
47

Applications - Software

LeonardoSpectrum is the FPGA Synthesis Tool

from Exemplar Logic, used to Synthesize RTL

HDL code and target Xilinx Virtex devices.

Using Attributes and Variables
LeonardoSpectrum’s optimization engine can be con-

trolled globally (using global optimization variables) or

at the netlist level (using attributes).

Global optimization variables affect the optimiza-

tion of every block in the design. The lut_max_fanout

variable provides a good example. If this is set to a

value of 12 then all nets will be optimized with a

fanout no greater than 12.

Attributes provide a way to make a modification

to a specific net, cell, or instance. An attribute is a

property assigned to an object, which affects the opti-

mization of only that object. You can set attributes

prior to RTL synthesis by using a standard VHDL

attribute statement or Verilog attribute comment

statement as follows:

• Setting Attributes in Verilog:
//Exemplar attribute <signal name> <attribute name>
<attribute value>

• Setting Attributes in VHDL:
ATTRIBUTE <attribute name> : <attribute VHDL type>;
ATTRIBUTE <attribute name> of <signal name> :
signal is <attribute value>;

Attributes can also be set on objects after synthe-

sis using the set_attribute command as follows:
usage : “set_attribute” [<object_list>] <netlist object>
<attribute name> <value>

For example:
set_attribute u1 -instance -name dont_touch -value TRUE

Controlling Clock Buffers

Virtex and VirtexE FPGAs contain 4 BUFG cells per

device, which are primarily used to drive clock lines.

Often, all of these cells are not required for primary

clocks. LeonardoSpectrum will automatically identify

high fanout internal clocks and insert all unused

global buffers into those nets. This functionality is

enabled by default and controlled by the global vari-

able:
> set insert_bufs_for_internal_clock true

There may be situations where you want to force

a BUFG cell onto a net or prevent the automatic

buffering of a high-fanout net. Attributes can be used

in both of these cases to control optimization.

Use the following command to force a BUFG
cell into an internal net:

> set_attribute netname -net -name PAD -value bufg

Use the following command to prevent automatic

BUFG insertion on particular net:
> Set_attribute netname -net -name NOBUF -value TRUE

Controlling Virtex Low Skew Lines

If high-fanout clock nets still exist after all the clock

buffers have been exhausted, LeonardoSpectrum will

use the Virtex secondary global lines to minimize

skew by applying an attribute called “MAXSKEW” to

each individual, high-fanout clock net. You can

instruct LeonardoSpectrum to perform this operation

automatically on the entire design by setting the sys-

tem variable virtex_apply_maxskew to a specified

by Tom Hill, Technical Marketing Manager, Exemplar Logic, tom.hill@exemplar.com

How to Control Virtex Design
Optimization

USING VARIABLES AND ATTRIBUTES

With Exemplar’s LeonardoSpectrum, you can easily
control every aspect of your design.

Argument Set_attribute Switch Description

Netlist object -port | -net | -instance Indicates the type
of netlist object

Attribute Name -name Name of the attribute

Attribute Value -value Value of the attribute

Table 1 - set_attribute command arguments.

mailto:tom.hill@exemplar.com

48

maximum skew value as follows:
> Set virtex_apply_maxskew 7

The “maxskew” attributes can be used to specify a

maximum skew on a particular net. Use the following

command to limit skew on a particular net:
> Set_attribute <internal netname> -net -name MAXSKEW
-value 7

If you set a very low skew value, one that the

Xilinx Alliance Series software is unable to meet, then

an error will be issued during place and route. For that

reason it is important not to over constrain the skew

value.

Controlling Fanout

Fanout, which is usually controlled globally, is set to a

default of 64 in LeonardoSpectrum, for Virtex devices.

This is generous but usually gives good results. If tim-

ing is difficult to meet in the place and route environ-

ment, especially if large routing delays are the culprit,

then you can modify design fanout in certain areas.

Using the lut_max_fanout attribute, LeonardoSpectrum

allows you to override a global fanout specification

with a unique value for a particular block or net. Net

fanout can be specified on a global basis using the fol-

lowing command:
> set lut_max_fanout 12

Use the following command to redefine the fanout

on a specific net from 64 (default) to 16:
> Set_attribute mynetname -net -name lut_max_fanout -value 16

Controlling IOB Registers

LeonardoSpectrum, by default, does not optimize reg-

isters to the IOB. When loading the Virtex technology,

you are presented with an option to “Map IOB

Registers,” which will set the global optimization

variable:
> set virtex_map_iob_registers TRUE

Once set this variable will instruct

LeonardoSpectrum to pull all possible registers into

the Virtex IOB blocks. When a single register is used

to drive more than 1 output port LeonardoSpectrum

will replicate that register once for each additional

port. Often, however, users wish to pull only a few

select registers into the IOB. This can be accomplished

by assigning an attribute called “IOB” to the particular

register instance.

Use the following command to force a register

with an instance name called “reg_state(7)” into the

IOB:
set_attribute reg_state(7) -instance -name IOB -value TRUE

You can also use wildcards “*” to set all the regis-

ters of a bus at once. For example:
“reg_state*”

Controlling Block RAM

Both global variables and attributes can be used to

control block RAM inferencing. When developing a

single module of a larger device you may wish to allo-

cate all the block RAM resources to another block. In

this case, using the global variable to disable the block

RAM inference makes the most sense. You can do this

by using the following command:
> set extract_ram FALSE

When block RAM resources start to run low, you

may choose to disable block RAM inferencing on a

section of the design. You can accomplish this by

assigning the block_ram attribute to the storage signal

used during the RTL RAM inference. You can do this in

the RTL code by setting an attribute on the memory

signal.
Verilog Example:
Reg [7:0] mem[63:0]
//Exemplar attribute mem block_ram FALSE
VHDL Example:
TYPE mem_type IS ARRAY 0 TO 256 OF std_logic_vector
(15 DOWNTO 0);
SIGNAL mem : mem_type;
ATTRIBUTE block_ram : Boolean;
ATTRIBUTE block_ram of mem : signal is TRUE;

The block_ram attribute can also be applied to the

“mem” signal, after synthesis, from the

LeonardoSpectrum command line.

LeonardoSpectrum’s design browser can help you

identify correct signal pathnames for hierarchical

blocks. For flat designs the signal name alone would

be sufficient. Below is an example of using the

set_attribute command to disable RAM inferencing on

a memory signal “mem” that resides within a sub-

block of the design “blockA:”
> Set_attribute .work.blockA.rtl.mem* -net -name block_ram -
value false

Conclusion
With LeonardoSpectrum, it’s easy to optimize Virtex

FPGA designs. For more information about

LeonardoSpectrum, see www.exemplar.com.

http://www.exemplar.com/

