Maximizing FPGA Design Performance
Using Amplity from Synplicity

In very large designs, interconnect delays are becoming more and more predominant. Amplify™ is the first
physical synthesis tool for FPGAs that helps you optimize signal routing delays and achieve timing closure.

by Philippe Garrault
Technical Marketing Engineer, Xilinx, Inc.
philippe.garrault@xilinx.com

Amplify is a new product from Synplicity® that allows you to add
physical constraints to your design, using the Synplify® PRO syn-
thesis engine. It links your RTL code to a floorplan of the target
device. You can assign your RTL code to physical regions by graph-
ically dropping the logic into these regions. During the synthesis
process, Amplify will use a set of rules to optimize the RTL code
based on estimated placement and interconnect
delays (into and between regions).

Amplify generates an optimized netlist (.edf file)
and a Xilinx constraint file (.ncf file) based on the
specified physical constraints. These files are then
used by the Xilinx Alliance Series 3.1i software
tools to implement the design.

Improving Maximum Frequency

With Amplify you can iterate the implementation twice. In the
first pass, you determine the critical paths after place and route. In
the second pass, you assign physical constraints on these critical
paths to optimize the netlist. By iterating the second pass, the
physical constraints can be refined according to the place and route
post-layout timing report, until your timing requirements are met.

Another approach is to set several regions prior to implementa-
tion. These regions could be a representation of the RTL hierar-
chy of the design and each could contain one block (or module)
of the design.

Finally, you could also mix these techniques to get a floorplan that
would not only be a hierarchy representation but you could also
add physical constraints on the critical paths regardless of any hier-
archy consideration. This is what we did in the following example.

Design Example

The following example shows how to interface Amplify with the
Xilinx place and route tools. The design presented is a network
application, which is divided into a top module driving nine simi-
lar sub-modules. This code is implementing FIFOs and large
busses. We targeted a Virtex-E, XCVE1000-7 device.

< >
Synplicity

On the first pass, the project is synthesized then implemented with
global timing constraints only (without physical constraints).
Figure 1 shows a floorplanned view of the design after the first pass.
Note that the logic is spread over the chip because, without place-
ment constraints, the place and route algorithm has no informa-
tion about what logic is crucial for grouping into a region (or there
are too many possibilities). The timing constraints were not met,
and the best frequency obtained was 104.6MHz.

After this first implementation, we analyzed the
post-layout timing report to gather information on
the critical path, such as:

* The number of critical paths.
* The start and end points (single or multiple).

* The type of critical path (link with I/O or purely

internal, wire or bus).
* The number of logic levels.

* The device resources (flip-flop, combinatorial, block RAM, and

so on).

On the second pass, the different critical paths were assigned in
separate regions through the Amplify user interface. Figure 2 shows
the physical constraints entered in the synthesis environment for
our example.

The regions are floorplanned according to the required design
resources, such as block RAM and high fanout nets. . By re-syn-
thesizing the design with these physical constraints, a new netlist
file along with a constraint file were created. The place and route
software uses these optimized files to constrain the logic on these
particular areas by placing the critical logic together, shortening net
delays to meet the timing requirements.

If the constraints are not met, the Xilinx floorplanner can give use-
ful information about the final layout and determine the precise
logic utilization within a region, or view the exact placement of
logic on the critical path. This can help to resize regions, remove
constraints on non-critical paths, or re-place regions closer togeth-
er to drive or share common logic or busses.

1


mailto:philippe.garrault@xilinx.com

Figure 3 shows the floorplanned view of
the constrained design in our example.
Note that the logic is gathered according to
the constraint file. The best frequency
obtained was 120.1MHz, which isa 12.9%
improvement. Using the post-layout tim-
ing report and the floorplanner helped us
focus on the critical parts of the design,
thus saving time by applying more accurate
constraints, and reducing the number of
iteration needed to meet the timing con-
straints.

Interfacing Amplify with Xilinx Tools

Here are some guidelines to help you get :
the best performance from these tools: Figure 1 - floorplanned view of the design on the first pass.

e Put different critical paths into different
regions. This usually gives better results.

e If the critical path contains lots of logic,
two regions can be overlapped: one small
one containing the most critical logic that
needs to be placed very close together and
a bigger one containing the rest of the
critical path.

e Amplify does not currently write con-
straints for block RAM or black boxes,
thus if the critical path includes these
objects, use the Constraints Editor and
constrain black-boxes and block RAM in
the UCEF file within or close to the region
constraining the rest of the critical path.
Use the following command:

INST pl.graml LOC = RAMB4_ROC1:
RAMB4 R7C1. RAMB4 R*C2: Figure 2 - Physical constraints entered in the synthesis environment.

Applying physical constraints to critical
paths is more likely to improve results if
the ratio between routing and logic is in
favor of routing (this ratio is given by the
post-layout timing report).

¢ Slightly moving a region can affect the
maximum frequency of your design.

Conclusion

Synplicity’s Amplify Physical Optimizer in
conjunction with the Xilinx Alliance Series
3.1i software can significantly improve
your design performance. As a result of the
new features and capabilities, you have a

more efficient way to visualize and con-
strain critical paths of your designs, saving Figure 3 - Floorplanned view of the constrained design.
time in multiple iterations while getting

better speed performance.

12



