
Summary In data transmission systems the transmission channel itself is a source of data error. Hence
the need to determine the validity of transmitted and received data. Parity generation and
validation is a scheme to provide single bit error detection capabilites. This application note
describes how to generate and validate parity in a design using the Virtex™-II architectural
features including block RAM.

Introduction The validity of data is essential in applications where there data is transmitted over long
distances. Invalid data is a corruption risk. Parity generation helps in checking the validity of the
data. This application note explains how parity is efficiently generated using the block RAM
feature available in Virtex-II devices. Logic resource utilization is minimized since the data
busses in the block RAM store the parity bit along with the data. This application note
specifically covers 8-bit, 16-bit, and 32-bit parity checks.

The design detailed in this document has two modules, the parity generation block and the
parity validation block.

The block RAM input and output data busses are represented by two busses for 9-bit width
(8+1), 18-bit width (16+2), and 36-bit width (32+4) configurations. The ninth bit associated with
each byte can store parity or error correction bits. No specific function is performed on this bit.

The separate bus for parity bits facilitates some designs. However, other designs safely use a
9-bit, 18-bit, or 36-bit bus by merging the regular data bus with the parity bus. Read/write and
storage operations are identical for all bits, including the parity bits.

Parity
Generation
Block

The parity generation block generates the parity value from the input data. Figure 1 is a block
diagram of the parity generation block. An n-bit parity generation block generates a parity bit for
every n-bits of data. The number of bits taken into consideration for generating parity depends
upon the kind of parity check desired. Parity checks are usually done on every 8-bits, 16-bits,
or 32-bits of data, depending on the chosen block RAM configuration. Parity generation is done
for every 8-bits using a chain of XOR gates. The parity value is then stored in the DIP bus along
with the data input in the block RAM sharing the same address. In a block RAM the regular
data-in bus (DI) and the parity data-in bus (when available) have a total width equal to the port
width. For example the 36-bit port data width is represented by DI<31:0> and DIP<3:0>.
Table 1 shows the port definitions for Figure 1.

Application Note: Virtex-II Family

XAPP267 (v1.0) January 15, 2001

Parity Generation and Validation
in Virtex-II Devices
Author: Lakshmi Gopalakrishnan

R

XAPP267 (v1.0) January 15, 2001 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Parity Generation and Validation in Virtex-II Devices
R

Parity
Validation
Block

The parity validation block validates the data that was received. Figure 2 illustrates the parity
validation block diagram. It generates parity from the received data and compares it against the
parity value that was stored in the block RAM by reading from the DOP bus. In the block RAM
the regular data-out bus (DO) and the parity data-out bus (DOP) (when available) have a total
width equal to the port width. The parity of the received data is generated using a chain of
XORs. The parity is validated with a single XOR gate. A High on the Parity_Validity signal
indicated a single bit error. The parity validity signal ensures the validity of the data received
and helps to detect any single-bit errors. Table 2 gives port definitions for the parity validation
block.

Figure 1: Parity Generation Block Diagram

Table 1: Port Definitions

Signal Name Port Direction Port Width

DATA_IN Input 36

CLK Input 1

RESET Input 1

ADDRESS Input 9

ENABLE Input 1

WRITE_ENABLE Input 1

DATA_OUT Output 36

X267_01_121500

Parity
Generator

DATA_OUT

DATA_IN

CLK

RESET

ADDRESS

ENABLE

WRITE_ENABLE

Block
RAM

Figure 2: Parity Validation Block Diagram
X267_02_121500

Parity
Generator

DATA_OUT

PARITY_VALIDITY

DATA_IN

CLK

RESET

ADDRESS

ENABLE

WRITE_ENABLE

Block
RAM

Parity

Validation
2 www.xilinx.com XAPP267 (v1.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Parity Generation and Validation in Virtex-II Devices
R

Reference
Design

The reference design XAPP267.zip is available for 8-bit, 16-bit, and 32-bit parity generation
and checking modules in both VHDL and Verilog. The files have been tested and simulated
using the ModelTech Simulator.

Conclusion Parity generation and validation can be performed efficiently using the block RAM available in
Virtex-II devices. The separate bus for parity bits in the block RAM facilitate these designs.

Revision
History

The following table shows the revision history for this document.

Table 2: Port Definitions

Signal Name Port Direction Port Width

DATA_IN Input 36

CLK Input 1

RESET Input 1

ADDRESS Input 9

ENABLE Input 1

WRITE_ENABLE Input 1

PARITY_VALIDITY Output 1

DATA_OUT Output 32

Table 3: Reference Design Names and Descriptions

Design Description

Parity8_gen.vhd, .v Parity generation for 8-bit data

Parity16_gen.vhd, .v Parity generation for 16-bit data

Parity32_gen.vhd, .v Parity generation for 32-bit data

Parity8_chk.vhd, .v Parity check for 8-bit data

Parity16_chk.chd, .v Parity check for 16-bit data

Parity32_chk.vhd, .v Parity check for 32-bit data

Date Version Revision

01/15/01 1.0 Initial Xilinx release.
XAPP267 (v1.0) January 15, 2001 www.xilinx.com 3
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp267.zip
http://www.xilinx.com

	Summary
	Introduction
	Parity Generation Block
	Parity Validation Block
	Reference Design
	Conclusion
	Revision History

