
by Kevin Rowley
Design Engineer, Mentor Graphics - IP division
kevin_rowley@mentorg.com

There is an ever increasing demand for
digital IP cores that have been proven in
FPGAs as well as ASIC test silicon. This is
due to the obvious prototyping advantages
and increasing market share of FPGAs.
In this article I explain the strategy we
used and the results we obtained when
implementing the Mentor Graphics
M8051EwarpTM core, which was originally
created for ASIC development, in Xilinx
VirtexTM technology.

Test Strategy

The usual method we use to prove the
functionality of the M8051Ewarp core in

ASIC gates is to envelope the synthesized
core in a wrapper which has instantiated all
the necessary components for simulation of
the core. These components typically are
program memory, data memory, and extra
peripherals. However, after FPGA place and
route the core will have I/O pads on its
interface.

The delays inherent in these pads preclude
the usual ASIC test method and a new syn-
thesizable wrapper is required which, after
place and route, will have the M8051Ewarp
core, memories, and required peripherals in
a single netlist which can then be simulated.
The synthesizable wrapper we used is illus-
trated in Figure 1.

The most important point about Figure 1
is that all memories are on-chip, which
means there are no I/O pads between the
M8051Ewarp core and its memory mod-
ules, and thus delays on inputs and outputs
to and from memory are avoided. The test
code for the core is contained in the
Program ROM. Also shown are the data
memory RAM block and the internal data
memory (IRAM). The peripherals are the
wait-state generator necessary for the test
suite and the External Special Function
Registers (ESFRS) also needed by the test
suite.

Data captured from the wrapper is written
to a simulation-listing file for comparison

New Products Cores

Moving the M8051Ewarp
ASIC Core to a Virtex FPGA

Mentor Graphics implements their M8051EwarpTM core in a Virtex FPGA.

Moving the M8051Ewarp
ASIC Core to a Virtex FPGA

30

mailto:kevin_rowley@mentorg.com

to reference listings. The test bench is a
self-checking type which will setup and ini-
tialize the M8051Ewarp core and then
check the program execution (using the
test program stored in ROM).

Memory Requirements

Successful simulation of the system test
suite required the following memory :

• 4k bytes of synchronous ROM.

• 1k bytes of synchronous single-port
RAM.

• 256 bytes of dual-port synchronous
RAM.

The CORE Generator tool from the Xilinx
2.1i Alliance Series software suite was used
to design and generate the memory mod-
ules.

Specifying Memory Contents

The RAM cores had all their contents ini-
tialized to zero by the CORE Generator,
however the ROM module had to have test
opcodes stored in it for simuation. There
are two ways of specifying ROM contents
with the CORE Generator:

The CORE Generator then generated an
EDIF netlist with this .COE file for the
ROM; it also generated EDIF netlists for
the RAM modules. The EDIF netlists
would be dragged-in later at the place and
route stage for the wrapper.

Synthesis Strategy

We used Mentor Graphics LeonardoTM for
synthesis. The target operating speed of the
M8051Ewarp core in the Virtex FPGA was
30 Mhz. Therefore, the synthesis con-
straints were setup accordingly. The part we
targeted was the XCV200BG352. To syn-
thesize the wrapper we first synthesized the
M8051Ewarp core separately and then read
it in, during the synthesis of the wrapper, as
a separate file.

Wrapper Synthesis

For synthesis, all the memory modules are
treated as “black boxes.” In addition to
producing an EDIF file of the synthesized
wrapper for place and route, synthesis also
produced an .NCF file which Xilinx place
and route uses to determine the timing
constraints of the circuit. The timing
analysis by Leonardo produced the follow-
ing results:

Clock Frequency Report

Clock : Frequency
--

SCLK : 33.8 MHz
CCLK : 33.4 MHz
PCLK : 33.4 MHz

Critical Path Report

There are no paths that violate user specified
options or constraints
And the expected area utilization report:

**
Device Utilization for v200bg352
**
Resource Used Avail Utilization
--
IOs 97 260 37.31%
Function Generators 3653 4704 77.66%
CLB Slices 1827 2352 77.68%
Dffs or Latches 653 4704 13.88%

--

• .MIF file - Requires a line for each ROM
location but also each byte has to be in
binary format.

• .COE file - Allows the ROM locations to
be specified in hex format.

Because the .COE format is closer to Intel
hex format we decided to use a .COE file
to specify the ROM. First however it was
necessary to write a special program which
would take the Intel hex format file for the
test opcodes and convert it into a .COE file
for the CORE Generator.

The final COE file looked like the follow-
ing (abridged) :

Component_Name=crom;

Data_Width=8;

Depth=4096;

Radix=16;

Default_Data=0;

Memory_Initialization_Vector =

01,

80,

00,

c2,

a8,

...

New Products Cores

Figure 1 - Test setup for the core.

31

This shows that the wrapper fitted into the
XCV200 device and, according to
Leonardo, was expected to run correctly at
30 Mhz.

Place and Route of the Wrapper

Because several runs were required to pass
static timing during synthesis and place
and route, it was necessary to automate the
place and route stage using the following
script :

ngdbuild -p v200bg352-6 ewarp_f.edf

ewarp_f.ngd

map ewarp_f

par -d 1 -ol 5 -pl 5 -rl 5 -w ewarp_f

ewarp_f_out.ncd ewarp_f.pcf

trce ewarp_f_out ewarp_f.pcf -v 3 -o

ewarp_f_out

ngdanno ewarp_f_out ewarp_f.ngm

ngd2ver ewarp_f_out -w

The file ewarp_f.edf is the EDIF file for
the wrapper after synthesis. Note “ngdan-
no” produces the SDF file which must be
back-annotated with the FPGA netlist for
gate-level simulation. The “ngd2ver” pro-
gram produces a verilog netlist of the
SimPrims primitives for verilog gate-level
simulation. The FPGA device utilization
figures we achieved are detailed in the out-
put file from the “par” program:

Device utilization summary:

Number of External GCLKIOBs 3 out of 4 75%

Number of External IOBs 94 out of 260 36%

Number of BLOCKRAMs 11 out of 14 78%

Number of SLICEs 2073 out of 2352 88%

Number of GCLKs 3 out of 4 75%

Number of TBUFs 16 out of 2464 1%

The “trce” program listed static timing
information and constraints applied for
place and route. This produced a lot of vio-
lations on paths which upon closer inspec-
tion turned out to be multi-cycle path
exceptions. This was because multi-cycle
path exceptions setup for the
M8051Ewarp synthesis were not included

We found that the maximum speed with
the netlist was 31.25 Mhz. Above this
speed the setup time required for PROGA
feeding into the ROM was being violated;

PROGA was becoming valid too late
before the next clock cycle.

Conclusion

We successfully placed and routed a com-
plete M8051Ewarp core plus memory and
peripherals on a Xilinx Virtex device and
got it to work at speeds up to 31.25 Mhz.
The key to our success was using the on-
chip memory of the Xilinx part, and using
the Xilinx CORE Generator software to
design the memories. Synthesis was per-
formed by Leonardo and the post-synthe-
sis EDIF netlist of the M8051Ewarp
wrapper was placed and routed by Xilinx
2.1i Alliance Series software. The resulting
verilog netlist and SDF file, after place
and route, ran through the test suite suc-
cessfully at the required speed.

References

[1] ASIC/FPGA market share ,
www.xilinx.com, June 2000

in the .NCF file generated from wrapper
synthesis. Some effort was needed to
examine all violating paths from “trce”
and make sure they were path exceptions.

Verification

Illustrated in Figure 2 is a waveform view
of the M8051Ewarp core cycling through
the test code stored on ROM at 30 Mhz.
Program opcode can be seen coming
into M8051Ewarp core on the PROGDI
input. The program address is shown in
signal PROGA. The test code was setup by
the COE file at ROM generation.

Running the complete simulation through
4k bytes of test code results in 12100 vec-
tors. If the core has simulated correctly, it
will finish at PROGA equal to FFF hex. If
there has been a problem then the simula-
tion will not reach program address FFFh
and it will be stuck in a loop at an earlier
program address and will terminate after a
certain time-out period.

The output delays on some of the
M8051Ewarp core output ports exceeded
the strobe period at 30 Mhz. Usually core
outputs are strobed out to a listing file
twice per clock cycle, the strobe period
being just less that half a clock cycle.
Therefore, since some output delays
exceeded the strobe period it was not possi-
ble to do a straight unix “diff ” between the
Virtex netlist simulation listing and the ref-
erence listing for this test. However inspec-
tion of the listing file from simulation and
comparison with the assember code listing
for the test showed the circuit to be func-
tioning correctly.

For more information on the

M8051Ewarp core see the

Mentor Graphics website at:

www.mentor.com/inventra/

8051e_warp.html

New Products Cores

32

Figure 2 - Waveform view.

http://www.mentor.com/inventra/8051e_warp.html

