
For many years designers have been using
Xilinx programmable logic devices (PLDs)
to reap the benefits of fast time-to-market.

Now, a second major advantage is made possi-
ble through the partnership of GoAhead
Software and Xilinx—the ability to upgrade your
designs via a network after they have been
deployed in the field. This can result in dramatic
field service cost savings and it helps “future-
proof” your product.

The Solution for Field Upgrading

The new Xilinx and GoAhead Software solution
combines the GoAhead commercial software
(GoAhead FieldUpgrader™) with the Xilinx
Internet Reconfigurable Logic methodology
(IRL™) to provide the enabling technology to
help you create and manage field upgradable
systems. This technology provides the backbone
for network-based system designs as well as the
delivery mechanisms to successfully deploy
upgradable products.

GoAhead FieldUpgrader

The GoAhead FieldUpgrader software consists of
three parts:

• GoAhead DeviceStudio™ - a development
environment used to create the UpgradeAgent
software.

• GoAhead UpgradeAgent™ - the software
that is embedded in the target device. Each
agent is unique to the particular operating
system that is resident on the target system.
The target system containing the
UpgradeAgent polls the UpgradeServer at reg-
ular pre-determined intervals to look for
FPGA upgrades. When an upgrade is avail-
able, the device downloads the upgrade to a
predetermined storage location. This process
is illustrated in Figure 1.

• GoAhead UpgradeServer™ - used to create
and publish upgrades and is usually located
on a server at the manufacturer’s site. When
the need for an FPGA upgrade arises, the
manufacturer publishes the upgrade with
UpgradeServer.

5

Cover Story

Hardware Systems Using
Enabling Technology from

GoAhead

A complete system for managing and
remotely upgrading your FPGA
designs in the field.

by Greg Brown, Xilinx Software Product Manager for Internet Applications, greg.brown@xilinx.com
and by Mike Akers, GoAhead Software FieldUpgrader Product Manager, mikea@goahead.com

FIELD UPGRADABLE
Creating

Software

mailto:greg.brown@xilinx.com
mailto:mikea@goahead.com

Data Security and Integrity

To upgrade devices over a network, it is critical
that the devices only accept upgrades from the
authorized, designated server. It is also impor-
tant to ensure that the upgrade payload is not
modified or corrupted. GoAhead FieldUpgrader
and the UpgradeServer use a variety of tech-
niques to authenticate the upgrade and prevent
modifications along the way.

GoAhead FieldUpgrader uses the Digital
Signature Standard (DSS), which specifies a
Digital Signature Algorithm (DSA). The DSA pro-
vides the capability to generate and verify signa-
tures using public and private keys. In addition,
the device-initiated approach provides built-in
security; the device does not accept externally
initiated upgrades. The location and port of the
upgrade server is configured into the target
device and the device will only allow upgrades
from this designated upgrade server. This
method ensures that the upgrade payload
received at the target device matches the origi-
nal upgrade payload published at the upgrade
server and guarantees that the message was not
modified en-route to the device.

The payload of the upgrade is broken into
smaller chunks to make the transfer more effi-
cient and re-startable. GoAhead FieldUpgrader
calculates a 32-bit CRC checksum for each of
these individual chunks. If the target device

detects a checksum error, it discards that chunk
and re-fetches it from the upgrade server. Once
all of the chunks have been downloaded, the
device reconstructs the payload and performs
the higher-level data integrity check.

Data integrity is also checked during the
actual programming of the Xilinx FPGAs; there is
a CRC checksum built into the programming
step.

Fault Tolerance

The UpgradeAgent is fault tolerant during the
transmission of the upgrade. The Agent knows
the contents of the payload based on the mani-
fest list and will re-initiate the upgrade to fetch
any missing chunks if the connection with the
server is lost.

The application of the upgrade to the Xilinx
device can also be made fault tolerant in the sys-
tem architecture, which is shown in Figure 4.
The concept uses redundant non-volatile storage
areas—one to hold the current, known good sys-
tem, and the other to hold the upgrade. The sys-
tem can always fall back to the known good
configuration if there are any issues associated
with upgrading the system.

Flexibility By Design - Pull or Push?

There are some applications that may require a
“push” method of upgrading. The term “push”

6

Device Manufacturer

Device initiated request

Upgrade request response

Request for payload

Payload

Response

Figure 1 - The remote upgrade process.

entails the directing and initializing of upgrades
from a central server. There are cases or man-
agement decisions that may dictate this alterna-
tive to providing upgrades.

The FieldUpgrader software primarily uses a
device-initiated or “pull” methodology. However,
it was developed to be flexible as well, and can
be enhanced to allow a “push” methodology. At
a pre-determined time, the UpgradeAgent may
simply open a communications port to listen for
“hello” messages that are broadcasted or multi-
casted from the UpgradeServer. If the
UpgradeAgent responds after verification, the
UpgradeServer sends a request packet to the
system to begin the upgrade process. The
UpgradeAgent then makes the request for an
upgrade from the secure UpgradeServer. This
methodology solves the problems associated
with firewalls and security. The requests may
pass through firewalls and the device port
remains open for only the specified upgrade
period.

System Support

GoAhead FieldUpgrader supports the following
platforms:

• GoAhead UpgradeServer, GoAhead
DeviceStudio:

Windows NT4.0, Linux 2.2, Microsoft
Internet Explorer 4.x or greater, Netscape
4.x or greater

• GoAhead UpgradeAgent:

Wind River VxWorks 5.3.1 or greater (x86,
PowerPC, ARM, MIPS), Windows 95/98/NT
(x86, PowerPC), Windows CE (x86, Hitachi
SH) or Linux 2.2 (x86)

The key requirements of the UpgradeAgent
are:

• TCP/IP stack and connection.

• Real-time clock.

• File system (optional for VxWorks).

• Provision of the main software module’s C
source code (main.c) and a linkable library to
enable the integration of the UpgradeAgent
into custom applications.

• Support for embedded JavaScript calls with
the ability to:

- Control the upgrade process

- Load and call C functions to extend func-
tionality

- Send additional request data to GoAhead
UpgradeServer

- Access GoAhead UpgradeAgent environ-
ment variables

Demonstration Design

The demonstration design utilizes the GoAhead
FieldUpgrader to upgrade a Xilinx XCS05 Spartan
FPGA, which is connected to a popular embed-
ded system—a single-board computer running
Wind River’s VxWorks® real-time operating sys-
tem. This type of system exists in many applica-
tions and environments from industrial control
stations to remote monitoring systems. Figure 2
shows a diagram of the system.

7

TCP/IP

Field Upgrader
Server System
(Windows NT 4.0)

Payload Package
upgrade .js

xiprog.o
test.bit

Agent System
(VxWorks)
Single board

486 Computer
Field Upgrader Agent

(includes javascript
interpreter)

Runs upgrade.js
Dynamically loads xiprog.o

into VxWorks
Programs XCS05

with test bit

Monitor

Hard disk

Power Supply

Remote System

Parallel
Cable

Xilinx Demo Board
(Spartan XCS05)

Figure 2 - Demonstration system.

This demonstration system includes the follow-
ing components:

Processor - The processor is a single-board,
Intel 486-based system. The board has 2MB of
RAM, integrated VGA controller, an IDE con-
troller, and a parallel interface. A hard disk is
used for non-volatile storage other than the
BIOS.

Xilinx demonstration board - This board has
two devices on it: an XC3020A and a Spartan
XS05. The Spartan XS05 is a 5000 system gate
FPGA that is used in high volume, low-cost
applications.

Xilinx Parallel Cable III - This cable runs
between the single board computer and the
Xilinx demonstration board. This cable is used to
provide the communication between the com-
puter system and the Xilinx FPGA.

Wind River VxWorks - The VxWorks® Real-
Time Operating System (RTOS) from Wind River
Systems is the most widely used RTOS for
embedded systems.

The GoAhead UpgradeAgent - This is a real-
time embedded application that uses VxWorks’
dynamic loading capability to load and execute
other real-time embedded applications. In the
demonstration design, this feature of VxWorks is
used to dynamically load the object code that
programs the Xilinx FPGA. This was strictly an
architectural choice. An alternative and equally
valid approach is to have the object code that
programs the Xilinx device be resident on the
VxWorks system and not include it as part of the
upgrade process, or use a combination of the
two approaches.

The UpgradeAgent is configured to poll the
UpgradeServer once each minute to check for
upgrades. When one exists, it downloads the
upgrade payload and executes the instructions
included in the payload. For demonstration pur-
poses, two payloads are published on the

UpgradeServer: one to upgrade the bitstream
and one to downgrade to the original bitstream.
This enables the system to toggle between the
two FPGA configurations.

UpgradeServer - The UpgradeServer is running
on a laptop PC using Microsoft NT4.0. It waits
until the UpgradeAgent on the VxWorks system
contacts it and requests an upgrade. If there is
an available upgrade, the server sends the
upgrade payload to the VxWorks system across
the TCP/IP network.

Demonstration Upgrade Process

The upgrade process used in the demonstration
design is illustrated by the flow diagram in
Figure 3.

Building a Commercial System

There are several potential field upgradable
architectures to which the concepts presented
here apply. However, only one is described
here—the single board computer running an
RTOS with programmable logic, as shown in
Figure 4.

In Figure 4, the processor must be one sup-
ported by the GoAhead UpgradeAgent. This can

8

Demonstration System Upgrade Process

Upgrade Agent waits
on event schedule

Upgrade Agent build
HTTP request

Upgrade Agent sends
request to Upgrade Server

Is
Upgrade
Available

?

Is
Policy
Valid

?Upgrade Server
Operations

Manifest is sent to
Upgrade Agent

No

No

VxWorks programs the
XS05 through parallel

port using bit file on disk

Upgrade Agent runs
upgrade.js javascript

Upgrade Agent unarchives a payload
(Xiprog.o, upgrade.js, test.bit)

Upgrade Agent verifies
payload

Upgrade Agent rebuilds
archive file

Upgrade Agent fetches
upgrade chunk to disk

All
Chunks
received

?

Is
Chunk
Valid

?

Figure 3 - Demonstration system upgrade process.

be either an Intel X86 (or compatible), PowerPC,
ARM, or MIPS processor running VxWorks as the
RTOS (or a supported Microsoft Windows or
Linux configuration as previously listed).

The non-volatile storage can be divided into
three functions:

• Processor Program Memory (Non-Volatile
Storage 1) - contains firmware for the micro-
processor.

• FPGA Configuration Storage (Non-Volatile
Storage 2) - contains configuration data for
the FPGA. The system can be designed so that
this storage area contains the initial configu-
ration data.

• FPGA Configuration Storage (Non-Volatile
Storage 3) - contains configuration data for
the FPGA. The system can be designed so that
this storage area contains the first upgrade
configuration data.

The system should be designed to always
have a last known-good configuration for the
FPGA. This is handled by the redundancy of the
Non-Volatile Storage 2 and Non-Volatile Storage
3. In a usual sequence of events, the FPGA will
be initially configured from Non-Volatile Storage
2. When an upgrade is requested, it is down-
loaded into Non-Volatile Storage 3. The FPGA is
then reconfigured from this location. The pro-
gram controlling the programming of the FPGA
then switches the functions of these two storage
areas as Non-Volatile Storage 3 is now the
known-good configuration and Non-Volatile

Storage 2 is ready to contain the next upgrade.
Possible selections for the non-volatile memory
are EEPROMS, FLASH memory cards, or the
Xilinx XC18V00 in-system programmable config-
uration PROMs. (See page 62.)

Software

There are two basic software components that
need to be written for the target processor archi-
tecture:

• Firmware to copy the Xilinx programming file
to non-volatile storage.

• Firmware to program the FPGA.

Another approach is to use the Java pro-
gramming language either with the firmware or
as a complete application (Xilinx supplies a Java
API for the Boundary Scan configuration mode).
A Java application can therefore be written (and
called by the UpgradeAgent) to program the
FPGA. On Windows platforms, there are several
Java run-time engines (the virtual machine)
available. On a VxWorks platform, the applica-
tion would need to be developed using Personal
JWorks™ from Wind River.

Conclusion

The purpose of the GoAhead and Xilinx partner-
ship is to provide the enabling technology and
solutions for a variety of field upgradable sys-
tems. GoAhead FieldUpgrader provides the man-
agement, deployment, communications, and
security backbone, while Xilinx provides recon-
figurable hardware devices and programming
technologies. Together, you have the building
blocks needed to enable the rapid development
and deployment of a new generation of cost-
saving, life-extending, field-upgradable systems.

9

Basic Architecture

ProcessorI/O

Xilinx
FPGA/CPLD

Non-Volatile
Storage 1

Non-Volatile
Storage 1

Non-Volatile
Storage 3

Figure 4 - Basic system architecture.

For more information see: www.xilinx.com/xilinxonline/
partners/goaheadhome.htm

For more information regarding how the Spartan-II family addresses tradi-
tional ASIC and ASSP designs, please see the article on page 49.

xilinxonline/partners/goaheadhome.htm
xcell/xl36/xl36_49.pdf

