
by Karen Fidelak
Technical Marketing Engineer, Xilinx
karen.fidelak@xilinx.com

Incremental design changes (due to
ECOs, specification changes, and
repeated design iterations) can cause sig-
nificant delays if you have to synthesize
and place and route your entire design
after each change. Ideally, your synthesis
and place-and-route software tools
should recognize where changes have
been made in your overall design and
recompile just those portions that have
changed. That’s what you get with BLIS,
a unique synthesis and place-and-route
capability, developed by Synopsys for
Xilinx, that provides a guided synthesis
methodology. Used in conjunction with

Xilinx High-Level Floorplanning, BLIS
provides the most robust incremental
design capability ever offered.

BLIS, a part of the Synopsys FPGA
Express/FPGA Compiler II v3.4 software
(FE/FCII), is now available in the Xilinx
ISE 3.2i development tools.

Block Level Incremental Synthesis

As you make design changes, BLIS recog-
nizes “blocks” of the design which have
been changed at the source, and intelligent-
ly synthesizes only those portions of the
design. In this flow, a block is defined as a

module/entity and any
hierarchy tree beneath it.
To enable BLIS, you
choose blocks in your
design that you want to
denote as “Block Roots”
through the FE/FCII
Constraint Editor GUI or
scripting language, as
shown in Figure 1.

New Products Software

28

Figure 1 - Constraint Editor, specifying Block Roots

Guided 
Design 
Using 
BLIS 
With Block Level Incremental
Synthesis (BLIS), your design
implementation times will
improve dramatically.

mailto:karen.fidelak@xilinx.com


A Block Root is a block which is intelli-
gently updated by FE/FCII in incremen-
tal synthesis runs, and has the following
characteristics: 

• A separate netlist is created by FE/FCII for
each Block Root. 

• Only those Block Roots whose correspon-
ding source has been modified are re-syn-
thesized. 

• The Block Root has hard boundaries
around it–no optimization occurs with
neighboring modules.

The Advantages of BLIS

There are two main advantages to using this
type of incremental flow. 

• Runtime for both synthesis and place-and-
route will be improved because only the
modified portion of your design will be re-
synthesized and re-netlisted. The remain-
der of the design will remain unchanged
and the netlists for the unchanged portions
of the design will not be rewritten. Because
the netlists of the unchanged portions of
the design remain untouched, you are
assured that all net and instance names in
that part of your design are identical to ear-
lier runs. 

• Timing predictability will be improved
because the “Guide” function of the place-
and-route tools, which relies on matched
component names from run to run, will
have a higher success rate.

Benchmarks

We compared the results of incremental
design flows using BLIS against the more tra-
ditional methodology of re-synthesizing and
re-routing the entire design. With the BLIS
flow, incremental changes are made to a small
number of design blocks (Block Roots). With
the traditional flow incremental changes are
made to the same design blocks, however
they are not specified as Block Roots. 

After our example design synthesis was com-
pleted, the design was placed and routed
using the Guide feature of the Xilinx imple-
mentation tools, which allow you to specify
an existing placed-and-routed design to be
used as a “Guide” when implementing a

ing during guided placement and increased
signal matching during routing.
Additionally, the synthesis tool does not
rewrite the EDIF netlists for the unchanged
blocks, further reducing runtime, because
no file re-translation is needed.

Guide Improvements

When a design is placed-and-routed using
the Guide feature, the success of the Guide
can be determined by the “Design
Components Matched” statistics available
in the Place-and-Route report. The higher
the percentage of matched components,
the closer the incremental design is to the
original results, leading to better pre-
dictability of timing and placement results. 

When using the BLIS incremental design
flow, Guide success rates reached levels of
at least 95%, and averaged 97%. When
BLIS was not used to guide the design,
component and route matching was as low
as 52%, as shown in Figure 3.

The improvements when using BLIS can
be attributed to the increase in net and
component name matches between the
original placed-and-routed design and the
incrementally modified version of the
design. Because unchanged blocks of the
design are not re-synthesized, the netlists
are untouched and thus remain identical
to the original version. (Even if there 
are no logic changes in the source, re-syn-
thesizing a block can lead to net and com-
ponent names being changed in the final
netlist.)

Conclusion

When utilizing FE/FCII Block Level
Incremental Synthesis in a Xilinx guided
design, runtimes as well as timing and
placement consistency exhibit significant
improvements over a more traditional
design flow. These enhancements help you
achieve a higher level of productivity by
allowing you to synthesize and implement
incremental design changes, with a signif-
icantly reduced runtime, while preserving
the unchanged portions of your design.
This new design flexibility allows you to
realize the productivity necessary to com-
plete large or small FPGA designs faster. 

design. The existing placed-and-routed design
was used as a template when re-implement-
ing the design. Any portions of the design
which existed in both the “Guide” design and
the new modified design (determined by
matching net and component names) were
placed in the same location in the new imple-
mentation as they were in the “Guide”
design. New or changed logic was imple-
mented around existing, “Guided” logic.

Runtime Improvements

Runtime improvements of up to 50%
(with an average of 47%) were observed
when using BLIS with Xilinx Guided Place-
and-Route in an incremental design flow;

Figure 2 shows averaged design results.
Because FE/FCII does not re-elaborate or
re-optimize unchanged blocks of the
design, synthesis runtime was reduced. 

Implementation runtime was improved
due to increased design component match-

New Products Software

29

50%
Runtime Reductions

40%

%
 R

u
n

ti
m

e 
R

ed
u

ct
io

n

30%

Without BLIS With BLIS

20%

10%

0%

17%

47%

Figure 2 - BLIS runtime reductions

100%
Design Efficiency

80%

%
 U

n
ch

an
g

ed
 D

es
ig

n
 P

re
se

rv
ed

60%

Without BLIS With BLIS

40%

20%

0%

66%

97%

Figure 3 - BLIS design efficiency


