
Summary This document details the process used to demonstrate configuring a CoolRunner® CPLD over
the Internet. All of the VHDL source files and software files associated with this document can
be downloaded. Please go to section Software Disclaimer and Download Instructions,
page 8, for instructions.

Introduction Because of the widespread use of network connected digital devices, there is a tremendous
opportunity in being able to quickly upgrade these devices electronically anywhere in the world.
Internet Reconfigurable Logic (IRL) is a method of reconfiguring programmable logic via the
Internet. Since a large number of handheld and portable devices are now providing Internet
connections, the low-power CoolRunner CPLD is the logical choice for IRL hardware in these
products. This technique of reconfiguring programmable logic combined with the low-power
CoolRunner CPLD also provides a powerful advantage for intranet or network applications as
well. This document will detail the CoolRunner CPLD IRL demonstration which shows that IRL
is an effective and flexible method for upgrading CoolRunner CPLDs in a variety of systems.

CoolRunner
CPLD IRL Demo

To show the ease and effectiveness of reconfiguring a CPLD over the Internet, a CoolRunner
CPLD is used to control messages on a BetaBrite™ scrolling LED sign. The message to be
displayed on the BetaBrite sign is selected from a workstation or PC connected to the Internet.
The CPLD is then reconfigured over the Internet to display the selected message on the
BetaBrite sign. Though an application may be much more complex than controlling a scrolling
LED sign, the idea of reconfiguring a CPLD over the Internet to provide additional features or
functionality in your application is easily extended from this example.

Figure 1 shows the hardware required in this demo. The TINI™ board (Tiny InterNet Interface)
from Dallas Semiconductor along with the STEP™ board (Systronix TINI Engineering Platform)
from Systronix are used to provide the Internet connection. The CoolRunner CPLD is placed in
the available prototyping area of the STEP board and communicates to the BetaBrite sign via

Application Note: CoolRunner® CPLD

XAPP351 (v1.0) November 7, 2000

The CoolRunner CPLD IRL Demo:
An Example of Using the Internet to
Configure a CoolRunner CPLD

R

XAPP351 (v1.0) November 7, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

The CoolRunner CPLD IRL Demo: An Example of Using the Internet to Configure a CoolRunner CPLD
R

RS-232. The controller on the TINI board receives the CoolRunner CPLD design files from the
Internet and controls the reconfiguration of the CoolRunner CPLD.

Figure 1: CoolRunner CPLD IRL Demo
2 www.xilinx.com XAPP351 (v1.0) November 7, 2000
1-800-255-7778

http://www.xilinx.com

The CoolRunner CPLD IRL Demo: An Example of Using the Internet to Configure a CoolRunner CPLD
R

Running the Demo
The network computer uses Netscape or another web browser and connects to the IP address
of the TINI board. The TINI board serves up its home page. The user then clicks on
XPLAServlet to display the HTML file shown in Figure 2.

The user then selects the file to upload by clicking on the Browse... button. This file,
corresponding to the message to be displayed, is then uploaded to the TINI board. The TINI
board then programs the CoolRunner CPLD with this file which causes the message to change

Figure 2: IRL Demo HTML Page
XAPP351 (v1.0) November 7, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

The CoolRunner CPLD IRL Demo: An Example of Using the Internet to Configure a CoolRunner CPLD
R

on the BetaBrite sign. When the CoolRunner CPLD has been successfully programmed, the
HTML file shown in Figure 3 is displayed.

Details of the Demo
The TINI board is configured with an IP address for the network. When a computer on the
network connects to the TINI board, the TINI board serves an HTML file allowing the user to run
the XPLA Servlet. Once the XPLA Servlet has been chosen, the TINI board serves another
HTML file which allows the user to select the CPLD configuration file. Different CPLD files
corresponding to different messages on the BetaBrite sign are stored on the network computer.
The user then selects the CPLD configuration file for the TINI board to upload. The TINI board
then reconfigures the CoolRunner CPLD via the JTAG pins of the CPLD with the file just
uploaded. The new CPLD design instructs the Betabrite sign to display a different message via
the RS232 port and the new message is then displayed.

BetaBrite Messages

The BetaBrite sign allows many messages with special effects and colors to be stored in
memory. Messages can be programmed into the memory of the BetaBrite sign either by a
handheld remote control or by a software package that runs on the PC. Messages are then
downloaded to the BetaBrite sign via RS232.

Each message in memory is indexed by a file label. The sign can then be instructed to display
a message or series of messages from its memory by sending it a Set Run Sequence
command string which contains the file label(s) to be displayed.

For the CoolRunner IRL demo, the BetaBrite software is used to program different messages
with special effects into the BetaBrite sign. Each message is given a unique file label by the
BetaBrite software. The CoolRunner CPLD design then simply transmits the Set Run
Sequence command string with a particular file label or file labels to the BetaBrite sign over
RS232. The BetaBrite sign then displays the message sequence associated with the file
label(s).

Figure 3: HTML File when Programming is Successful
4 www.xilinx.com XAPP351 (v1.0) November 7, 2000
1-800-255-7778

http://www.xilinx.com

The CoolRunner CPLD IRL Demo: An Example of Using the Internet to Configure a CoolRunner CPLD
R

The format of transmission frames to the BetaBrite sign and the format of the Set Run
Sequence command can be found in the Alpha™ Sign Communications Protocol Document,
Revision C.

CoolRunner CPLD Design

The CoolRunner CPLD design consists of a controlling state machine which steps through the
bytes of the Set Run Sequence command and a low-level state machine which serializes the
bytes into bits to be transmitted over the RS232. Note that the STEP board provides the RS232
level translator.

This design only transmits over RS232 - it does not receive data. It consists of two major design
components, the Command State Machine and the Transmit UART State Machine. The
Command State Machine sequences through the bytes that comprise the Set Run Sequence
command to the BetaBrite sign. The message label to be displayed is a constant in the
command state machine code and can be easily modified.

The Transmit UART State Machine controls the reception of a byte of data from the Command
State Machine and the transmission of this data byte over the serial port. The current design
transmits an IDLE bit, a START bit, eight DATA BITS, and a STOP BIT. It does not transmit a
parity bit. This serial protocol can be changed in the transmit code.

The block diagram for this design is shown in Figure 4. The Transmit Buffer Register (TBR) is
loaded with data from the Command State Machine when the WRN signal is asserted. This will
cause the Transmit Buffer Register Empty (TBRE) flag to negate which starts the Transmit
UART State Machine. This state machine loads the data into the Transmit Shift Register (TSR)
and shifts the data out on SDO.

Command State Machine

The code for the Command State Machine consists of a block of constants that define the
transmission frame format and the Set Run Sequence command format for the particular
command and file label to be sent to the BetaBrite sign. This operation occurs only once when
the reset signal from the TINI board is negated. The number of bytes in the frame is also set in
the constant, WORD_COUNT. Using constants in this manner keeps the state machine small,
concise, and consistent even though the file label or labels of the messages differ from design
to design.

The Command State Machine is shown in Figure 5 and operates off the system clock. When
there is a rising edge on TBRE (TBRE_RE =1) indicating that the Transmit Buffer Register
(TBR) is empty, the state machine transitions from the START state to the SET_DATA state. In
this state, the first data byte of the frame is output to the TBR and the word counter is
incremented. In the next state, the WRN signal is asserted to load the data into the TBR. The
state machine returns to the START state to wait for TBRE_RE to assert. This continues until

Figure 4: CoolRunner CPLD Design Block Diagram

Command
State Machine

tbre

data_out[7:0]
tbr[7:0] sdo

X351_04_101800

wrn T
B

R

T
S

R
sh

ift

lo
ad

Transmit UART
State Machine
XAPP351 (v1.0) November 7, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

The CoolRunner CPLD IRL Demo: An Example of Using the Internet to Configure a CoolRunner CPLD
R

all words in the frame have been output. At that point, the state machine transitions from the
START state to the STOP state and the transmission of the frame is complete.

Transmit UART State Machine

The Transmit UART State Machine (Figure 6) operates from a divided version of the system
clock as determined by the baud rate of the transmission. The state machine moves from the
IDLE state to the START_BIT state when the TBRE signal negates, indicating that the Transmit
Buffer Register is no longer empty. The START_BIT state outputs the start bit as defined in the
RS232 specification. The state machine then shifts the actual data bits out of the Transmit Shift
Register (TSR). When all eight bits have been output, the state machine transitions to the
STOP_BIT state to output the RS232 stop bit. The start bit, data bits, and one stop bit protocol
are defined as the communication parameters required by the BetaBrite sign.

Figure 5: Command State Machine

Figure 6: Transmit UART State Machine

START

tbre_re=1
count<WORD_COUNT

tbre_re=1
count=WORD_COUNT

SET_DATA

ASSERT_WRN

X351_05_101700

STOP

START_BIT

tbre=1

tbre=0

tbre=0

DATA_BITS

STOP_BIT

X351_06_101700

IDLE

no_bits_sent<NUM_DATA_BITS-1

no_bits_sent=NUM_DATA_BITS-1
6 www.xilinx.com XAPP351 (v1.0) November 7, 2000
1-800-255-7778

http://www.xilinx.com

The CoolRunner CPLD IRL Demo: An Example of Using the Internet to Configure a CoolRunner CPLD
R

CoolRunner CPLD Design Implementation

The CoolRunner CPLD design is implemented in an XPLA3 64-macrocell device in a VQ100
package (XCR3064XL-10VQ100). This design uses ~51 macrocells.

TINI Board Software

The TINI board contains a JAVA Virtual machine. Code has been written for the TINI board to
program the CPLD over the JTAG pins using a *.BIF file. This file is written as a Simplified
Binary File (SBF) for configuring CoolRunner CPLDs in embedded systems. The SBF for the
design is created by running the CoolRunner ISP software. For more information about SBF,
download XAPP326: Simplified "In-System Programming" for Embedded Systems Using
CoolRunner CPLDs available at http://www.xilinx.com/xapp/xapp326.pdf

Each byte of data in the SBF contains 4-bit pairs with the values of TMS and TDI. These bit
pairs are applied to the TMS and TDI pins of the device and a rising edge on TCK is provided.
To run more efficiently on the JAVA Virtual machine, the SBF file is first "unwound" so that the
resulting file contained simple bit pairs of TMS/TDI values. These "unwound" files are the files
that are transferred from the network computer to the TINI board and used by the TINI board to
reconfigure the CoolRunner CPLD. The JAVA application that "unwinds" the *.BIF files is
BifUnwinder.jar.

The TINI board not only contains the software to re-configure the CPLD, but the software to
serve the HTML pages as well. All of the TINI software is found in the file irldemo.zip which is
available for download. Please see Software Disclaimer and Download Instructions,
page 8 for instructions.

TINI/STEP and CoolRunner CPLD Board Connections

Figure 7 shows the block diagram of the implementation of the CoolRunner CPLD on the
prototyping area of the STEP board. Schematics for the TINI board and STEP board are
available from the Systronix website and the Dallas Semiconductor website. See Table 2,
page 9 for the URL to these websites. The shaded blocks are components that are on the
prototyping area of the STEP board, the other blocks are components present on the STEP
board.

TMS and TDI on the CoolRunner CPLD are connected to the TINI data bus pins D1 and D0.
TCK is connected to Peripheral Chip Enable 0 (PCE0). The CPLD is memory mapped so that
accesses to the CPLD appear as memory cycles, thus PCE0 provides the correct edges for
TCK. Note that the SDO output from the CPLD is connected to the TX1 pin of the TINI board.

Figure 7: CoolRunner CPLD Integration on STEP/TINI Board

T
D

I

T
C

K

T
M

S

R
E

S
E

T

C
LK

T
X

1

P
C

E
3

A
ux

ill
ar

y
S

er
ia

l P
or

t

1.2288 MHz
Oscillator

5V / 3.3V
RegulatorCoolRunner CPLD

XCR3064XL-10VQ100

TINI Board

X351_07_101700

DB9 SP312A

U5

SDO

RCVEN

JP4

2

3

1

XAPP351 (v1.0) November 7, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com/xapp/xapp326.pdf
http://www.xilinx.com/xapp/xapp326.pdf
http://www.xilinx.com/xapp/xapp326.pdf
http://www.xilinx.com

The CoolRunner CPLD IRL Demo: An Example of Using the Internet to Configure a CoolRunner CPLD
R

The TX1 pin is 3-stated for this application, therefore there is no signal contention on this line.
Since the CoolRunner CPLD is utilizing the RS232 drivers on the STEP board, jumper JP4 on
the STEP board must be in the 2-3 position to enable these drivers.

Table 1 shows the CoolRunner CPLD connections to the TINI board and the oscillator added to
the prototyping area.

Software
Disclaimer and
Download
Instructions

All VHDL source code, VHDL testbenches, and software files associated with this design are
available. THE DESIGN IS PROVIDED TO YOU "AS IS". XILINX MAKES AND YOU RECEIVE
NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
AND XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE.
This design should be used only as an example design, not as a fully functional core. XILINX
does not warrant that the performance, functionality, or operation of this Design will meet your
requirements, or that the operation of the Design will be uninterrupted or error free, or that
defects in the Design will be corrected. Furthermore, XILINX does not warrant or make any
representations regarding use or the results of the use of the Design in terms of correctness,
accuracy, reliability or otherwise.

 XILINX EXPRESSLY DISCLAIMS ANY WARRANTY OR CONDITIONS, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, AND XILINX SPECIFICALLY DISCLAIMS ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR
A PARTICULAR PURPOSE, THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OR REPRESENTATION THAT THE
IMPLEMENTATION IS FREE FROM CLAIMS OF ANY THIRD PARTY. FURTHERMORE,
XILINX IS PROVIDING THIS REFERENCE DESIGNS "AS IS" AS A COURTESY TO YOU.

XAPP351 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Conclusion This demo shows that the mechanics of upgrading a CPLD over the Internet are feasible and
accomplished without difficulty. The implementation of IRL can easily be extended to more
complex programmable logic designs. By implementing IRL, designs can be upgraded whether
it is in the next office or on the other side of the world, providing enormous field service cost
savings.

Table 1: CoolRunner CPLD Connections

CoolRunner CPLD XCR3064XL-10VQ100 TINI Board

Signal Name Pin Number Signal Name Pin Number

TMS 15 D1 50

TDI 4 D0 51

TCK 62 PCE0 28

SDO 85 TX1 12

Reset 61 P5.0 CTX 8

TDO 73 D2 49

Clock 90 Oscillator
8 www.xilinx.com XAPP351 (v1.0) November 7, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/products/xaw/coolvhdlq.htm

The CoolRunner CPLD IRL Demo: An Example of Using the Internet to Configure a CoolRunner CPLD
R

The URLs provided in Table 2 provide detailed information about topics and hardware
discussed in this application note.

Revision
History

 The following table shows the revision history for this document.

Table 2: URLs for More Information about IRL Demo

Xilinx Online and IRL http://www.xilinx.com/xilinxonline/index.htm

Xilinx CoolRunner CPLDs http://www.xilinx.com/products/xpla3.htm

Dallas Semiconductor TINI Board http://www.ibutton.com/TINI/index.html

Systronix STEP Board http://www.systronix.com/home.htm

Date Version # Revision

11/07/00 1.0 Initial Xilnix release.
XAPP351 (v1.0) November 7, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xilinxonline/index.htm
http://www.xilinx.com/products/xpla3.htm
http://www.ibutton.com/TINI/index.html
http://www.systronix.com/home.htm

	Summary
	Introduction
	CoolRunner CPLD IRL Demo
	Running the Demo
	Details of the Demo
	BetaBrite Messages
	CoolRunner CPLD Design
	Command State Machine
	Transmit UART State Machine
	CoolRunner CPLD Design Implementation

	TINI Board Software

	Software Disclaimer and Download Instructions
	Conclusion
	Revision History

