
SEU Mitigation Techniques for Virtex FPGAs in Space Applications

Carl Carmichael3

Earl Fuller2, Phil Blain1, Michael Caffrey1

1Los Alamos National laboratory
2Novus Technologies, Inc.

3Xilinx, Inc.

Abstract

SRAM based logic devices such as FPGAs have some
susceptibility to SEU and functional interruption. This
paper describes several reliable mitigation techniques for
the Virtex series FPGA architecture, which will retain
functional integrity while static upsets are detected and
corrected.

Additionally, this paper demonstrates how an SEU in an
FPGA can be corrected in 3us without disrupting
operation of the device, how to build hardened voting
circuits, and that a single event has only 1 chance out of
3.25 million of causing a functional interrupt.

I. INTRODUCTION

Re-configurable computing and adaptive hardware is an
emerging technology for space applications. The basis
for this technology is the capability for device and
system level functional changes to be implemented in-
system and transmitted remotely. The underlying
technology of this capability is Programmable Logic
Devices such as Field Programmable Gate Arrays
(FPGA).

FPGAs provide an array of logic resources, which may
be interconnected, and configured for specific functions.
All logic definitions and block connections are
controlled by static RAM cells. Thus, this technology is
sometimes referred to as “SRAM Logic.” The volatility
of the functional definition of a configured FPGA allows
for on-the-fly reconfiguration of the circuits’ functional
definition.

The Xilinx XQVR product line is a radiation-tolerant
version of the of the commercially popular Virtex series
FPGA. Virtex has become a common ASIC replacement
in commercial markets due to its density, performance,
and wide range of capabilities. The XQVR utilizes an
epitaxial process that renders it latch-up immune to an
LET of 125MeV-cm2/mg.

Although the XQVR is latch-up immune, the SRAM
cells do have some susceptibility to Single Event Upsets
(SEU). This paper intendeds to provide methodologies
for detecting, correcting, and mitigating such SEUs.

II. ASICS VS. VIRTEX FPGAS (XQVR)

ASIC devices provide the advantages of “instant-on” and
some level of SEU tolerance depending on the process
technology employed. They do not require an initial
configuration cycle before becoming functionally active
after power-up, and their logic configuration is not
altered by SEUs. However, ASICs have a disadvantage
in that their functionality may never be altered. As a
result, not only may it never be updated, upgraded or
corrected in any way, but any permanent destruction of
its sub-circuits, such as Singe Event Gate Rupture
(SEGR), renders that portion of the circuit forever
disabled.

An FPGA requires a configuration cycle after power-up
to be functionally active. However, the Virtex FPGA
utilizes a high-speed configuration interface (discussed
later in greater detail) which can bring the device
functionally active within 20ms (or less) after power-up.
The configuration interface also provides a fast and
efficient method for the detection and correction of static
upsets to the configuration memory. Additionally, the
Virtex architecture provides logic elements to implement
SEU mitigation circuits whose functionality are not
dependent on SRAM cells. Therefore, there are simple
design techniques which may be utilized to render the
device nearly impervious to SEU effects.

The re-programmability and readback capability of the
Virtex FPGA not only provides for fast detection and
correction of SEUs, but also allows for the functionality
of the device to be altered an unlimited number of times
which allows for functional evolution throughout the
mission life span. Additionally, the mission life span
itself may be increased by this capability. Although no
SEGR effects have ever been observed during testing, if
any portion of the logic array is ever rendered
inoperable, the required functional design can easily be

re-implemented to not utilize the effected area of the
device and its new bit-stream can be remotely
transmitted to the spacecraft/application.

Another important advantage of re-programmable logic
is that [they] are essentially commercial-off-the-shelf
products (COTS). Any long-term usage of an ASIC
product is susceptible to eventual system redesign due to
diminished material supply (DMS).

III. HIGH SPEED VIRTEX CONFIGURATION

The Virtex series FPGA provides multiple access ports
for the purpose of writing and reading data to/from the
configuration memory array. One such access port is the
SelectMAP (Selectable Microprocessor Access Port)
interface. SelectMAP is an 8-bit parallel bi-directional
synchronous interface to the configuration control logic.
All aspects of the configuration control logic and
configuration memory can be addressed and manipulated
through the SelectMAP interface.

The functionality of a specific user design is represented
by a bitmap of binary data called a “bit-stream”. The
process of configuration is to load the bit-stream into the
FPGA (sometimes referred to as “download”). This will
bring the FPGA functionally active with the user’s
defined functionality. The size of a bit-stream is constant
for a given part (1.7 Mbit for a V300, 6.27 Mbit for a
V1000). The SelectMAP interface has a maximum speed
of 66 Mbyte/s (528 Mbit/s). At clock speeds of 50MHz
and below, no handshaking of the data is required.
Therefore, all further calculations will be made assuming
a thru-put of 400 Mbit/s. Since a V1000 (1 million
system gates) has a ~6.5 Mbits configuration memory
array, this device may be configured in ~20ms without
interruption.

The SelectMAP interface may also be used to read the
configuration data back out of the device at the same
rate. This capability (referred to as “readback”) allows
the current configuration contents to be verified against
expected data. Thus, this is a useful detection scheme for
configuration memory cells that have been altered by
SEUs.

The Virtex configuration interface has the additional
capability of addressing small portions of the
configuration memory map for read and write
operations. This is referred to as “partial configuration”,
and provides an extremely efficient means for SEU
correction.

A quick overview of the Virtex architecture is needed
before discussing SEU detection, correction, and

mitigation. For further explanation of the SelectMAP
interface and configuration operations refer to Xilinx
Application Note XAPP138 “Virtex FPGA Series
Configuration and Readback”.

IV. ARCHITECTURE OVERVIEW

Virtex devices feature a flexible, regular architecture that
comprises an array of configurable logic blocks (CLBs)
surrounded by programmable input/output blocks
(IOBs), Figure 1, all interconnected by a hierarchy of
fast, versatile routing resources. The abundance of
routing resources permits the Virtex family to
accommodate even the largest and most complex
designs.

Figure 1: Virtex Array Architecture

A. Virtex Array
The Virtex user-programmable gate array comprises two
major configurable elements: configurable
logic blocks (CLBs) and input/output blocks (IOBs).

• CLBs provide the functional elements for
constructing logic

• IOBs provide the interface between the package pins
and the CLBs

CLBs interconnect through a general routing matrix
(GRM). The GRM comprises an array of routing
switches located at the intersections of horizontal and
vertical routing channels. Each CLB nests into a
VersaBlock™ that also provides local routing resources
to connect the CLB to the GRM.

The Virtex architecture also includes the following
circuits that connect to the GRM.

DLL

DLL

IO
B

s

DLL

DLL

B
R

A
M

B
R

A
MCLBs

IOBs

IOBs

IO
B

s

• Dedicated block memories (BRAM) of 4096 bits
each.

• Clock DLLs for clock-distribution delay
compensation and clock domain control.

• 3-State buffers (BUFTs) associated with each CLB
that drive dedicated segmented horizontal routing
resources.

The basic building block of the Virtex CLB is the logic
cell (LC). An LC includes a 4-input function generator,
carry logic, and a storage element. The output from the
function generator in each LC drives both the CLB
output and the D input of the flip-flop. Each Virtex CLB
contains four LCs, organized in two similar slices,
Figure 2.

Figure 2: Virtex Configurable Logic Block

In addition to the four basic LCs, the Virtex CLB
contains logic that combines function generators to
provide functions of five or six inputs. Consequently,
when estimating the number of system gates provided by
a given device, each CLB counts as 4.5 LCs.

Virtex function generators are implemented as 4-input
look-up tables (LUTs). In addition to operating as a
function generator, each LUT can provide a 16 x 1-bit
synchronous RAM. Furthermore, the two LUTs within a
slice can be combined to create a 16 x 2-bit or 32 x 1-bit
synchronous RAM, or a 16x1-bit dual-port synchronous
RAM.

The Virtex LUT can also provide a 16-bit shift register
that is ideal for capturing high-speed or burst-mode data.
This mode can also be used to store data in applications
such as Digital Signal Processing.

Each Virtex CLB contains two 3-state drivers (BUFTs)
that can drive on-chip busses. Each Virtex BUFT has an
independent 3-state control pin and an independent input
pin both with a selectable inversion.

The output connections of the buffers, shown in Figure
3, select from four horizontal bus channels. In each CLB
column one of the four channels may be selected to
either terminate or continue to another segment. This bus
architecture allows for multiple bus structures of varied
sizes to be implemented in the same CLB row.

For a complete description of the Virtex logic elements
and features please refer to the Virtex Data Sheet.

Figure 3: Horizontal 3-state Bus Structure

CLB CLB CLB CLB

DFF

DFF

LUT

LUT

DFF

DFF

LUT

LUT

Slice 1 Slice 0

B. Configuration Memory
Values stored in static memory cells control the config-
urable logic elements and interconnect resources. These
values load into the memory cells on power-up, and can
reload if necessary to change the function of the device.

The configuration memory cells lie closely to the
specific functions they control and are laid out in a
regular pattern. A data-frame is a 1-bit slice of the
memory array along the vertical axis. The configuration
data is written to the configuration memory from
configuration registers one data-frame at a time.
Therefore, the smallest portion of configuration data that
may be read from, or written to, the configuration
memory is one data-frame.

Figure 4: Configuration Memory Data Frame

Shown in Figure 4, a single data-frame contains portions
of configuration data for each and every block that lies in
that column. Hence, multiple data-frames are required to
describe the complete width of a column.

In order to read and write individual data-frames, each
must be uniquely addressed by the configuration logic.
Therefore, each column is identified by a “major
address” and each frame in that column is identified by a
“minor address.”

In the context of data-frames, there are five column
types:
• 1 Center Column (8 frames)
• n CLB Columns (48 frames)
• 2 Block RAM Interconnect Columns (27 frames)

• 2 Block RAM Columns (64 frames)
• 2 IOB Columns (54 frames)

The number of CLB frames depends on the device size
as does the bit size of the data-frame itself. The center
column includes all the global clock structures and
elements. The CLB columns include the IOBs along the
top and bottom of the die. Similarly, the Block RAM
Interconnect columns contain the DLL information.

For a more detailed examination of the Virtex
configuration logic architecture, please refer to Xilinx
Application Note XAPP151 “Virtex Configuration
Architecture Advanced Users’ Guide.”

V. SEU DETECTION AND CORRECTION

As mentioned before, the readback function is an
efficient means for SEU detection. If a particle
penetrates the susceptible portion of a configuration
SRAM cell and thus alters its state, a readback and
verification of the configuration data will detect the
upset. To perform a verification (SEU detection), the
configuration data is readback from the device and
compared to the configuration bit-stream. Not all of the
data readback from the device is applicable to direct
comparison. Therefore, some configuration data bits
must be masked from this process. Most commercial
applications utilize a mask file for this function (mask
files are produced by Xilinx S/W upon user request via a
bit-stream generation option). A mask file provides a bit-
for-bit indication, for the entire bit-stream, whether that
bit should be compared or ignored. However, for space
applications where memory is expensive and board
space is premium, storage of an extra 6.5 million bits is
greatly undesirable. Therefore, a more efficient means is
required.

For a currently developing application at Los Alamos
National Laboratories, involving a low earth orbit
satellite, an alternative methodology for verification has
been developed. The mask file has been reduced to an
algorithm embedded in the configuration and readback
controller, and the actual bit-stream may be further
reduced with a compression algorithm. A dedicated
device performs a continuous verification of the Virtex
FPGAs’ configuration memory for upsets. Whenever an
upset is detected, it is immediately corrected through a
configuration operation. The projected low earth orbital
path for this application is expected to see upsets at a
rate of 1 per hour spread across three devices. Since
detection and correction is always completed within
40ms for each device, there should typically be 90,000
detection/correction cycles (or 180,000 detection cycles

DLL

DLL

IO
B

s

DLL

DLL

B
R

A
M

B
R

A
MCLBs

IOBs

IOBs

IO
B

s

1
0
0
1
1
1
0
1
0
1
0
0
0
0
1
1
0
0
0

assuming no other upsets) between statistically expected
upsets. This means that the device is reliably operating
without upsets or interrupts 99.9989% of the time.

The time required for SEU correction may be
dramatically decreased by the use of partial
configuration. The above calculations assumed a
correction time of 20ms. This implies that the correction
of SEUs involves complete re-configuration of the
device. This is a significant point of consideration
because complete re-configuration implies “de-
configuration” which means bringing the part “off-line”
during the correction cycle and thus losing all internally
stored data. Not only is this undesirable, but is in fact
completely unnecessary. Partial configuration allows
individual frames to be written to the configuration
memory. Therefore, only the frame that contains the
SEU effected cell would need to be corrected. Assuming
that only a single data frame needed to be loaded, the
correction time now falls to a mere 3µs.

Aside from the efficiency and speed of SEU correction
with partial configuration, a far more important
consideration is the fact that the device may be left
completely active during the correction cycle. Beside the
obvious desire to not lose the current logical state and
internally stored data, this is statistically unnecessary.
That is, in the event of a single upset there is a very high
probability that the effected cell does not even effect the
basic functionality of the configured design. This
became evident upon calculation of the effective cross-
section of SEU susceptibility with respect to the density
of storage elements in the device.

The V1000 has approximately 6.27 million storage
elements that are susceptible to upsets with an average
(weighted) cross section of 8e -8cm2. This represents
approximately ½ of the total die area. Approximately
85% of these elements control routing pips. A typical
design (80~90% utilization) uses less than 10% of the
routing pips. Therefore, a particle that hits within the
~1cm2 die area has at least a 76.5% chance of hitting a

routing pip memory cell that it will not cause a
functional interrupt.

An additional method of SEU detection could be for the
FPGA to signal the host system when an upset occurs.
This can be done without the use of readback and
provides the additional capability of identifying SEFI, or
transient upsets, which readback and verification would
be oblivious to.

A simple detection scheme is to duplicate internal logic
and compare similar outputs. When similar outputs
differ from each other, then an upset has occurred. This
may be used to signal a device, that either selects the
outputs from redundant devices or initiates
detection/correction cycles, that an upset has been
detected. This scheme has certain advantages over other
types of mitigation schemes and is discussed further in
the SEU Mitigation section of this paper.

VI. SEU MITIGATION

In some systems SEU detection and correction alone can
achieve an acceptable level of reliability. However, for
applications where an even higher level of reliability is
needed, or simply that any interrupt in service is
unacceptable, SEU mitigation techniques may be
applied. A good SEU mitigation technique should filter
out the effects of upsets, during their short existence, as
well as filter out the results of transient upsets or other
SEFI effects.

A commonly known method for SEU mitigation is
“triple module redundancy with voting.” This mitigation
scheme uses three identical logic circuits performing the
same task in tandem with corresponding outputs
compared through a majority vote circuit. A simple
example of this is shown in Figure 5.

Figure 5 : Triple Redundancy with Voting

Most SRAM based logic devices cannot reliably
implement this function because the voting circuit itself
would have to be implemented in SRAM cells just as any
other boolean function would be, and is therefore itself
equally susceptible to upsets.
The Virtex architecture provides a perfect solution to
implementing this circuit reliably. The Tri-State Buffers

(BUFTs), described in the architecture overview, are in
fact not actually pass transistors. They are actually a
hard-wired AND-OR logic structure similar to that
shown in Figure 6 (all actual logic gates in this structure
are two-input gates).

Figure 6: Virtex BUFT Structure

These elements can be cross-connected to produce the
same boolean function as that needed for the majority
vote circuit. This structure is shown in Figure 7. Using
these elements in this fashion provides a voter circuit
whose functional description is not based on the contents
of any SRAM cells, which may get upset. The only
aspects of this circuit which are controlled by
configuration memory cells are the routing pips which

connect them together. Upsetting one of these cells would
only result in temporarily disconnecting one of the inputs
or outputs of one of the BUFTs. Such an upset would not
effect the output of the voter circuit. In fact, this method
is completely impervious to a single upset failure. Only
multiple simultaneous upsets would cause this function to
fail.

T

T

T

T

T

T

T

T

V

T

T

T

SEU Mitigation
 Truth Table

TR0 TR1 TR2 V
0 0 0 0
0 0 1 0

0 1 0 0
0 1 1 1

1 0 0 0
1 0 1 1

1 1 0 1
1 1 1 1

Figure 7: Voting circuit with BUFTs

Not only would multiple upsets be required to cause a
failure in this circuit, these upsets would have to occur in
very specific patterns. The probability of such upsets
becomes of far less concern. Even in a rad-hard ASIC,
such a mitigation scheme is only reliable when no more
than one out of the three signal nodes to be evaluated are
upset. If two or more of the redundant modules are
presenting an incorrect result due to multiple upsets, then
a properly functioning voter circuit would correctly favor
the incorrect data. Since this is far more probable than
upsetting this voting circuit scheme to the point of
failure, it should be concluded that this circuit exceeds a
reasonably expected level of reliability. Therefore, to
further increase overall reliability of a functioning
system, our attention should be directed to further
mitigation of the results either presented to, or obtained
from, any particular mitigated node. The following
sections provide mitigation implementation examples of
varied complexities along with their associated trade-
offs, advantages and disadvantages.

A. Module Redundancy and Mitigation

A very simple method for implementing SEU mitigation
in a users’ FPGA design is to replicate redundant
instances of an entire module and mitigate the final
outputs of the modules. This is demonstrated in Figure 8.

In this case a module may represent either the entire
design for a particular device or a sub-component of that
design. This is a very effective means of SEU mitigation
that is easy to implement and can be performed entirely
within a single device as long as the user’s design does
not utilize more than 1/3 of the total device. Any design
that fits into the CLB array of a V300, can be tripled and
mitigated in a V1000. However, care should be taken
with the utilization of certain other elements within the
Virtex architecture.

T R
0

T R

T R
2

V

T

I

T

I

T

I

TRV Truth Table

TR0 TR1 TR2 V
0 0 0 0
0 0 1 0

0 1 0 0

0 1 1 1
1 0 0 0

1 0 1 1

1 1 0 1
1 1 1 1

BUFT

BUFT

BUFT

Figure 8: Module redundancy and mitigation

A V1000 has only twice as much BlockRAM as a V300,
and all Virtex devices have the same number of DLLs
and clock buffers regardless of device size. The I/O
utilization, however, does not increase with the use of
redundancy. Therefore, the initial design may be targeted
for the array size of a V300, but fully utilize the I/O
count of a V1000. This could be considered an added
return for the cost of redundancy.

In the event that the initial design consumes more than
1/3 of the resources of the largest available device
(V1000), then the designer should consider alternatives
such as logic partitioning, logic duplication, or device
redundancy.

The clear advantages to this example of module
redundancy is that it may be contained within a single
chip solution (an important cost advantage) and will not
impact system performance. The obvious disadvantage is
the limitation on the design size (less than 1/3 of the total
device).

B. Logic Partitioning for Mitigation

In the case where the total design is more than 1/3 of the
device size, the design could be partitioned into modules
small enough to be replicated and mitigated within a
single device, and spread across several devices. This is
demonstrated in Figure 9.

Figure 9: Module partitioning

A

B

A A

A

B B B

outputA
outputB

outputC

Module

outputA
outputB
outputC

Module

outputA
outputB
outputC

Module

OutputC

OutputB

OutputA
TRV

TRV

TRV

As shown in Figure 9, module A is replicated and
mitigated in one device while module B is replicated and
mitigated in another. All outgoing signals, whether they
are internal signals between the modules or design
outputs, should be mitigated before going off chip. While
this may somewhat complicate the performance
constraints and specifications, it should not impact the
achievement of the needed performance as long as care is
taken to not stretch the critical paths of the design across
multiple chips.

In the case where the total design is larger than a single
device, requiring multiple devices for the
implementation, logic partitioning becomes intuitive. The
advantage to this method is that no external mitigation is
needed between the separate FPGAs as would be needed
with device level redundancy. This method does,
however, represent an added cost not only for the
multiple FPGAs, but for the increased board space
utilization as well.

C. Logic Duplication and Mitigation

In the case where the design is less than ½ the size of the
total device, an alternative to logic partitioning is logic
duplication. This concept was briefly mentioned in the
SEU Detection section earlier. If logic is duplicated and
like outputs compared, whenever one set of outputs differ
an SEU or SEFI has been detected.

In Figure 10, duplicate modules, A and A’, are duplicated
again in a second device. Each output is disabled
whenever an upset is detected for that path allowing the
unaffected device to continue driving the data line with
the correct value. The cross-connected active High
enabled BUFEs in each device implement an XNOR
function, which drive the active Low enable of the
OBUFT.

Figure 10: Dual Voting Double Redundancy

V

E

I

E

I T

I

A

A’

V

E

I

E

I E

I

A

A’

BUFE

BUFE

OBUFE

BUFE

BUFE

OBUFE

One advantage to this method is that it is a form of device
redundancy without the need for any external mitigation
devices. This is significant because in the case of a total
device failure the redundant device would continue
processing. Total device failure is an extreme
improbability, but not completely impossible. This
condition is discussed in the “Single Event Functional
Interrupts” section. In the case of a total device failure,
all previously discussed single device mitigation methods
would be susceptible to a momentary disruption of
service. Another advantage is that in the absence of
upsets, both output drivers are active, effectively
doubling the drive strength on that trace. However, the

disadvantage of this may be additional board noise due to
skew in the output transitions times.

D. Device Redundancy and Mitigation

Triple device redundancy and mitigation is the most
rock-solid mitigation method. This is shown in Figure 11.
It has the highest reliability for filtering single and
multiple event upsets, multiple transient upsets, and any
other functional interrupts including total device failure.
However, this is also the most costly solution and
provides only a marginal actual improvement over
alternative methodologies.

Figure 11: Triple device redundancy

In Figure 11, a single FPGA design is replicated three
times in redundant FPGA devices. The mitigation of the
redundant devices requires a fourth device (possibly
more depending on I/O count). The mitigation device
could either be another programmable logic device with
internal redundancies, or a small rad-hard ASIC.

Alternatively, a processor could be used to manage the
redundant devices as a queue. Whenever an upset is
detected in one of the devices, [that] device is taken
offline and repaired while another device is selected from
the redundancy queue to continue processing.

FPGA

FPGA

FPGA

Mitigation
Device

VII. Single Event Functional Interrupts

There are certain single event effects which may cause a
complete functional interruption. This is why only
device redundancy will make a system completely
impervious to a single event functional interrupt.

An ion has 1 chance out of 13 million to hit a specific
storage cell of a V1000, and only a small number of
specific cells can cause a complete functional
interruption. Additionally, the worst-case result of such
an interruption is merely that the device would need to be
re-configured.

A. Device De-configuration

The Power-On Reset (POR) circuitry contains three
SRAM cells and one flip-flop register that signal when a
successful power-up has completed. This signal will
initiate an initialization process, which clears
configuration memory to prepare the device for
configuration.

Upsetting one of these four storage elements will re-
initiate the initialization process requiring that the device
be re-configured.

This phenomenon was observed during heavy ion testing
at the Texas A&M cyclotron facility. However, this
condition was only observed at a fluence above 105

ions/cm2.

B. Interruptions from JTAG Operations

The JTAG/Boundary-Scan circuitry has a standard
susceptibility similar to that present on any device
technology which utilizes this functionality.

The standard TAP controller implementation is a 4-bit
binary encoded state-machine. A single event upset to
one of these registers can move the controller to any of
the available TAP states. This carries the possibility of
activating the boundary-scan registers and disengaging
the I/Os from standard operation.

The recover mechanism for this condition is to hold the
TMS input in it’s return state (Logic High) while driving
the TCK with a high speed free-running oscillator. This
will insure that should the TAP controller jump to an
unwanted state it will never be more than 5 clock cycles
away from returning to the Test-Logic-Reset state. The
maximum rated frequency for the JTAG clock input
(TCK) of a Virtex device is 33MHz. Therefore, the
worst-case recovery time would be 152ns.

The Only JTAG state that would cause all the I/O pins to
become outputs is the EXTEST instruction. If the 5-bit
JTAG shift register contained all zeros <00000> and the
TAP controller jumped to the UPDATE-IR state, then the
EXTEST function would be activated. However, if the
instruction register was preloaded with all ones <11111>
with a shift-IR operation during device initialization
immediately after power-up, then no single event could
possibly cause any undesirable conditions. In fact, it
would take six very specific events for this condition to
still occur.

C. Activating Output Drivers on an Input Pin

For any given single input multiple configuration cells
must be upset to activate the output driver for a single
IOB. Though this condition is extremely unlikely (and
perhaps beyond the scope of an SEFI), such a condition
could cause some contention, but will not damage the
device.

VIII. Conclusions

Triple device redundancy is a proven SEU mitigation
technique for non-volatile ASIC products. For SRAM
based FPGAs, the addition of rapid detection and
correction along with internal mitigation circuits make
the Virtex FPGA as SEU immune as any
technology on-orbit while at the same time offering
performance, features, and capabilities that were never
before available.

REFERENCES

[1] Fuller, E., et al, “Radiation Test Results of the Virtex
FPGA and ZBT SRAM for Space Based
Reconfigurable Computing,” MAPLD Paper, C-2.

[2] Xilinx, “The Programmable Logic Data Book,”
©1991. http://www.xilinx.com/partinfo/virtex.pdf

