
0
Technology Update - CoolRunner

In traditional CPLD architectures, including
the XC9500 series, the circuits that propagate
logic-level transitions in the product-term

array are derived from the original (old) bipolar
PLD designs. These older designs use sense
amplifiers at the end of each bit line in the prod-
uct-term array to achieve fast propagation
delays. Because CPLD product terms cannot be
decoded (as with memory locations in an
EPROM, for example) there must be a sense
amplifier for each individual product-term. These
sense amplifiers must be continuously opera-
tional, and will draw continuous supply current
even when not switching.

The CoolRunner Design Technique

The Xilinx CoolRunner design uses an innovative
method for implementing the product-term
array. Rather than employing sense amplifiers (a
bipolar-style circuit), CoolRunner CPLDs use true
CMOS circuitry. In the CoolRunner Fast Zero
Power (FZPTM) approach represented in Figure
1, the AND gates in the product-term array are
implemented using configurable multiplexers
(MUXs) attached to the inputs of normal CMOS
NAND gates. Each MUX selects an input, it’s
complement, or Vcc (don’t care state.) These

MUXs are programmed using RAM-based config-
uration bits.

The full CMOS AND gate shown in Figure 1
has a delay of under 0.5 nsec, including the
delay of the input MUXs.

10

by Ron Cline, Director of CoolRunner Product Development, Xilinx, Inc., ron.cline@xilinx.com

CoolRunner CPLDs require very little power yet
operate at very high speeds—here’s how.

Figure 1 - CoolRunner Fast Zero Power AND gate.

A four input ‘AND’ function demonstrates how
the product term is implemented with full-CMOS
gates in the CoolRunner CPLDs.

I 1

I 0

I 3

I 2

Output = I 0 & I 1 & I 2 & I 3

Figure 2 - Representation of a 4-input product-term
using the CoolRunner FZP design technique.

How CoolRunner CPLDs Minimize System Current Demand

Fast Zero Power
(FZP) Technology

mailto:ron.cline@xilinx.com

Wider AND gates are built using a deMorgan
tree, as shown in Figure 2. Doubling the input
width simply requires the replacement of the
inverter in Figure 1 with a 2-input NOR gate.
This increases the total delay by less than 0.1
nsec.

This design technique can be extended for
wider widths, as shown in Figure 3 which shows
a re-doubling to eight inputs, at an additional
delay penalty of less than 0.2 nsec for the NAND
gate plus inverter. The inverter can be replaced
with a two-input NOR gate to enable a product-
term width of 16 inputs (at an incremental delay
penalty of 0.1 nsec.).

As you can see, the delay penalty per addi-
tional input actually decreases as the number of
inputs into each product-term increases. This is
in contrast to the traditional sense amplifier
approach, where the delay increases linearly as
product-term input width is increased.

The gate tree implementation distributes the
capacitance at each product-term, so this capac-
itance is no longer lumped on a single node.
Furthermore, the switching current behaves in a
manner similar to that of random logic in a gate
array; the static current for each gate is small-

about 1 picoamp (pA). The total instantaneous
dynamic current is also small, because only the
gates in one path of the tree can switch, and
these gates switch in succession rather than all
at once.

Conclusion

The advantages of CoolRunner FZP CPLDs are
numerous. Total standby current is under 100
microamps—at least 1000 times less than that
exhibited by CPLDs using sense amplifiers. Total
dynamic power is also decreased, relative to
existing CPLDs, by as much as 70% for a device
whose logic is fully populated with 16-bit coun-
ters operating at 50 MHz. Best of all, these
power savings are realized with little impact on
performance and with no cumbersome power-
down circuitry.

Because power consumption is so low, chip-
scale packaging options, once considered impos-
sible due to thermal limits, are now offered. As a
result, FZP technology is a key technology for
CPLDs because it enables very low-power, high-
performance applications.

11

The previous example, expanded to implement an
eight-input AND function.

Output = I 0 & I 1 & I 2 & I 3 & I 4 & I 5 & I 6 &

I 1

I 0

I 3

I 2

I 5

I 4

I 7

I 6

Figure 3 - Expanding the number of inputs.

