Element Description

LVDS Bus (incoming) The incoming LVDS data stream, along with at least one
clock, is carried on one or more controlled impedance
transmission lines. (The clock may be imbedded in the
data.)

LVDS Receiver The LVDS receiver (as described in XAPP233) contains low-
voltage differential receivers and high-speed serial-to-
parallel logic. (LVDS bus signals are very high speed; the
LVDS bus is usually fanned out by the receiver to provide
data at a manageable speed.)

Frame Alignment Logic The frame alignment logic is sometimes as simple as a byte
alignment circuit; in this application, it contains both word
alignment and payload framing.

LVDS-Based Application The LVDS-based application can be any function, such as
sorting, routing, or storing.

Frame Insertion Logic The frame insertion logic controls the insertion of sync
words and filler data when user data is not available.

LVDS Transmitter The LVDS transmitter typically contains the high-speed,
parallel-to-serial converter and the LVDS line drivers, such
as the LVDS transmitter described in XAPP233.

LVDS Bus (outgoing) The outgoing LVDS bus must have the same number of data
and clock signals as the target LVDS receiver.

X238_03_050900

LVDS
Receiver

(XAPP233)
LVDS Bus

Frame Alignment Logic

(Typically Many Signals)

Frame Insertion Logic

LVDS Bus

LVDS
Transmitter
(XAPP233)

LVDS-Based
Application

1 2 43 6 75

(Typically a
Few Signals)

(Typically a
Few Signals)
XAPP238 (v1.0) December 18, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com/xapp/xapp233.pdf
http://www.xilinx.com/xapp/xapp233.pdf
http://www.xilinx.com

LVDS System Data Framing
R

Frame Insertion The frame insertion logic simply sends a sync word, followed by a frame of user data or filler
data, and then repeats. The start and end of data within a stream is identified by headers, tags,
or whatever method suits the user’s application. The reference design accompanying this
application inserts 0xF00D every 256 words. When user data is unavailable, a frame of filler
data is substituted to maintain the synchronized flow of frames.

Figure 4 shows a frame of filler data that is sent in the absence of user data. Sending filler
frames allows the receiving module to maintain (or acquire) lock, even if there is no valid data
being sent.

The frame insertion logic, Figure 5, is simply a multiplexer controlled by a state machine that
chooses user data or a constant. The state machine chooses what to send based on the user
control input.

The frame insertion schematic, Figure 6, consists of five major modules, including a control
state machine (RE_CTL), a constant generator for the sync word (SYNCWORD), and a
constant generator for the filler data (DEADCODE).

The pipelined one-hot multiplexer (OHM4_1X16) controlled by RE_CTL sends the user data,
the filler data, or a sync word. A sync word is sent followed by 256 words of user data; if the user
data is not present, the multiplexer sends filler data (0xDEAD and 0xC0DE). A final pipeline
register in the outbound data path helps maintain high-speed operation.

Figure 4: One Frame with Filler Data

Figure 5: Frame Insertion Block Diagram

F
0
0
D

C
0
D
E
2
5
5

D
E
A
D
2
5
4

C
0
D
E
2
5
3

D
E
A
D
2
5
2

F
0
0
D

C
0
D
E
1

D
E
A
D
0

X238_04_050900

Constants

Constant

Control
State Machine

LVDS Out
Pipeline
Register

X238_05_050900

LVDS
Transmitter

User Data

User Control

FIFO Control

16

16 316
4 www.xilinx.com XAPP238 (v1.0) December 18, 2000
1-800-255-7778

http://www.xilinx.com

LVDS System Data Framing
R

RE_CTL State Machine Operation
Referring to the flowchart in Figure 7, the state machine begins in STATE_0 and asserts SEL1,
causing the multiplexer to select the sync word as the data to be sent on the next clock.

The state of SEND_UD is then checked to determine if there is user data to be sent. If there is,
the state machine advances to STATE_3 and asserts SEL0 to select the user data. In this state,
FIFO read enable (RE) is also asserted, informing the user that words are being taken. These
two signals remain asserted until the TX_PITCH counter asserts TC, indicating that 256 words
have been sent and returning the state machine to STATE_0.

When in STATE_0, if SEND_UD is false the state machine advances to STATE_1, beginning a
two-state loop that causes the multiplexer to send a word of 0xDEAD followed by a word of
0xC0DE. This continues until the TX_PITCH counter asserts its TC, once again returning the
state machine to STATE_0.

The TX_PITCH counter determines the frame length. In this example it is 257 clocks: 256
clocks for the data and one clock for the sync. This application uses an LFSR (linear feedback
shift register) because of its economy of routing resources and inherent high-speed operation,
however, any counter will work. The LFSR has a maximum count of 65,535 and can be scaled
downward to suit the user’s application.

Figure 6: Frame Insertion Schematic

OHM4_1X16

FRAMER_MUX

DATAREG

S[3:0]

D[15:0]

D[15:0]

CE

CLRC

Q[15:0]

Q[15:0]C[15:0]

B[15:0]

A[15:0]
USER_DATA[15:0]

C

X238_06_05090

FD16CE

C
FRAMED_DATA[15:0]

SYNCWORD
SYNC[15:0]

DEADCODE

B[15:0]
A[15:0]

RE_CTL
SEND_UD

C

SEND_UD

C RE
SEL[3:0]R R

C

RE
XAPP238 (v1.0) December 18, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

LVDS System Data Framing
R

Sending User Data
To transmit data, the user queues up 256 words of data and then asserts the SEND_UD signal.
The RE_CTL state machine responds by asserting the RE signal (user data read enable). It
continues sending user data until it has sent 256 words. After sending another sync word
(0xF00D), the state machine checks the state of SEND_UD again and determines whether to
send another frame of user data or a frame of filler data (0xDEAD and 0xC0DE).

Frame
Alignment

The frame alignment logic, Figure 8, detects the user-specified sync word within the data
stream, using this pattern to determine the bit offset within the stream to the start of the word.
It then steers a barrel shifter to correct for this offset.

Figure 7: RE_CTL State Machine Schematic

SYNCWORD_F00D

TX_PITCH

STATE_0

STATE_1

STATE_2 STATE_3

DEADCODE_CODE

DEADCODE_DEAD SEL2TC

SEND_UD

C

C

C
R

C
C

TC

TC
TC

SEL3

SEL1

SEL0

SEL[3:0]

RE

X238_07_050900

Figure 8: Frame Alignment Block Diagram

Sync Pattern Detector

RX Framer

Barrel ShifterLVDS In
30-Bit

Register

X238_08_050900

LVDS
Receiver

Locked

RX Data16 30

3

3 16
6 www.xilinx.com XAPP238 (v1.0) December 18, 2000
1-800-255-7778

http://www.xilinx.com

LVDS System Data Framing
R

Figure 9 shows the schematic of the frame alignment logic. The frame alignment logic
anticipates the subsequent arrival of additional sync words based on the designated sync
interval (256 words in this example) and maintains "locked" status as long as sync words
continue to appear in this position. It accomplishes this as follows:

1. Words from the LVDS receiver cascade through a 30-bit register

2. Eight comparators in the SYNC_PAT module simultaneously look for the presence of the
sync word on all eight possible bit-pair boundaries

3. When the sync word is detected, SYNC_PAT registers the offset and steers a 16-bit barrel
shifter (DATBRLSH) to the correct boundary within the 30-bit buffer

4. RXFRAMER counts the 256 words following the sync word; then, it checks the following
word again for the presence of the sync pattern

5. After three consecutive cycles of successfully detecting sync, the RXFRAMER considers
the receiver to be locked and asserts the LOCKED signal

Frame Alignment Logic Detail
The frame alignment logic is heavily pipelined to help achieve timing constraints. The incoming
16-bit data is sourced from the low-level LVDS receiver described in XAPP233. Each module of
the frame alignment logic is described below:

SM238

The SM238 module evaluates the BUFSTAT signals coming from the receiver. When BUFSTAT
indicates that the receiver’s FIFO has data, SM238 asserts CE_X233, causing the frame
alignment logic to process the buffered words. Processing continues until the BUFSTAT signals
indicate that the FIFO is almost empty, at which time the SM238 module deasserts CE_X233.

BUFX8s

The XAPP233 FIFO presents data byte swapped. Two BUFX8 components preceding the 30-bit
register reorder the bytes.

REG30BIT

The 30-bit register is constructed from two cascaded registers and receives 16-bit input data
from the receiver. Both registers update on every clock. All 30 bits are continuously available to
the SYNC_PAT and DATBRLSH modules.

Figure 9: Frame Alignment Schematic

30

REG30BIT

SYNC_PAT

DATBRLSH

RXFRAMER

3

30-Bit Data
1 of 8 Positions

LOCKED

FDI[15:0]

SYNC_PATTERNFrom LVDS
eceiver)

SWAP
[15:0]

D[15:8]
D[7:0]

SWAP[15:8]

SWAP[7:0]

I[29:0]

Q[29:0]

LOCKED

Q[15:0]

SYNC
SYNC_PAT

CE

C

CE

CE

SYNC_PAT

SAV_SPP

SAV_SPP

CE

S_POS[2:0]

S_POS[2:0]

I[29:0]

C

CC

X238_09_050900

CE_X233

SYNC

C

C
CE_X233

C

C

CE_X233

CE_X233

B
U

F
X

8

B
U

F
X

8

SM238

CE_X233
BUFSTAT 5

D[15:0]
XAPP238 (v1.0) December 18, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com/xapp/xapp233.pdf
http://www.xilinx.com/xapp/xapp233.pdf
http://www.xilinx.com

LVDS System Data Framing
R

SYNC_PAT

The sync pattern recognition circuit decodes 16 bits of sync pattern. It accomplishes
recognition by way of eight identical comparators, each left-shifted by two bits from one another
to cover all possible positions of sync in the 30-bit field. Using the bit-mapping suggested in
XAPP233, D0 contains all even bits and D1 contains all odd bits. This reduces the number of
possible skew positions within the stream by ensuring that the word starts on an even-bit
boundary. The SYNC_PATTERN signal informs RXFRAMER that a sync pattern has been
found in the data stream. The position of the sync pattern is sent to the DATBRLSH module as
a binary-encoded vector.

RXFRAMER

RXFRAMER is a one-hot state machine that finds frame sync. In its initial state, the state
machine waits for the SYNC_PATTERN signal, which indicates that the SYNC_PAT module has
decoded the sync pattern. When the sync pattern is found, the state machine initializes a sync
pitch counter (RX_PITCH) and waits for TC. The terminal count normally coincides with the
next sync pattern. If a sync pattern is indeed present, a possible frame boundary is found and
the state machine re-initializes the RX_PITCH counter and waits for a third occurrence of a
sync pattern. If the third pattern is found, the state machine assumes detection of a frame sync
and asserts LOCKED. It also asserts SAV_SPP (save sync pattern position), which latches the
three bits of sync pattern position into the barrel shifter.

DATBRLSH

This module decodes the 3-bit sync pattern position (from SYNC_PAT) and uses it to select the
correct alignment of the 16-bit data within the 30-bit field assembled by REG30BIT. The data is
then shifted to the correct position and presented to the user application.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/18/00 1.0 Initial Xilinx release.
8 www.xilinx.com XAPP238 (v1.0) December 18, 2000
1-800-255-7778

http://www.xilinx.com/xapp/xapp233.pdf
http://www.xilinx.com

	Summary
	Introduction
	General LVDS Operation
	Frame Insertion
	RE_CTL State Machine Operation
	Sending User Data

	Frame Alignment
	Frame Alignment Logic Detail
	SM238
	BUFX8s
	REG30BIT
	SYNC_PAT
	RXFRAMER
	DATBRLSH

	Revision History

