
Summary This document details the VHDL implementation of an 8051 microcontroller interface in a Xilinx
CoolRunner™ XPLA3 CPLD. CoolRunner CPLDs are the lowest power CPLDs available,
making these CPLDs the perfect interface devices for many of today’s popular
microcontrollers. To obtain the VHDL code described in this document, go to section VHDL
Code Download and Disclaimer, page 10 for instructions.

Introduction An interface to the 8051 microcontroller has been implemented in a CoolRunner XPLA3 CPLD.
This design consists of a state machine that interprets the 8051 bus cycles to read and write
data to a set of registers called a register file. A high-level block diagram is shown in Figure 1.
Communication between the 8051 microcontroller and the application logic is accomplished
through a register file. The 8051 microcontroller writes data to the register file to configure and
control the application logic. The application logic writes status information and service
requests to the microcontroller through the register file. Data transfer is also done through
registers. Flags can be designed that denote when registers are empty and/or full depending
on the application. The number of registers and their bit definitions are defined in general terms
and should be customized for the application.

8051
Microcontroller
Bus Protocol

This section describes the main protocol of the 8051 microcontroller bus. For more details and
specific timing parameters, please refer to the supplier's datasheet for the 8051 microcontroller
chosen for the system.

The 8051 executes synchronous bus cycles, so there is no handshaking between the
peripheral and the microcontroller. The 8051 microcontroller utilizes a multiplexed
address/data bus through PORT 0. The falling edge of Address Latch Enable (ALE_N) is used
to capture the lower address byte from PORT0 so that the port can then be used for data
transfer. Program Store Enable (PSEN_N) is only asserted for accesses to read-only program

Application Note: CoolRunner CPLD

XAPP349 (v1.0) December 7, 2000

CoolRunner CPLD 8051 Microcontroller
Interface

R

Figure 1: CoolRunner CPLD 8051 Microcontroller Interface

Address

Data

Control
Microcontroller Microcontroller

Interface
Register

File
Application

Logic

CoolRunner CPLD

X349_01_112500
XAPP349 (v1.0) December 7, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

CoolRunner CPLD 8051 Microcontroller Interface
R

memory and thus remains negated during external memory read and write cycles. Figure 2
shows a flow chart of the operations that occur when the 8051 accesses a peripheral.

Bus Cycle Timing Diagrams
No numerical values for the parameters shown in these timing diagrams are provided. The data
sheet for the 8051 µC used in the system must be consulted for these parameters.

External Memory Read Cycle

For an external memory read cycle (Figure 3), PORT0 contains the address of the target
peripheral TAVLL ns before ALE_N asserts. The address is held on PORT0 for TLLAX ns and is
then 3-stated TRLAZ ns before RD_N asserts. Once RD_N asserts, the addressed peripheral
can drive the requested data onto the bus. This data must be valid TRLDV ns after RD_N

Figure 2: 8051 Bus Protocol for External Memory Accesses

Microcontroller

1. Place high byte of address on ADDR[15:8]

2. Place low byte of address on ADDR_DATA[7:0]

3. Assert Address Latch Enable (ALE_N)

4. Negate Program Store Enable (PSEN_N)

Address the Device

X349_02_112500

1. If write cycle, negate Write Strobe (WR_N) then
 remove data from ADDR_DATA[7:0]

2. If read cycle, latch data from ADDR_DATA{7:0]
 then negate Read Strobe (RD_N)

Terminate Transfer

1. Remove data from ADDR_DATA{7:0]

2. If write cycle, place data on ADDR_DATA[7:0]
 and assert Write Strobe (WR_N)

3. If read cycle, assert Read Strobe (RD_N)

Transfer Data

1. Remove Address Latch Enable (ALE_N)

Terminate the Cycle

Start Next Cycle

Peripheral

1. Latch the address

2. Decode the address and determine if the
 CPLD is being addressed

Decode the Address

1. If write cycle, latch data on ADDR_DATA[7:0]
 into addressed register

2. If read cycle, output data from addressed
 register on ADDR_DATA[7:0]

Transfer Data

1. If read cycle, remove data from
 ADDR_DATA[7:0]

Terminate Transfer
2 www.xilinx.com XAPP349 (v1.0) December 7, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

asserts. The microcontroller negates RD_N after it has retrieved the data from the bus and
ends the cycle by negating ALE_N.

External Memory Write Cycle

External memory write cycles (Figure 4) are quite similar to external memory read cycles with
one exception: instead of 3-stating PORT 0 after the address has been latched, the data to be
written to the addressed device is placed on PORT 0 TQVWX ns before WR_N asserts. WR_N
then asserts and is held for TWLWH ns. After WR_N negates, the data is held on PORT 0
TWHDX ns and the cycle ends with the negation of ALE_N.

Figure 3: 8051 Microcontroller External Data Memory Read Cycle

ALE_N

PSEN_N

RD_N

PORT 0 A[7:0] DATA IN

A[15:8]PORT 2

X349_03_112500

TWHLH

TAVLL TLLAX

TLLDV

TRLAZ TRLDV

TLLWL TRLRH

TAVWL

TAVOV

TRHDZ

Figure 4: 8051 Microcontroller External Data Memory Write Cycle

ALE_N

PSEN_N

WR_N

PORT 0 A[7:0] DATA OUT

A[15:8]PORT 2

X349_04_112500

TWHLH

TAVLL TLLAX
TQVWX

TLLWL TWLWH

TAVWL

TWHDX
XAPP349 (v1.0) December 7, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

CoolRunner
CPLD 8051
Microcontroller
Interface
Signals

The I/O signals of the CoolRunner CPLD 8051 microcontroller interface are described in
Table 1. Pin numbers have not been assigned to this design, this can be done to meet the
system requirements of the designer.

Table 1: CoolRunner CPLD 8051 Interface Signal Description

Name Direction Description

ADDR[15:8] Input µC Address Bus. High byte address bus.

ADDR_DATA[7:0] Bidirectional µC Multiplexed Address/Data Bus.

ALE_N Input Address Latch Enable. Active Low µC control
signal indicating that the data present on the
multiplexed address/data bus is a valid address.

PSEN_N Input Program Store Enable. Active Low µC control
signal indicating that the current bus cycle is an
access to the external program memory.

RD_N Input Read Strobe. Active Low µC control signal
indicating that the current bus cycle is a read cycle.

WR_N Input Write Strobe. Active Low µC control signal
indicating that the current bus cycle is a write cycle.

INT_N Output Interrupt Request. Active Low signal to generate an
interrupt to the µC. This signal is asserted based on
application logic.

CLK Input Clock. This clock is input from the system.

RESET Input Reset. Active High reset from the system. When
asserted, all logic in the CoolRunner CPLD is reset.
4 www.xilinx.com XAPP349 (v1.0) December 7, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

CoolRunner
CPLD Block
Diagram

The block diagram of the CoolRunner CPLD 8051 Interface consists of address decode logic,
a bus interface state machine, interrupt logic, user definable registers, and a data out
multiplexor to supply the requested data during a read cycle as shown in Figure 5.

Address Decode Logic
The CoolRunner CPLD 8051 Microcontroller Interface logic decodes the upper address byte
present on the ADDR bus as the device address. This address is compared to the constant
BASE_ADDR in the VHDL code to determine whether the device is being addressed or not. If
the upper address byte is equal to BASE_ADDR, the ADDR_MATCH signal is asserted.

The address decode logic also contains the registers clocked by ALE_N to capture the lower
address bits from the multiplexed ADDR_DATA bus. This lower address byte represents the
addresses of registers in the register file. This allows for the possibility of 256 registers in the
register file if even and odd addresses are allowed, and 128 registers if only even addresses
are allowed. The current implementation in the VHDL code instantiates four registers on even
addresses.

The lower address byte is compared to register address constants set in the VHDL code. If
there is a match, the register enable for the register being addressed is asserted.

Figure 5: CoolRunner CPLD 8051 Microcontroller Interface Block Diagram

ADDR[15:8]
ALE_N

PSEN_N

WR_N

RD_N

INT_N

ADDR_DATA[7:0]

X349_05_112500

Address/Decode
Logic

Bus Interface
State Machine

Register 0

Register 0

Register N

Data Out
Mux/Register

Interrupt
Logic

data_oe

data_trs

reg_en0
WR_N
data_trs

reg_en[N:0]

Data from Application Logic

D
at

a
to

 A
pp

lic
at

io
n

Lo
gi

creg_en1
WR_N
data_trs

reg_en1
WR_N
data_trs

data_trs

RD_N

reg_en[N:0]
XAPP349 (v1.0) December 7, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

The address decoding implemented in the VHDL code must be modified to fit the addressing
scheme of the system. The address bits that represent the device address and the address bits
that represent the register address within the device must also be adjusted for the system
requirements. These parameters can be modified by changing the constants shown in Table 2
in the VHDL code.

Bus Interface State Machine
The 8051 µC bus protocol is implemented in the state machine shown in Figure 6.

In the first cycle, the µC places the address on the address bus and asserts address latch
enable (ALE_N). ALE_N indicates that the data on the multiplexed address/data bus is a valid
address and that the address on ADDR[15:0] is also valid.

Upon the assertion of ALE_N, the state machine transitions to the ADDR_DECODE state to
wait for the ADDRESS/DECODE logic to decode the address and determine if it is the device
being addressed. If this is a write cycle, the µC removes the address from the multiplexed
address/data bus and places the data to be written onto these signals. The write strobe
(WR_N) is then asserted. If this is a read cycle, the µC 3-states the multiplexed address/data
bus and asserts the read strobe (RD_N) indicating that the CoolRunner CPLD can place data
from the addressed register on the data bus.

If the CoolRunner CPLD is being addressed and either RD_N or WR_N are asserted, the state
machine progresses to the DATA_TRS state. If this is a read cycle, the requested data is
placed on the bus and if this is a write cycle, the data from the data bus is latched in the
addressed register.

The µC latches the data present on the bus if this is a read cycle and then negates the read
strobe (RD_N). If this is a write cycle, the µC removes data from the bus and then negates the
write strobe (WR_N). The negation of either RD_N or WR_N causes the state machine to

Table 2: Address Decode Parameters

Constant Description Default Value

BASE_ADDR Device Address 00\h

DEVICE_ADDR_BITS Number of address bits used to
decode device address

8

REG_ADDR_BITS Number of address bits used to
decode register addresses

8

Figure 6: µC Bus Interface State Machine

IDLE

ale_n=0
psen_n=1

rd_n=0 or wr_n=0
addr_match=1

rd_n=1 or wr_n=1

ale_n=1

ADDR

DATA_TRS

END_CYCLE

X349_06_112500

addr_match=0

rd_n=0 or wr_n=0
6 www.xilinx.com XAPP349 (v1.0) December 7, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

progress to the END_CYCLE state. The CoolRunner CPLD will 3-state the multiplexed
address/data bus in this state, removing the data if it is a read cycle.

At this point, the µC ends the cycle by negating address latch enable (ALE_N), which causes
the CoolRunner CPLD to return to the IDLE state.

Register File The Register File consists of a bank of registers used for communication between the 8051 µC
and the application logic. These registers can be defined as needed by the application. For
example, most applications require a control register which sets up certain required parameters
such as interrupt enables, start/stop, clock divisors, clock phases and polarities, and/or
master/slave operation. This register and its address are then defined in the VHDL code and
the 8051 µC reads and writes to this register to configure the application.

Likewise, many applications are required to provide status information back to the 8051 µC
such as a data error, data operation complete, data available, transmit buffer is empty, etc. A
status register and its address are then defined in the VHDL code and the 8051 µC reads and
possibly writes to this register (to reset status conditions) to determine the application’s
progress and status.

The registers currently implemented in the CoolRunner 8051 Microcontroller Interface are
described in the Table 3. The user will have to examine the VHDL code to create the registers
required by the application and define the addressing scheme required by the system.The
register definition will determine if the input to the register comes from the 8051 µC data bus or
the application logic. Once the user defines the registers required by the application, the VHDL
code available with this application note will need to be modified to support the correct register
implementation. The constants in the VHDL code representing the register addresses will also
need to be modified.

Example Status Register
This register is an example status register containing the status of a typical application. This
status register is read-only with the exception of certain bits which are software clearable as
described in Table 4. Note that for software testability, it may be determined that all bits of the

Table 3: Register File Addresses

Address Register VHDL Constant Description

BASE + $80\h STATUS_REG STATUS_ADDR Example Status Register

BASE + $82\h CTRL_REG CTRL_ADDR Example Control Register

BASE + $84\h DATAIN_REG DATAIN_ADDR Example Data Input
Register

BASE + $86\h DATAOUT_REG DATAOUT_ADDR Example Data Output
Register
XAPP349 (v1.0) December 7, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

status register are writable, however, the VHDL code available with this application note does
not support this.

Table 4: Example Status Register Bits

Bit

Location Name µC Access Description

7 DONE Read Done Bit. Data operation has completed.

“1” operation is complete

“0” operation in progress

6 ERROR Read
Software
Clearable

Error Bit. An error requiring 8051 µC interaction has
occurred. This bit will cause an interrupt to the 8051
µC if interrupts have been enabled in the control
register. This bit is reset when the 8051 µC writes a
0 to this bit.

5 INTR Read
Software
Clearable

Interrupt Bit. This bit is asserted (active high) when
an interrupt is pending which causes a processor
interrupt request if interrupts are enabled (INT_EN is
set).This bit is reset when the 8051 µC writes a 0 to
this bit.

4 NEED_DATA Read Need Data Bit. This bit is set when the data input
register is empty. It is cleared when the µC writes
data into the data input register. An interrupt will be
asserted to the µC when this bit is set if interrupts are
enabled (INT_EN is set).

3 DATA_RDY Read Data Ready Bit. This bit is set whenever the data
output register is full. It is cleared when the µC reads
from the data output register. An interrupt will be
asserted to the µC when this bit is set if interrupts are
enabled.

2-0 Unused Unused Bits. These bits will read as "0" when the
status register is read.
8 www.xilinx.com XAPP349 (v1.0) December 7, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

Example Control Register
This register is an example control register providing the bits to configure and control the
operation of a typical application. All bits in this register can be written to and read from the
8051 µC as shown in Table 5.

Example Data Input Register
This register is an example data input register containing data from the 8051 µC that the
application performs some operation on, such as a transmission over the SPI bus. This data
register is both readable and writable and is described in Table 6.

Example Data Output Register
This register is an example data output register containing the results of the data operation.
This data register is read only and is described in Table 7. Note that for software testability, it
may be determined that all bits of the data output register are writable, however, the VHDL
code available with this application note does not support this.

Table 5: Control Register Bits

Bit
Location Name µC Access Description

7 APP_EN Read/Write Application Enable. This bit enables the user
application logic and must be set before any other
bits in the control register have any effect

 “1” enables the user application

 “0” resets and disables the user application

6 INT_EN Read/Write Interrupt Enable.

“1” enables interrupts. An interrupt occurs if the
INT_N bit in the status register is also set

“0” disables interrupts but does not clear the
cause of any currently pending interrupts

5 START Read/Write Application Start. When the µC changes this bit
from “0” to “1”, the application logic begins its
operation on the data provided in the DATA_IN
register.

4-0 CTRL_BIT
S

Read/Write Control Bits. These bits need to be defined by the
user application.

Table 6: Example Data Input Register

Bit

Location Name µC Access Description

7-0 DATA_IN Read/Write Data Input. Data byte from 8051 µC to perform
the application’s operation on.

Table 7: Example Data Output Register

Bit

Location Name µC Access Description

7-0 DATA_OUT Read Only Data Output. Resulting data byte from
application’s operation.
XAPP349 (v1.0) December 7, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

Application
Logic

The CoolRunner CPLD 8051 Microcontroller Interface is intended to be used as a front end to
additional application logic. The preceding paragraphs have described the code available to
implement this interface; however, modifications to the address decode logic, device and
register addresses, and register definitions will be required to suit the application.

VHDL
Testbench and
Functional
Simulation

A VHDL testbench has been developed that verifies the CoolRunner 8051 Microcontroller
Interface through various read and write bus cycles. This testbench contains a process that
emulates the bus cycles of the 8051 µC. Constants are provided at the top of the testbench file
to set up the base address of the CoolRunner CPLD and all of the registers contained within the
device. These constants should be modified to match the addressing scheme of the designer’s
system.

The testbench also contains constant data arrays for specification of the data to be input to the
application logic and for the expected data output from the application logic. The user needs to
modify the constants in these arrays and the size of these arrays to match the bus cycles
desired in simulation.

The testbench contains dummy processes to emulate application logic. These processes
assert the NEED_DATA and DATA_RDY flags as well as provide the load signal and data for
the output data registers. These processes should be removed from the testbench when the
application logic is available.

The ModelSim command file, func_sim.do, can be used to open the correct waveform window
and run the simulation.

CoolRunner
XPLA3 CPLD
Implementation

The CoolRunner 8051 Microcontroller Interface utilizes only 57 macrocells and has been
targeted to a XPLA3 64 macrocell device. The speed grade chosen is dependent on the system
clock frequencies and should be analyzed by the designer to determine which speed grade is
required. Once application logic has been added to the design, the user should target a
CoolRunner CPLD with enough macrocells to accommodate the 8051 Microcontroller Interface
described in this application note and the required application logic.

Post-fit Timing
Simulation

The Xilinx Project Navigator software package outputs a timing VHDL model of the fitted
design. This post-fit VHDL was simulated with the original VHDL test benches to insure design
functionality using ModelTech Xilinx Edition (MXE). Please note that all verification of this
design has been done through simulations.

The user of this design is strongly encouraged to thoroughly inspect the timing report for this
design to insure that the design meets the timing specification of the system. The user is also
strongly encouraged to perform post-fit timing simulations as well. The ModelSim command
file, post_sim.do, can be used to open the correct waveform window and run the simulation.

VHDL Code
Download and
Disclaimer

All VHDL source code, VHDL testbenches, and software files associated with this design are
available. Note that this reference design is intended to be used as a front-end interface to the
user’s application logic. It is not a standalone design. Therefore, modifications to the VHDL
code will be required to support the addressing scheme, register structures, interrupt logic, and
process flow of the application. This VHDL code is provided as an example that can be
considered a starting point for your application.

THE DESIGN IS PROVIDED TO YOU "AS IS". XILINX MAKES AND YOU RECEIVE NO
WARRANTIES OR CONDITIOns, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND
XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. This design should be
used only as an example design, not as a fully functional core. XILINX does not warrant the
performance, functionality, or operation of this Design will meet your requirements, or that the
operation of the Design will be uninterrupted or error free, or that defects in the Design will be
10 www.xilinx.com XAPP349 (v1.0) December 7, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner CPLD 8051 Microcontroller Interface
R

corrected. Furthermore, XILINX does not warrant or make any representations regarding use
or the results of the use of the Design in terms of correctness, accuracy, reliability or otherwise.

THIRD PARTIES MAY HAVE PATENTS ON THE 8051 MICROCONTROLLER BUS. BY
PROVIDING THIS HDL CODE AS ONE POSSIBLE IMPLEMENTATION OF THIS
STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THE PROVIDED
IMPLEMENTATION OF THE 8051 MICROCONTROLLER BUS IS FREE FROM ANY CLAIMS
OF INFRINGEMENT BY ANY THIRD PARTY. XILINX EXPRESSLY DISCLAIMS ANY
WARRANTY OR CONDITIOns, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND
XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE, THE ADEQUACY OF
THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OR
REPRESENTATION THAT THE IMPLEMENTATION IS FREE FROM CLAIMS OF ANY THIRD
PARTY. FURTHERMORE, XILINX IS PROVIDING THIS REFERENCE DESIGns "AS IS" AS A
COURTESY TO YOU.

XAPP349 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Conclusion This document has detailed the design of a 8051 microcontroller interface for a CoolRunner
XPLA3 CPLD. Though the design has been extensively verified in simulations, Xilinx assumes
no responsibility for the accuracy or the functionality of this design.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

12/07/00 1.0 Initial Xilinx release.
XAPP349 (v1.0) December 7, 2000 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com/products/xaw/coolvhdlq.htm
http://www.xilinx.com

	Summary
	Introduction
	8051 Microcontroller Bus Protocol
	Bus Cycle Timing Diagrams
	External Memory Read Cycle
	External Memory Write Cycle

	CoolRunner CPLD 8051 Microcontroller Interface Signals
	CoolRunner CPLD Block Diagram
	Address Decode Logic
	Bus Interface State Machine

	Register File
	Example Status Register
	Example Control Register
	Example Data Input Register
	Example Data Output Register

	Application Logic
	VHDL Testbench and Functional Simulation
	CoolRunner XPLA3 CPLD Implementation
	Post-fit Timing Simulation
	VHDL Code Download and Disclaimer
	Conclusion
	Revision History

