
by Rotem Gazit
Design Engineer, MystiCom LTD.
rotemg@mysticom.com

A Finite Impulse Response (FIR) filter works
by multiplying a vector of the most recent N
data samples by a vector of coefficients and
summing the elements of the resulting vec-
tor. In every cycle the filter receives a new
sample of data and shifts out the oldest
sample. FIR filters are very common
in FPGA-based Digital Signal
Processing applications.

The design concept described
here is suitable for systems
with relatively low input rates
(0.5 to 8 MHz), which
require a FIR filter imple-
mentation with hun-
dreds of taps; this is
common in modem
and demodulation
applications.

FIR Filter Design
Concepts

By examining the FIR block diagram in
Figure 1, you can see that if the filter is
implemented in a straight forward manner, a
multiplier will be required for every filter tap
(N multipliers for an N-tap filter). In addi-
tion, an adder with N inputs will be needed
to sum all multipliers outputs. However, if
the data input rate is slower than the per-
formance capability of the FPGA, the filter
can be implemented much more efficiently.

Serial FIR Filters

Assuming that the performance capability of
the FPGA is M times faster than the data
input rate, we will examine the case where
M is ≥ N (where N is the required number
of filter taps).

To implement a serial N-tap filter uses only
one multiplier, a 2-input adder, and storage
for the partial results and the filter input

samples. The input sample
storage holds the last N
input samples. For every new
sample entering the filter, N
multiply operations will be
performed, each multiplying
the filter coefficient by the
respective input sample.

The result of each multiply oper-
ation is added to the partial result
storage to produce a new partial
result. This newly calculated par-
tial result is then saved in the par-
tial result storage by replacing the
previous partial result. After N such
multiply and add operations, the
partial result storage content is driv-
en out of the filter. The partial result
storage content is then cleared to
begin processing a new data sample.
A block diagram of serial FIR filter
structure is shown in Figure 2.

The hardware responsible for the com-
bination of multiplying, adding, and
storing is called a MAC (Multiply

Accumulate) unit. Due to the serial nature
of the filter, the MAC will operate on M
taps of the filter. In the case where N is
greater than M, several serial filters can be
chained together. The oldest data sample
leaving the first filter in the chain is used as
the new data sample in the next filter, and
so on. The results of all the chain filters
must be added together.

Applications FPGAs

The Virtex and Spartan II LUTs, configured as shift registers combined with Xilinx True
Dual-PortTM RAM, give you a very compact, flexible, and area-efficient FIR filter design platform.

Create Efficient FIR Filters
Using Virtex and Spartan FPGAs

32

Figure 1 - FIR filter block diagram

Figure 2 - Serial FIR filter structure

Create Efficient FIR Filters
Using Virtex and Spartan FPGAs
The Virtex and Spartan-II LUTs, configured as shift registers combined with Xilinx True
Dual-PortTM RAM, give you a very compact, flexible, and area-efficient FIR filter design platform.

mailto:rotemg@mysticom.com

Applications FPGAs

Implementing a Serial FIR Filter

You can implement Serial FIR filters very
efficiently in Virtex and Spartan-II devices.
The design can be divided into three sepa-
rate units: the coefficients bank, the MAC
unit, and the input sample storage.

Coefficients Bank

The Virtex block RAM can be used to hold
the filter coefficients. No multiplexer is
needed; all you need is a simple cyclic
counter used as an address generator. In
systems where a host DSP or an adaptation
mechanism is present, the block RAM can
be configured as a dual port RAM,
enabling the coefficients to be dynamically
changed during the normal filter opera-
tion.

MAC Unit

The MAC unit consists of an adder, a mul-
tiplier, and result storage. Careful design of
the adder and multiplier is very important
for area efficiency.

Theoretically, the result of a 2x tap filter,
which has 2y bits on every input data and
2z bits on every coefficient, will be 2(x+y+z)

bits wide. In real world applications how-
ever, the number of bits in the result is usu-
ally much smaller because the least signifi-
cant bits of the result are usually ignored in
the final result, after processing. It is very
important to throw away those unnecessary
bits as early as possible in the data process-
ing (in the MAC multiplier and adder).

An example MAC implementation is
shown in Figure 3.

Input Samples Storage Unit

The input data storage unit can be imple-
mented very efficiently in Virtex devices
using the LUTs as shift registers. Each
MAC, operating on M taps of the filter,
requires an input data storage of M-1 stage
delay line. During the first M-1 cycles, the
delay line output is driven both to the
MAC and back to the delay line input.

In the Mth cycle, the delay line output is
driven only to the MAC, and the new
input data sample enters the delay line. If
several filters are chained together, then the

33

///
// Name:mac
//——————————————-
// Target device:
//——————————————-
// Module description:
//——————————————-
// MAC of 16 bit coefficient by 5 bit input data_sample.
// the result is 22 bits wide
//
// Parent:
//——————————————-
// filter_top
//
// childrens:
//——————————————-
//mac_adder.v ,mac_multiplier.
///

module mac (coefficient,data_sample,rst,clk,enable,new_data,out);

input [15:0] coefficient; //filter coefficient coming from coefficient storage
input [4:0] data_sample; //filter data_samplescoming from samples storage
input clk,enable,rst;
input new_data; //indicates a new data sample. new_data goes high for one cycle

//every 64 clocks, 3 clocks after the new data arrives
//Because of MAC pipeline.

output [21:0] out; // MAC output.
reg [21:0] out; // MAC output changes whenever a new data is being processed.

wire [16:0] mul_out; // mac_multiplier output.
wire [21:0] add_out; // mac_adder output.

reg [21:0] add_out_d; // sampled mac_adder output.
reg [16:0] mul_out_d; // sampled mac_multiplier output.

mac_multiplier mac_multiplier(.coefficient(coefficient),.data_sample(data_sample),.mul_out(mul_out));

always @(posedge clk or negedge rst) // sample the multiplier output
begin // to improve timing

if (!rst)
mul_out_d <= #2 17’b0;
else
mul_out_d <= #2 mul_out;

end

mac_adder mac_adder(.adder_out(add_out),.adder_in_0(mul_out_d),.adder_in_1(add_out_d));

always @(posedge clk or negedge rst) // sample the adder output
begin // this is the “RESULT storege”

if (!rst)
add_out_d <= #2 22’b0;
else

if (new_data) // clear accumulator for new data processing
add_out_d <= #2 22’b0;

else
add_out_d <= #2 add_out;

end

always @(posedge clk or negedge rst) // MAC output changes only when a new data arrives
begin

if (!rst)
out <= #2 22’b0;
else if (enable & new_data)

out <= #2 add_out;
end

endmodule

Figure 3 - An example MAC implementation

Throwing away bits in the MAC can
sometimes lead to different results than
you get from throwing away the bits
from the final result; a thorough discus-
sion of the effect of such an operation on
the filter performance is beyond the
scope of this article.

Applications FPGAs

delay line output needs to be held for M
cycles before it is driven as an input to the
next filter in the chain. Sometimes
(depending on the available resources
inside the device) it is better to imple-
ment the delay line using block RAM
configured is a simple FIFO.

An example of a LUT SRL16-based delay
line implementation is shown in Figure 4.
A diagram of the complete serial FIR fil-
ter is shown in Figure 5.

Conclusion

FIR filters with many hundreds of taps
can be implemented easily even in the
smallest members of the Virtex and
Spartan-II FPGA families. By taking
advantage of the Virtex and Spartan-II
architecture, you can implement FIR fil-
ters very efficiently.

34

///
// Name:delay_line
//——————————————-
// Target device:
//——————————————-
// Module description:
//——————————————-
// delay line of 63 delays x 5 bit.
// the oldest sample is delayed for 64-clock cycle before driven to the next
// delay line in the chain
//
// Parent:
//——————————————-
// filter_top
//
// Childrens:
//——————————————-
//shift5x63.v shift63.v
///

module delay_line (new_data_sample,clk,rst,enable, new_data, mac_data,next_mac_data);

input [4:0] new_data_sample; // new_data sample
input clk,enable,rst;
input new_data; // new_data is active every 64 cycle for one cycle ->

// SR mux control (input from it’s output OR new_data_sample)

output [4:0] mac_data; // data for MAC
output [4:0] next_mac_data; // data for next MAC in chain
reg [4:0] next_mac_data; // Hold next_mac_data back for one MAC cycle

// (64 clock cycles)

wire [4:0] mac_data;

shift5x63 shift5x63(.din(new_data ? new_data_sample : mac_data) ,
.clk(clk),.enable(enable),
.dout(mac_data)

);

// Hold next_mac_data back for one MAC cycle (64 clock cycles)
always @(posedge clk or negedge rst)
begin

if (!rst)
next_mac_data <= 5’b0;
else if (new_data & enable)
next_mac_data <= mac_data;

end

endmodule

module shift5x63 (din, clk,enable, dout);
input [4:0] din;
input clk,enable;
output [4:0] dout;
shift63 bit0(.din(din[0]), .clk(clk),.enable(enable), .dout(dout[0]));
shift63 bit1(.din(din[1]), .clk(clk),.enable(enable), .dout(dout[1]));
shift63 bit2(.din(din[2]), .clk(clk),.enable(enable), .dout(dout[2]));
shift63 bit3(.din(din[3]), .clk(clk),.enable(enable), .dout(dout[3]));
shift63 bit4(.din(din[4]), .clk(clk),.enable(enable), .dout(dout[4]));
endmodule

module shift63 (din, clk,enable, dout);
input din, clk,enable;
output dout; //Synplify automatically infers

//SRL16 for shift register with no reset
reg [62:0] shifter;
always @(posedge clk)
begin

if (enable)
begin
shifter[62:0] <= {shifter[61:0],din} ;
end

end
assign dout = shifter[62] ;
endmodule

Figure 4 - An example of a LUT SRL16-based delay line implementation

Figure 5 - Serial FIR filter implementation

About MystiCom
Founded in 1997, MystiCom is dedicat-
ed to providing DSP and mixed-signal
VLSI cores for high-speed communica-
tions. The company’s first product line
implements the physical layer (PHY) for
Local Area Networks (LANs) using Fast
Ethernet and Gigabit Ethernet proto-
cols. MystiCom is headquartered in
Netanya, Israel, and has marketing and
customer support offices in Mountain
View, Calif. Additional information can
be found at www.mysticom.com.

http://www.mysticom.com/

