
Summary The Xilinx high-performance CPLD, FPGA, and configuration PROM families provide in-
system programmability, reliable pin locking, and JTAG boundary-scan test capability. This
powerful combination of features allows designers to make significant changes and yet keep
the original device pinouts, thus, eliminating the need to re-tool PC boards. By using an
embedded controller to program these CPLDs and FPGAs from an on-board RAM or EPROM,
designers can easily upgrade, modify, and test designs, even in the field.

Xilinx Families
XC9500, XC9500XL, XC9500XV, XC4000, XC18V00, CoolRunner™, Spartan™, Virtex™

Introduction The Xilinx CPLD and FPGA families combine superior performance with an advanced
architecture to create new design opportunities that were previously impossible. The
combination of in-system programmability, reliable pin locking, and JTAG test capability gives
the following important benefits:

• Reduces device handling costs and time to market

• Saves the expense of laying out new PC boards

• Allows remote maintenance, modification, and testing

• Increases the life span and functionality of products

• Enables unique, customer-specific features

The ISP controller shown in Figure 1 can help designers achieve these unprecedented benefits
by providing a simple means for automatically programming Xilinx CPLDs and FPGAs from
design information stored in EPROM. This design is easily modified for remote downloading
applications and the included C-code can be compiled for any microcontroller.

To create device programming files, Xilinx provides the JTAG ProgrammerTM software that
automatically reads standard JEDEC/BIT/MCS/EXO device programming files and converts
them to SVF format, which contains both data and programming instructions for the CPLDs,
FPGAs, and configuration PROMs; it reads JEDEC files for CPLDs, BIT files for FPGAs, and
MCS/EXO files for configuration PROMs. These files are then converted to a compact binary
format (XSVF) and can be stored in the on-board EPROM. The 8051 microcontroller interprets
the XSVF information and generates the programming instructions, data, and control signals
for the Xilinx devices.

By using a simple IEEE 1149.1 (JTAG) interface, Xilinx devices are easily programmed and
tested without using expensive hardware. Multiple devices can be daisy-chained, permitting a
single 4-wire Test Access Port (TAP) to control any number of Xilinx devices or other JTAG-
compatible devices.

The files and utilities associated with this application note are available in a package for
downloading from ftp://ftp.xilinx.com/pub/swhelp/cpld/eisp_pc.zip

Application Note: Xilinx Families

XAPP058 (v3.0) January 15, 2001

Xilinx In-System Programming Using an
Embedded Microcontroller

R

XAPP058 (v3.0) January 15, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Xilinx In-System Programming Using an Embedded Microcontroller
R

Programming
Xilinx CPLDs,
FPGAs, and
Configuration
PROMs

Serial Vector Format (SVF) is a syntax specification for describing high level IEEE 1149.1
(JTAG) bus operations. SVF was developed by Texas Instruments and has been adopted as a
standard for data interchange by JTAG test equipment and software manufacturers such as
Teradyne, Tektronix, and others. Xilinx CPLDs, FPGAs, and configuration PROMs accept
programming and JTAG boundary-scan test instructions in SVF format, via the TAP. The timing
for these TAP signals is shown in Figure 17, page 19.

The JTAG Programmer software automatically converts standard JEDEC/BIT/MCS/EXO
programming files into SVF format. However, the SVF format is ASCII which is inefficient for
embedded applications due to its memory requirements. Therefore, to minimize the memory
requirements, SVF is converted into a more compact (binary) format called XSVF. In this
design, an 8051 C-code algorithm interprets the XSVF file and provides the required JTAG TAP
stimulus to the CPLD, performing the programming and (optional) test operations which were
originally specified in the SVF file.

Notes:
1. For a description of the SVF and XSVF commands and file formats, see Appendix A: SVF File

Format for Xilinx Devices, page 24 and Appendix B: XSVF File Format and Conversion
Utilities, page 27.
The flow for creating the programming files that are used with this design, is shown in Figure 2.

JTAG Instruction Summary
Xilinx devices accept both programming and test instructions using the JTAG TAP. The JTAG
commands and descriptions used for programming and functional testing are as follows:

Instructions Supported by All Devices

• EXTEST - Isolates the device I/O pins from the internal device circuitry to enable
connectivity tests between devices. It uses the device pins to apply test values and to
capture the results.

• INTEST - Isolates the device from the system, applies test vectors to the device input pins,
and captures the results from the device output pins.

• SAMPLE/PRELOAD - Allows values to be loaded into the boundary scan register to drive

Figure 1: ISP Controller Schematic

P1.0
P1.1 P0.0

AD7

P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

EA
ALE

PSEN
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0

P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
WR
RD
XTL1
XTL2

38
37
36
35
34
33
AD0
31
30
29
28
27
26
25
24
23
22
21

1
2
3
4

TCK
TMS
TDI
TDO

Test
Access

Port
to

ISP
Device

+5

2
19
5
16
6
15
9
12
11

1OE
3

18

IN OUT 8051
Program
Memory

8051 74x373

Xilinx
Data

Memory

4
17

7
14

8
13

CP

RDPSEN

Address Bus (A0-A7)

Address Bus (A8-A15)

Data Bus (D0-D7)

10

+5

5Mhz

0.1uf

19
18
17

X058_01_122700
2 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

the device output pins. Also captures the values on the input pins.

• BYPASS - Bypasses a device in a boundary scan chain by functionally connecting TDI to
TDO.

Instructions Common to CPLD, FPGAs, and Configuration Proms

• EXTEST - Isolates the device I/O pins from the internal device circuitry to enable
connectivity tests between devices. It uses the device pins to apply test values and to
capture the results.

• IDCODE - Returns a 32-bit hardwired identification code that defines the part type,
manufacturer, and version number.

• HIGHZ - Causes all device pins to float to a high impedance state.

Instructions Supported by XC4000/Spartan Only

• CONFIGURE - Allows access to the configuration bus for configuration.

• READBACK - Allows access to the configuration bus for readback.

Instructions Supported by Virtex Only

• CFG_IN/CFG_OUT - Allows access to the configuration bus for configuration and
readback.

• JSTART - Clock the startup sequence when startup clock = JTAGCLK.

Commands Supported by CPLDs and Configuration PROMs

• ISPEN - Enables the ISP function in the XC9500/XL/XV device, floats all device function
pins, and initializes the programming logic.

• FERASE - Erases a specified program memory block.

• FPGM - Programs specific bit values at specified addresses. An FPGMI instruction is used
for the XC95216 and larger devices which have automatic address generation
capabilities.

• FVFY - Reads the fuse values at specified addresses. An FVFYI instruction is used for the
XC95216 and larger devices which have automatic address generation capabilities.

• ISPEX - Exits ISP Mode. The device is then initialized to its programmed function with all
pins operable.

The following instructions are also available but are not used for programing or functional
testing:

Instructions Specific to CPLDs and Configuration PROMs

• USERCODE - Returns a 32-bit user-programmable code that can be used to store version
control information or other user-defined variables.

Instructions Specific to XC4000/Spartan

• USER1/USER2 - These instructions allow capture, shift and update of user-defined
registers.

Instructions Specific to Virtex

• USR1/USR2 - These instructions allow capture, shift and update of user-defined registers.

Instructions Specific to Configuration PROMs

• FADDR - Sets the PROM array address register.

• DATA0 - Accesses the array word-line register.

• PROGRAM - Programs the word-line into the array.

• SERASE - Globally refines the programmed values in the array.

The programming flow charts for CPLDs, FPGAs, and Configuration PROMs are shown in
Figure 2, Figure 3, and Figure 4, respectively.
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Figure 2: CPLD Program Flow

Figure 3: FPGA Program Flow

Create The
Design

Fit Design

Output
Programming File
in JEDEC Format

Convert JEDEC
to SVF

Convert SVF
to XSVF

Create Intel
Hex File

Create Intel
Hex File

Program EPROM
with XSVF Code

X058_02_122700

Using JTAGProgammer

Using CPLD Fitter

Using Foundation S/W or
any compatible tool

Using svf2xsvf

Create The
Design

MAP

PAR

BITGEN

Convert BIT
to SVF

Convert SVF
to XSVF

Create Intel
Hex File

Program EPROM
with XSVF Code

X058_03_122700

Using JTAGProgammer

Using svf2xsvf
4 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Creating an SVF File Using JTAG Programmer
This procedure describes how to create an SVF file; it assumes that Xilinx Foundation or
Alliance WebPACK series software version 3.1 or newer is being used. These software
packages include the Xilinx CPLD fitter, FPGA mapping tool, and JTAG Programmer software.

JTAG Programmer is supplied with both a graphical and batch user interface. The batch user
interface executable is typically named “jtagprog” and the graphical user interface is named
“jtagpgmr.” The graphical tool is always launched from the Design Manager or Project
Manager. The batch tool is available by opening a shell and invoking “jtagprog” on the
command line.

Using the batch download tool to generate SVF files.

1. Fit the design and create a JEDEC/BIT programming file.

2. Invoke the batch JTAG Programmer tool from the command line in a new shell:
jtagprog –svf

The following messages appear:

JTAGProgrammer: version <Version Number>
Copyright: 1991-1998

Sizing system available memory...done.
*** SVF GENERATION MODE ***
[JTAGProgrammer: (1)] >

3. Set up the device types and assign design names. To do this type following command at
the JTAG Programmer prompt:
part deviceType1:designName1 deviceType2:designName2 …
deviceTypeN:designNameN <CR>

where deviceType is the name of the BSDL file without the .bsd extension for that device
and designName is the name of the design to translate into SVF. Multiple
deviceType:designName pairs are separated by spaces. For example:

part xc95108:abc12 xc18V04:ww133 xcv50.pg240_efg

The “part” command defines the composition and ordering of the boundary-scan chain.
The devices are arranged with the first device specified being the first to receive TDI
information and the last device being that which provides the final TDO data.

Figure 4: Configuration PROM Flow

Map FPGA Bit File
to PROM MCS/EXO Files

Convert MCS/EXO
to SVF

Convert SVF
to XSVF

Create Intel
Hex File

Program EPROM
with XSVF Code

X058_04_122700

Using PROMGen
or PROMFileFormatter

Using JTAGProgammer

Using svf2xsvf
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Notes:
1. For any non-Xilinx devices in the boundary-scan chain, make certain that the BSDL file is available

either in the XILINX variable data directory or by specifying complete path information in the
deviceType. The designName in this case can be any arbitrary name. Alternatively, non-Xilinx
devices in the boundary-scan chain can be specified using the syntax:
register-s#

for the device type where # is the length of the device’s instruction register.

4. Execute the required boundary-scan or ISP operation in JTAG Programmer

a. erase [-fh] designName – generates an SVF file to describe the boundary-scan
sequence to erase the specified part. The –f flag is used to generate an erase
sequence that overrides write protection on devices. The –h flag is used to specify that
all other parts (i.e., not designName) in the boundary-scan chain should be held in the
HIGHZ state during the erase operation.

b. verify [-h] designName [-j jedecFileName] – generates an SVF file to describe the
boundary-scan sequence to read back the device contents and compare it against the
contents of the specified JEDEC file. The JEDEC file defaults to be designName.jed in
the current directory or can be alternatively specified using the –j flag. The –h flag is
used to specify that all other parts (i.e., not designName) in the boundary-scan chain
should be held in the HIGHZ state during the verify operation.

c. program [-bhv] designName –j
[jedecFileName/mcsFileName/exo/FileName/bitFileName] - generates an SVF file
to describe the boundary-scan sequence to program the device using that
programming data specified JEDEC/BIT/MCS/EXO file. The JEDEC/BIT/MCS/EXO
file defaults to be designName.jed or designName.bit in the current directory or can be
alternatively specified using the –j flag. The –h flag is used to specify that all other parts
(i.e., not designName) in the boundary-scan chain should be held in the HIGHZ state
during the programming operation. The –b flag instructs the programming operations
to skim the erase operation for the device. This is useful when programming devices
shipped from the factory which are always delivered blank. The -v flag instructs the
programmer to include the verify operation after programming.

d. partinfo [-h] designName –id - generates an SVF file to describe the boundary-scan
sequence to read back the 32 bit hard-coded device IDCODE. The –h flag is used to
specify that all other parts (i.e., not designName) in the boundary-scan chain should be
held in the HIGHZ state during the IDCODE operation.

e. partinfo [-h] designName –signature - generates an SVF file to describe the
boundary-scan sequence to read back the 32-bit user-programmed device
USERCODE. The –h flag is used to specify that all other parts (i.e., not designName)
in the boundary-scan chain should be held in the HIGHZ state during the USERCODE
operation.

Notes:
1.The recommended command for programming a CPLD or configuration PROM is:
program -h -v designName -j [jedecFileName/mcsFileName/exoFileName]

2. The recommended command for programming an FPGA is:
program -h designName -j bitFileName

5. Exit the JTAG Programmer by entering the following command:
Quit

Notes:
1. The SVF file is named designName.svf and is created in the current working directory. Consecutive

operations on the same designName appends to the SVF file. To create SVF files with separate
operations in each, rename the SVF file after each operation by exiting to the system shell.

Using the graphical user interface to generate SVF files:

1. Fit the design and create a JEDEC programming file.
6 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

2. Double-click on the JTAG Programmer icon, or open a system shell and type “jtagpgmr.”
The JTAG Programmer appear as shown in Figure 5.

3. Instantiate the boundary-scan chain, which can be done in two ways. The first is to
manually add each device in the correct boundary-scan order from system TDI to system
TDO.

Select Edit->Add device for each device as it exists in the boundary-scan chain in Figure 6.

Fill in the device properties dialog to identify the JEDEC/BIT/MCS/EXO file (if it is a Xilinx
device) or BSDL file (if it is not an Xilinx device) associated with the device being added. Non-
Xilinx devices can be specified using the Edit->Define Device menu item. (See bitmap of Edit -

Figure 5: JTAG Programmer

Figure 6: Add Device

x058_05_121900

x058_06_121900
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

>Define Device dialog.) Enter the device’s instruction register length into the Define Device
dialog box. See Figure 7.

Notes:
1. The device type and JEDEC, BIT, MCS, and EXO file name appears below the added device.

The second method is to allow JTAG Programmer to query the boundary-scan chain for
devices and their ordering and then fill in the JEDEC and BSDL file information. This method
only works when the target system is connected to your computer and powered up. The steps
are then as follows:

a. Select File->Initialize chain.

b. Perform no operations on the devices other than those specified.

JTAG Programmer displays the boundary-scan chain configuration as shown in Figure 8.

Figure 7: Define Device Dialog

Figure 8: Boundary-Scan Chain

x058_07_121900

x058_08_121900
8 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Then for each device in the resulting chain, double click on the chip icon to bring up the
device properties dialog and select the JEDEC, BIT, MCS, EXO, or BSDL file associated
with that device.

4. Put the JTAG Programmer into SVF mode by selecting Output->Create SVF file… to
create a new SVF file or Output->Append to SVF file… to append to an existing SVF file.
Fill in the SVF file dialog with the desired name of the target SVF file to be created.

Notes:
1.Once the SVF mode is entered, the composition of the boundary-scan chain cannot be edited in
order to ensure consistency of the boundary-scan data in the SVF file.

5. Select at least one device on which to operate by clicking on the chip icon. the icon should
become highlighted when it is selected. To select more than one device, hold down the shift
key while clicking on additional devices.

6. Invoke the items in the Operations menu to generate corresponding command in the SVF
file for the selected devices.

Notes:
1.The recommended operation for programming selected devices is Operations ->Program with the
“Erase before Programming” and “Verify” check boxes selected. The “Verify” check box is not
recommended for FPGA devices.

7. When the required operations are complete, exit the JTAG Programmer by selecting File-
>Exit.

Notes:
1.The “Use HIGHZ instead of BYPASS” option from the File->Preferences… dialog can be selected
to specify that all other parts (i.e., not the device selected) in the boundary-scan chain should be held
in the HIGHZ state during the requested operation.

To generate separate SVF files for each operation, perform the following steps between
operations:

1. Select Output->Use Cable

2. On the Cable Communications Dialog select Cancel

3. Select Output->Create SVF File

4. Choose a new SVF file and proceed normally.

EPROM Programming
To program an EPROM, the binary XSVF file must be converted to an Intel Hex or similar
PROM format file. Most embedded processor development system software automatically
converts included binary files to the appropriate format.

Software Limitations
JTAG Programmer can generate SVF files only for devices for which JEDEC/BIT/MCS/EXO
files can be created. Designers should verify that the development software they are using can
create JEDEC/BIT/MCS/EXO files for the specific devices they intend to use.

For instructions on generating SVF for CoolRunner CPLDs, go to the Xilinx Support website
(http://support.xilinx.com) and search for answer 7565.
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 9
1-800-255-7778

http://support.xilinx.com
http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Hardware
Design

As shown in Figure 1, page 2, this design requires only an 8051 microcontroller, an address
latch, and enough EPROM or RAM to contain both the 8051 code and the CPLD/FPGA/PROM
programming data.

Hardware Design Description
The example 8051 allows 64K of program and 64K of data space; however, some devices
require more data space.

The 8051 multiplexes port 0 for both data and addresses. The ALE signal causes the 74x373
to latch the low order address, and the high order address is output on port 2. Port 0 then floats,
allowing the selected EPROM to drive the data inputs. Then the PSEN signal goes low to
activate an 8051 program read operation, or the RD signal goes low to activate a CPLD
programming data read operation.

Estimated EPROM Memory Requirements
Table 1 shows the estimated EPROM capacity needed to contain the programming data.

Table 1: XSVF File Sizes

Device Type
File Size
(bytes)

XC9536 45572

XC9572 103928

XC95108 175250

XC95144 144222

XC95216 259620

XC95288 403698

XC9536XL 38186

XC9572XL 51590

XC95144XL 78398

XC95288XL 132014

XCR3064XL 21149

XCR3128XL 40067

XCR3256XL 90042

XC18V512 338119

XC18V01 675399

XC18V02 1341767

XC18V04 2682183

XCS20XL 24010

XCS40XL 44186

XC2S100 103969

XC2S150 138352

XCV300 232876

XCV1000 814055
10 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

The XSVF file sizes are dependent only on the device type, not on the design implementation.
If further compression of the XSVF file is needed, a standard compression technique, such as
Lempel-Ziv can be used.

Modifications for Other Applications
The design presented in this application note is for a stand-alone ISP controller. However, it is
also possible to apply these techniques to microcontrollers that might already exist within a
design. To implement this design in an already existing microcontroller, all that is needed is four
I/O pins to drive the TAP, and enough storage space to contain both the controller program and
the CPLD/FPGA/PROM download data. In addition, care must be taken to preserve the JTAG
port timing.

The TAP timing in this design is dependent on the 8051 clock. For other 8051 clock frequencies
or for different microcontrollers, the timing must be calculated accordingly, in order to
implement the timing specified in Exception Handling, page 21.

The speed at which the TAP ports can be toggled affects the overall programming time for
FPGAs and PROMs that require millions of TCK cycles to shift just the data. For CPLDs, the
cumulative program pulse time has a greater affect on programming time than the data shift
time.

Using a different microcontroller would require changing the I/O subroutine calls while
preserving the correct TAP timing relationships. These subroutine calls are located in the
ports.c file. All other C-code is independent of the microcontroller and does not need to be
modified.

RAM can be used instead of the EPROM in this design. This would allow the
CPLD/FPGA/PROM devices to be programmed and tested remotely via modem, using remote
control software written by the user.

Debugging Suggestions
The following suggestions can be helpful in testing this design:

• View the contents of the XSVF file using the -a option for the svf2xsvf converter. This
option generates a text file version of the xsvf.

• Decrease the TCK frequency to test that the wait times for program and erase are
sufficiently long.

• Make certain that the function pins go into a 3-state condition in ISP mode.

• Test that the function pins initialize when ISP mode is terminated with the ISPEX
command.

• Verify that the devices which are not being programmed are in bypass mode. Bypass
mode causes TDO to be the same as TDI, delayed by one TCK clock pulse.

• Use the precompiled playxsvf.exe from the download package to execute the XSVF on a
PC through the Parallel Cable.

• Generate a simple XSVF that only checks the IDCODE of the target device to test basic

XCV100E 114943

XCV300E 249318

XCV600E 526368

XCV1000E 875119

XCV2000E 1349542

Table 1: XSVF File Sizes (Continued)

Device Type
File Size
(bytes)
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

functionality of the hardware and software.

• Generate and execute separate XSVF files for the erase, blank check, program, and verify
operations to narrow the problem area.

• Program the device from JTAG Programmer and a download cable to verify basic
hardware functionality.

Firmware
Design

The flow chart for the C-Code is shown in Figure 9 through Figure 16. This code continuously
reads the instructions and arguments from the XSVF file contained in the program data
EPROM and branches in one of three ways based on the three possible XSVF instructions
(XRUNTEST, XSIR, XSDR) as described in Appendix B: XSVF File Format and Conversion
Utilities, page 27.

When the C-Code reads an XRUNTEST instruction, it reads in the next four bytes of data that
specify the number of microseconds for which the device stays in the Run- Test/Idle state
before the next XSIR or XSDR instruction is executed. The runTestTimes variable is used to
store this value.

When the C-Code reads an XSIR instruction, it provides stimulus to the TMS and TCK ports
until it arrives in the Shift-IR state. It then reads a byte that specifies the length of the data and
the actual data itself, outputting the specified data on the TDI port. Finally, when all the data has
been output to the TDI port, the TMS value is changed and successive TCK pulses are output
until the Run-Test/Idle state is reached again.

When the C-Code reads an XSDR instruction, it reads the data specifying the values that are
output during the Shift-DR state. The code then toggles TMS and TCK appropriately to
transition directly to the Shift-DR state. It then holds the TMS value at 0 in order to stay in the
Shift-DR state and the data from the XSVF file is output to the TDI port while storing the data
received from the TDO port. After all the data has been output to the TDI port, TMS is set to 1
in order to move to the Exit-1-DR state. Then, the TDO input value is compared to the TDO
expected value. If the two values fail to match, the exception handling procedure is executed as
shown in Figure 19, page 21. If the TDO input values match the expected values, the code
returns to the Run-Test/Idle state and waits for the amount of time specified by the
runTestTimes variable (which was originally set in the XRUNTEST instruction).

Memory Map
The 8051 memory map is divided into two 64K byte blocks: one for the 8051 program and one
for data. The 8051 program memory resides in the 8051 program block and is enabled by the
PSEN signal. The Xilinx PLD program memory resides in the 8051 data block and is enabled
by the RD signal. When additional data space is required, use one of the methodologies
specified in the specific microprocessor’s applications note.

Port Map
The 8051 I/O ports are used to generate the memory address and the TAP signals, as shown
in Figure 1, page 2. Port 1 of the 8051 is used to control the TAP signals; Table 2 shows the
port configuration.

Table 2: 8051 Port 1 Mapping

TAP Pin Port1 Bit Configured As

TCK 0 Input

TMS 1 Input

TDI 2 Input

TDO 3 Output
12 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Figure 9: Flow Chart for the ISP Controller Code

1

3

11

6

Read instruction &
numbits from XSVF

START

switch

switch

case[]

2

Set TMS to 1, pulse
TCK twice

Read data value &
numbits from XSVF

Set TMS to 0, pulse
TCK twice

Set TMS to 1, pulse
TCK once

Set TMS to 0, pulse
TCK twice

Read delay value
from XSVF file

CLOCKRUNTEST
value based on

clock-rate & delay
value in XSVF

Read data &
numbits from XSVF

X058_08_122700

XSIR XSDR

Select-IR-Scan

XRUNTEST

Shift-IR
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Notes:
1. For FPGAs, step 4 is scrapped completely if the TDO expected does not match the actual TDO; the

program quits with an error message.

Figure 10: Flow Chart for the ISP Controller Code (Continued)

3

4

Set TMS to 0, pulse
TCK - output data

on TDI

numbits=1

TDO=
TDO Expected

Pulse TCK - output
data on TDI

Store value on
TDO

Store value on
TDO

Increment
FAILTIMES

Decrement numbits

Set TMS to 0, pulse
TCK

SWITCH

WAIT XRUNTEST
TIME

Set TMS to 1, pulse
TCK

Set TMS to 1, pulse
TCK - output data

while transitioning to
Exit1-DR

X058_10_010901

Shift-DR

Update-DR

Exit1-DR

Run-Test/Idle

T

T

F

F

14 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Figure 11: Flow Chart for the ISP Controller Code (Continued)

Figure 12: Flow Chart for the ISP Controller Code (Continued)

4

5

Set TMS to 0, pulse
TCK

FAILTIMES >
MAXREPEAT

END
Set TMS to 1, pulse

TCK

Set TMS to 0, pulse
TCK

Set TMS to 1, pulse
TCK

Set TMS to 1, pulse
TCK

ISP FAILED

X058_11_010901

Exit Program

Exit1-DR

Pause-DR

Exit2-DR

Shift-DR

Exit1-DR

Update-DR

T

F

11

CLOCKRUNTESTS
=CLOCKRUNTESTS X 1.25

Set TMS to 0,
pulse TCK

WAIT XRUNTEST
TIME

Run-Test/Idle

5

1

Pulse TCK
output data on TDI

Set TMS to 1, pulse
TCK - output data

while transitioning to
Exit1-IR

Set TMS to 1, pulse
TCK

numbits=1

XRUNTEST
?

Switch

T F

Set TMS to 0, pulse
TCK

GOTO
XENDIR
STATE

Decrement numbits

X058_12_010901

Exit-IR

Update IR

Run-Test/Idle

WAIT
XRUNTEST

TIME

> 0 = 0
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Figure 13: Flow Chart for the ISP Controller Code (Continued)

6

7 8 9 10

12

Read data value
& numbits fom

XSVF

Set TMS to 1,
pulse TCK once

2

Set TMS to 0,
pulse TCK twice

X058_13_122100

XSDRB

Read data value
& numbits fom

XSVF

7

Set TMS to 1,
pulse TCK once

Set TMS to 0,
pulse TCK twice

9

XSDRC

Read data value
& numbits fom

XSVF

XSDRE

Read data value
& numbits fom

XSVF

2

XSDRTDOB

Read data value
& numbits fom

XSVF

XSDRTDOC

Read data value
& numbits fom

XSVF

XSDRTDOE
16 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Figure 14: Flow Chart for the ISP Controller Code (Continued)

7

Set TMS to 0

XSDRC

Pulse TCK
output data on TDI

numbits=0Switch

Switch

T F

Decrement numbits

X058_14_010901

8 XSDRE

EXIT1 - DR

Pulse TCK
output data on TDI

numbits=1
T F

Set TMS to 1, Pulse
TCK-output data on

TDI while transitioning
to Exit1-DR

Set TMS to 1
pulse TCK

Go to XENDDR
state

Decrement numbits
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Figure 15: Flow Chart for the ISP Controller Code (Continued)

9

Set TMS to 0

XSDRTDOC/XSDRTDOB

Pulse TCK
output data on TDI

numbits=0

TDO =
TDO expectedSwitch

T

T

F

F

Quit with
Error Message

Quit with
Error Message

Store value on TDO

Decrement numbits

X058_15_011201

10 XSDRTDOE

Pulse TCK
output data on TDI

numbits=1

TDO=
TDO Expected

T

Store value on TDO
Set TMS to 1, Pulse
TCK-output data on

TDI while transitioning
to Exit1-DR

Store value on TDO

Set TMS to 1
Pulse TCK

Go to XENDDR
state

Decrement numbits

UPDATE - DR

Switch

F

T

F

18 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

TAP Timing
Figure 17 shows the timing relationships of the TAP signals. The C-code running on the 8051
insures that the TDI and TMS values are driven at least two instruction cycles before asserting
TCK. At that same time, TDO can be strobed.

The key timing relationships include:

• TMS and TDI are sampled on the rising edge of TCK.

• A new TDO value appears after the falling edge of TCK.

The C-code ensures proper TAP timing by

Figure 16: Flow Chart for the ISP Controller Code (Concluded)

Figure 17: Test Access Port Timing

12

Read State
Value

Hold TMS=1,
Pulse TCK

5 Times

Test-Logic-Reset Run-Test/Idle

0 1State
Value

?
Set TMS=0,
Pulse TCK

Switch

Switch

Switch

Read XENDIR
State

Switch

Read XENDDR
State

X058_16_010901

XSTATE XENDIR XENDDR

TCKMIN

TMSS TMSH

TDIS

TIOV

TDOV

TINH

TDOZXTDOZX

TINS

TDIH

TCK

TMS

TDI

TDO

Input-I/O-CLK

I/O

X058_18_122100
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

• Updating TMS and TDI on the falling edge of TCK

• Sampling TDO after a sufficient delay following the falling edge of TCK.

Parts of the XSVF file specify wait times during which the device programs or erases the
specified location or sector. Implementation of the wait timer can be accomplished either by
software loops that depend on the processor’s cycle time or by using the 8051’s built-in timer
function. In this design, timing is established through software loops in the ports.c file.TAP AC
Parameters

Figure 18 shows the XC9500/XL/XV device programming flow.

Table 3 lists the XC9500 timing parameters for the TAP waveforms shown in Figure 17. For
other device families, see the device family data sheet for TAP timing characteristics.

Figure 18: XC9500/XL/XV Device Programming Flow

Table 3: XC9500 Test Access Port Timing Parameters (ns)

Symbol Parameter Min Max

TCKMIN TCK Minimum Clock Period 100

TMSS TMS Setup Time 10

TMSH TMS Hold Time 10

TDIS TDI Setup Time 15

TDIH TDI Hold Time 25

TDOZX TDO Float to Valid Delay 35

TDOXZ TDI Valid to Float Delay 35

TDOV TDO Valid Delay 35

TINS I/O Setup Time 15

TINH I/O Hold Time 30

TIOV EXTEST Output Valid Delay 55

Set ISP Mode

Erase All Sectors

Program All Addresses

Verify Programming

Exit ISP Mode and
Initialize Device

ISPEN

FERASE

FPGM

FVFY (optional)

ISPEX

X058_17_122100
20 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

XC9500/XL/XV Programming Algorithm
This section describes the programming algorithm executed by the 8051 C-code that reads the
XSVF file; this code is contained in the micro.c file in Appendix C: C-Code Listing, page 32.
This information is valuable to users who want to modify the C-code for porting to other
microcontrollers.

The XSVF file contains all XC9500/XL/XV programming instructions and data. This allows the
TAP driver code to be very simple. The 8051 interprets the XSVF instructions that describe the
CPLD design and then outputs the TAP signals for programming (and testing) the
XC9500/XL/XV device. The command sequence for device programming is shown in.

Exception Handling
Figure 19 shows the state diagram for the internal device programming state machine, as
defined by the IEEE 1149.1 standard.

Notes:
1. The values shown adjacent to each transition represent the signal present at TMS during the rising

edge of TCK.

The C-code drives the 1149.1 TAP controller through the state sequences to load data and
instructions, and capture results. One of the key functions performed by the C-code is the TAP
controller state transition sequence that is executed when an XC9500/XL/XV program or erase
operation needs to be repeated, which can occur on a small percentage of addresses. If a
sector or address needs to be reprogrammed or re-erased, the device status bits return a value
that is different from that which is predicted in the XSVF file. In order to retry the previous
(failed) data, the following 1149.1 TAP state transition sequence is followed, if the TDO
mismatch is identified at the EXIT1-DR state:

EXIT1-DR, PAUSE-DR, EXIT2-DR, SHIFT-DR, EXIT1-DR, UPDATE-DR, RUN-TEST/IDLE

Figure 19: TAP State Machine Flow

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

0

1

0

1

0

Select-DR-Scan

Select-DR-Scan

0

0

1 1 1

0

1

0

1

Exception
Handling
Loop

1

1

1 0

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

0

1 0

1

0

0

1

0

1

1

1

X058_19_010901
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

The application then increments the previously specified XRUNTEST time by an additional
25 percent and waits for this amount of time in Run-Test/Idle. The effect of this state sequence
is to re-apply the previous value rather than apply the new TDI value that was just shifted in.

This “exception handling loop” is attempted no more than N times. If the TDO value does not
match after N attempts, the part is defective and a failure is logged. When the retry operation is
successful, the algorithm shifts-in the next XSDR data.

The SVF2XSVF -r (repeat) option determines the value of N. the recommended value of N for
XC9500/XL/XV devices is16.

XC4000 and Spartan Programming Algorithm
XC4000 Series devices can be configured through the boundary-scan pins. The basic
procedure is as follows:

• Power up the FPGA with INIT held Low (or the PROGRAM pin Low for more than 300 ns
followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue
the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a
resistor is used to hold INIT Low

• Issue the CONFIG command to the TMS input

• Wait for INIT to go High

• Sequence the boundary-scan Test Access Port to the SHIFT-DR state

• Toggle TCK to clock data into TDI pin

The user must account for all TCK clock cycles after INIT goes High, as all of these cycles
affect the Length Count compare.

For more detailed information, refer to the Xilinx application note XAPP017, “Boundary Scan in
XC4000 Devices. This application note also applies to XC4000E and XC4000X devices.

Virtex Programming Algorithm
Virtex devices can be configured through the boundary-scan pins. Configuration through the
TAP uses the special CFG_IN instruction. This instruction allows data input on TDI to be
converted into data packets for the internal configuration bus.

The following steps are required to configure the FPGA through the boundary-scan port.

• Load the CFG_IN instruction into the boundary-scan instruction register (IR).

• Enter the Shift-DR (SDR) state.

• Shift a standard configuration bitstream into TDI.

• Return to Run-Test-Idle (RTI).

• Load the JSTART instruction into IR.

• Enter the SDR state.

• Clock TCK for the length of the sequence (the length is programmable).

• Return to RTI.

• Check the DONE pin status.

See XAPP139: for details on Virtex Configuration.

Notes:
1. The -fpga option must be used with the SVF2XSVF translator for Virtex, XC4000, and Spartan

devices.
2. The programming operation for each Virtex device ends by checking the DONE pin status. If multiple

Virtex devices are to be configured and if the DONE pins of those devices are tied together, then the
DONE pin does not go High until all the Virtex devices have been configured. In this case, the check
of the DONE pin status for the intermediate Virtex devices fail. To workaround this problem, the check
on the DONE pin status for all but the last Virtex device must be removed from the SVF before
translation to XSVF.
22 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

CoolRunner Programming Algorithm
The CoolRunner devices can be programmed through the boundary-scan pins. The basic
procedure is as follows:

• Enter the device into ISP mode

• Erase the entire device

• Program all addresses

• Verify all addresses

• Exit the ISP mode and return to normal functional mode.

XC18V00 PROM Programming Algorithm
The XC18V00 devices can be programmed through the boundary-scan pins. The basic
procedure is as follows:

• Enter the device into ISP mode

• Erase the entire device

• Program all addresses

• Apply global operation to refine programmed values.

• Verify all addresses

• Exit the ISP mode and return to normal functional mode.

Conclusion
Xilinx CPLDs and FPGAs are easily programmed by an embedded processor. And, because
they are 1149.1 compliant, system and device test functions can also be controlled by the
embedded processor, in addition to programming. This capability opens new possibilities for
upgrading designs in the field, creating user-specific features, and remote downloading of
CPLD/FPGA programs.
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Appendix A:
SVF File Format
for Xilinx
Devices

SVF Overview
This appendix describes the Serial Vector Format syntax, as it applies to Xilinx devices; only
those commands and command options that apply to Xilinx devices are described. An SVF file
is the media for exchanging descriptions of high-level IEEE 1149.1 bus operations which
consist of scan operations and movements between different stable states on the 1149.1 state
diagram (as shown in Figure 19). SVF does not explicitly describe the state of the 1149.1 bus
at every Test Clock (TCK).

An SVF file contains a set of ASCII statements. Each statement consists of a command and its
associated parameters, terminated by a semicolon. SVF is case sensitive, and comments are
indicated by an exclamation point (!).

Scan data within a statement is expressed in hexadecimal and is always enclosed in
parenthesis. The scan data cannot specify a data string that is larger than the specified bit
length; the Most Significant Bit (MSB) zeros in the hex string are not considered when
determining the string length. The bit order for scan data defines the LSB (rightmost bit) as the
first bit scanned into the device for TDI and SMASK scan data, and is the first bit scanned out
for TDO and MASK data.

SVF Commands
The following SVF Commands are supported by the Xilinx devices:

• SDR (Scan Data Register).

• SIR (Scan Instruction Register).

• RUNTEST.

For each of the following command descriptions:

• The parameters are mandatory.

• Optional parameters are enclosed in brackets ([]).

• Variables are shown in italics.

• Parenthesis “()”are used to indicate hexadecimal values.

• A scan operation is defined as the execution of an SIR or SDR command and any
associated header or trailer commands.

SDR, SIR

SDR length TDI (tdi) SMASK (smask)
[TDO (tdo) MASK (mask)];
SIR length TDI (tdi) TDO SMASK (smask);

These commands specify a scan pattern to be applied to the target scan registers. The SDR
command (Scan Data Register) specifies a data pattern to be scanned into the target device
Data Register. The SIR command (Scan Instruction Register) specifies a data pattern to be
scanned into the target device Instruction Register.

Prior to scanning the values specified in these commands, the last defined header command
(HDR or HIR) is added to the beginning of the SDR or SIR data pattern and the last defined
trailer command (TDR or TIR) is appended to the end of the SDR or SIR data pattern.

Parameters:

length — A 32-bit decimal integer specifying the number of bits to be scanned.

[TDI (tdi)] — (optional) The value to be scanned into the target, expressed as a hex value. If
this parameter is not present, the value of TDI to be scanned into the target device is the TDI
value specified in the previous SDR/SIR statement. If a new scan command is specified, which
changes the length of the data pattern with respect to a previous scan, the TDI parameter must
be specified, otherwise the default TDI pattern is undetermined and is an error.
24 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

[TDO (tdo)] — (optional) The test values to be compared against the actual values scanned
out of the target device, expressed as a hex string. If this parameter is not present, no
comparison is performed. If no TDO parameter is present, the MASK is not used.

[MASK (mask)] — (optional) The mask to be used when comparing TDO values against the
actual values scanned out of the target device, expressed as a hex string. A “0” in a specific bit
position indicates a “don’t care” for that position. If this parameter is not present, the mask
equals the previously specified MASK value specified for the SIR/SDR statement. If a new scan
command is specified which changes the length of the data pattern with respect to a previous
scan, the MASK parameter must be specified, otherwise the default MASK pattern is undefined
and is an error. If no TDO parameter is present, the MASK is not used.

[SMASK (smask)] — (optional) Specifies which TDI data is “don’t care”, expressed as a hex
string. A “0” in a specific bit position indicates that the TDI data in that bit position is a “don’t
care”. If this parameter is not present, the mask equals the previously specified SMASK value
specified for the SDR/SIR statement. If a new scan command is specified which changes the
length of the data pattern with respect to a previous scan, the SMASK parameter must be
specified, otherwise the default SMASK pattern used is undefined and is an error. The SMASK
is used even if the TDI parameter is not present.

Example:

SDR 27 TDI (008003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
SIR 16 TDO (ABCD);

HDR, HIR, TDR, TIR

HDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
HIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
TDR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]
TIR length TDI(tdi) SMASK(smask) [TDO(tdo) MASK(mask]

These commands specify header and trailer bits for data and instruction shifts. Once specified,
these bits lead or follow every set of bits shifted for the SIR or SDR commands. These
commands are used to specify bits for non-target (bypassed) devices in the scan chain.

The parameters are the same as the SIR and SDR commands.

Example:

HDR 1 TDI(0);
TDR 3 TDI (0);
HIR 8 TDI (ff);
TIR 24 TDI (ffffff);

RUNTEST

RUNTEST run_count TCK;

This command forces the target 1149.1 bus to the Run- Test/Idle state for a specific number of
microseconds, then moves the target device bus to the IDLE state. This is used to control
RUNBIST operations in the target device.

Parameters:

run_count — The number of TCK clock periods that the 1149.1 bus remains in the Run
Test/Idle state, expressed as a 32 bit unsigned number.

Example:

RUNTEST 1000 TCK;
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Figure 20: Sample SVF File

! Begin Test Program
TRST OFF;!disable test reset line
ENDIR IDLE;!End IR scan in IDLE
HIR
HDR 16 TDI (FFFF) TDO (FFFF) MASK (FFFF);!16 bit DR Header
TIR
TDR
SIR
SDR
STATE
RUNTEST
!End test program
26 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Appendix B:
XSVF File
Format and
Conversion
Utilities

This appendix includes the following reference information:

• The XSVF Commands — The instructions that are supported, their arguments, and
definitions.

• The svf2xsvf Utility — Converts the standard SVF file format to the more compact binary
XSVF format.

XSVF Commands
The following commands describe the 1149.1 operations in a way that is similar to the SVF
syntax. The key difference between SVF and XSVF is that the XSVF file format affords better
data compression and therefore produces smaller files.

The format of the XSVF file is a one byte instruction followed by a variable number of
arguments (as described in the command descriptions below). The binary (hex) value for each
instruction is shown in Table 4:

XTDOMASK

XTDOMASK value<“length” bits>

XTDOMASK sets the TDO mask which masks the value of all TDO values from the SDR
instructions. Length is defined by the last XSDRSIZE instruction. XTDOMASK can be used
multiple times in the XSVF file if the TDO mask changes for various SDR instructions.

Table 4: Binary Encoding of XSVF Instructions

XSVF Instruction Binary Encoding (hex)

XCOMPLETE 0x00

XTDOMASK 0x01

XSIR 0x02

XSDR 0x03

XRUNTEST 0x04

XREPEAT 0x07

XSDRSIZE 0x08

XSDRTDO 0x09

XSETSDRMASKS 0x0a

XSDRINC 0x0b

XSDRB 0x0c

XSDRC 0x0d

XSDRE 0x0e

XSDRTDOB 0x0f

XSDRTDOC 0x10

XSDRTDOE 0x11

XSTATE 0x12

XENDIR 0x13

XENDDR 0x14
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 27
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Example:

XTDOMASK 0x00000003

This example defines that TDOMask is 32 bits long and equals 0x00000003

XREPEAT

XREPEAT times<1 byte>

Defines the number of times that TDO is tested against the expected value before the ISP
operation is considered a failure. By default, a device can fail an XSDR instruction 32 times
before the ISP operation is terminated as a failure. This instruction is optional.

Example:

XREPEAT 0x0f

This example sets the command repeat value to 15.

XRUNTEST

XRUNTEST time<4 bytes>

Defines the amount of time (in microseconds) the device should sit in the Run-Test/Idle state
after each visit to the SDR state. The initial XRUNTEST time is zero microseconds.

Example:

XRUNTEST 0x00000fa0

This example specifies an idle time of 4000 microseconds.

XSIR

XSIR length<1 byte> TDIValue<“length” bits>

Go to the Shift-IR state and shift in the TDIValue. If the last XRUNTEST time is non-zero, go to
the Run-Test/Idle state and wait for the last specified XRUNTEST time. Otherwise, go to the
last specified XENDIR state.

Example:

XSIR 0x08 0xec

XSDR

XSDR TDIValue<“length” bits>

Go to the Shift-DR state and shift in TDIValue; compare the TDOExpected value from the last
XSDRTDO instruction against the TDO value that was shifted out (use the TDOMask which
was generated by the last XTDOMASK instruction). Length comes from the XSDRSIZE
instruction.

If the TDO value does not match TDOExpected, perform the exception handling sequence
described in the XC9500 programming algorithm section. If TDO is wrong more than the
maximum number of times specified by the XREPEAT instruction, then the ISP operation is
determined to have failed.

If the last XRUNTEST time is zero, then go to the XENDDR state. Otherwise, go to the
Run_Test/Idle state and wait for the XRUNTEST time.

Example:

XSDR 02c003fe

XSDRSIZE

XSDRSIZE length<4 bytes>

Specifies the length of all XSDR/XSDRTDO records that follow.

Example:

XSDRSIZE 0x0000001b
28 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

This example defines the length of the following XSDR/XSDRTDO arguments to be 27 bits (4
bytes) in length.

XSDRTDO

TDIValue<“length” bits>
TDOExpected<“length” bits>

Go to the Shift-DR state and shift in TDIValue; compare the TDOExpected value against the
TDO value that was shifted out (use the TDOMask which was generated by the last
XTDOMASK instruction). Length comes from the XSDRSIZE instruction.

If the TDO value does not match TDOExpected, perform the exception-handling sequence
described in the XC9500 programming algorithm section. If TDO is wrong more than the
maximum number of times specified by the XREPEAT instruction, then the ISP operation is
determined to have failed.

If the last XRUNTEST time is zero, then go to XENDDR state. Otherwise, go to the
Run_Test/Idle state and wait for the XRUNTEST time.

The TDOExpected Value is used in all successive XSDR instructions until the next XSDR
instruction is given.

Example:

XSDRTDO 0x000007fe 0x00000003

For this example, go to the Shift-DR state and shift in 0x000007fe. Perform a logical AND on
the TDO shifted out and the TDOMASK from the last XTDOMASK instruction and compare this
value to 0x00000003.

XSDRB

XSDRB TDIValue<“length” bits>

Go to the shift-DR state and shift in the TDI value. Continue to stay in the shift-DR state at the
end of the operation. No comparison of TDO value with the last specified TDOExpected is
performed.

XSDRC
XSDRC TDIValue<“length” bits>

Shift in the TDI value. Continue to stay in the shift-DR state at the end of the operation. No
comparison of TDO value with the last specified TDOExpected is performed.

XSDRE

XSDRE TDIValue<“length” bits>

Shift in the TDI value. At the end of the operation, go to the XENDDR state. No comparison of
TDO value with the last specified TDOExpected is performed.

XSDRTDOB

XSDRTDOB TDIValue<“length” bits> TDOExpected<“length” bits>

Go to the shift-DR state and shift in TDI value; Compare the TDOExpected value against the
TDO value that was shifted out. TDOMask is not applied. All bits of TDO are compared with the
TDOExpected. Length comes from the XSDRSIZE instruction.

Because this instruction is primarily meant for FPGAs, if the TDO value does not match
TDOExpected, the programming is stopped with an error message. At the end of the
operations, continue to stay in the SHIFT-DR state.

XSDRTDOC

XSDRTDOC TDIValue<“length” bits>
TDOExpected<“length” bits>
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 29
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Shift in the TDI value; compare the TDOExpected value against the TDO value that was shifted
out. Length comes from the XSDRSIZE instruction. TDOMask is not applied. All bits of TDO are
compared with the TDOExpected.

If the TDO value does not match TDOExpected, stop the programming operation with an error
message. At the end of the operation continue to stay in the SHIFT-DR state.

XSDRTDOE

XSDRTDOE TDIValue<“length” bits>
TDOExpected<“length” bits>

Shift in the TDI value; compare the TDOExpected value against the TDO value that was shifted
out. Length comes from the last XSDSIZE instruction. TDOMask is not applied. All bits of TDO
are compared with the TDOExpected.

If the TDO value does not match the TDOExpected, stop the programming operations with an
error message. At the end of the operation, go to the XENDDR state.

XSETSDRMASKS

XSETSDRMASKS addressMask<“length” bits> dataMask<“length” bits>

Set SDR Address and Data Masks. The address and data mask of future XSDRINC
instructions are indicated using the XSETSDRMASKS instructions. The bits that are 1 in
addressMask indicate the address bits of the XSDR instruction; those that are 1 in dataMask
indicate the data bits of the XSDR instruction. “Length” comes from the value of the last
XSDRSize instruction.

Example:

XSETSDRMASKS 00800000 000003fc

XSDRINC

XSDRINC startAddress<“length” bits>
numTimes<1 byte> data[1]<“length2” bits> ...data[numTimes]<“length2” bits>

Do successive XSDR instructions. Length is specified by the last XSDRSIZE instruction.
Length2 is specified as the number of 1 bits in the dataMask section of the last
XSETSDRMASKS instruction.

The startAddress is the first XSDR to be read in. For numTimes iterations, increment the
address portion (indicated by the addressMask section of the last XSETSDRMASKS
instruction) by 1, and load in the next data portion into the dataMask section.

Notes:
1. An XSDRINC <start> 255 data0 data1 ... data255 actually does 256 SDR instruction since the start

address also represents an SDR instruction.

Example:

XSDRINC 004003fe 05 ff ff ff ff ff

XCOMPLETE

XCOMPLETE

End of XSVF file reached.

Example:

XCOMPLETE

XSTATE

xstate state <1 byte>

If state is zero, force TAP to Test-Logic-Reset state by holding TMS High and applying 5 TCK
cycles. If state is one, transition TAP from Test-Logic-Reset to Run-Test/Idle.

XENDIR

xendir state <1 byte>
30 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Set the XSIR end state to Run-Test/Idle (0) or Pause-IR (1). The default is Run-Test/Idle.

XENDDR

XENDDR state <1 byte>

Set the XSDR and XSDRTDO end state to Run-Test/Idle (0) or Pause-DR (1). The default is
Run-Test/Idle.

svf2xsvf File Conversion Utility
This executable reads in an SVF file (generated by JTAG Programmer) and generates an
XSVF file.

Usage:

svf2xsvf [-d] [-fpga] [-rlen number] [-r number] [-extensions] -i<svf file>
-o<svf file> -a<text file>

Options:

-d — delete pre-existing output files.

-r number — Set the XREPEAT value to number

-fpga — FPGA device

-rlen — Create records of length specified by rlen (FPGA only)

-extension —use XENDIR and XENDDR.

Example for XC9500/XL/XV:

svf2xsvf -i file.svf -o file.xsvf -a file.txt

Example for XCV1800:

svf2xsvf -i file.svf -o file.xsvf -a file.txt

Example for CoolRunner:

svf2xsvf -extensions -r 0 -i file.svf -o file.xsvf -a file.txt

Example for FPGA:

svf2xsvf -fpga -i file.svf -o file.xsvf -a file.txt

mergexsvf File Merge Utility
This executable takes multiple XSVF files and merges them into a single XSVF file. When the
files are merged, the XCOMPLETE commands are removed from the intermediate file images
and a header is inserted between files that resets the parameters for the following commands:
XSTATE, XENDIR, XENDDR, and XRUNTEST.

Usage:

 mergexsvf [-d] [-v2] -o <output.xsvf> -i <input1.xsvf> -i <input2.xsvf> [-
i <inputN.xsvf>…]

Options:

-d – Delete pre-existing output file.

-i <inputN.xsvf> – Input files to be merged in the order listed.

-o <output.xsvf> – Merged output file.

-v2 – Generates an output file with intermediate headers that do not include the XSTATE,
XENDIR, and XENDDR commands.

Notes:
1. The input XSVF files should be generated using the -v2 option with the svf2xsvf file conversion utility.

Example:

 mergexsvf –d –o merged.xsvf –i xc9536xl.xsvf –i xc18v04.xsvf
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 31
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Appendix C:
C-Code Listing

The following files contain the C source code used to read an XSVF file and output the
appropriate Test Access Port control bits:

C-Code Files
• lenval.c — This file contains routines for using the lenVal data structure.

• micro.c — This file contains the main function call for reading in a file from an EPROM
and driving the JTAG signals.

• ports.c — This file contains the routines to output values on the JTAG ports, to read the
TDO bit, and to read a byte of data from the EPROM.

Header Files
• lenval.h — This file contains a definition of the lenVal data structure and extern procedure

declarations for manipulating objects of type lenVal. The lenVal structure is a byte oriented
type used to store an arbitrary length binary value.

• ports.h — This file contains extern declarations for providing stimulus to the JTAG ports.

To compile this C-code for a microcontroller, only four functions within the ports.c file need to be
modified:

• setPort — Sets a specific port on the microcontroller to a specified value.

• readTDOBit — Reads the TDO port.

• readByte — Reads a byte of data from the XSVF file.

• waitTime — Pauses for a specified amount of time.

For help in debugging the code, a compiler switch called DEBUG_MODE is provided. This
switch allows the designer to simulate the TAP outputs in a PC environment. If DEBUG_MODE
is defined, the software reads from an XSVF file (which must be named prom.bit) and prints the
calculated value of the microcontroller’s I/O ports (TDI and TMS) on each rising edge of TCK.
Because the TDO value cannot be read during DEBUG_MODE, the software assumes that the
TDO value is correct. This function provides a simulation of the TAP signals that can be used
to verify the actual operation.
32 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Appendix D:
Dynamically
Selecting Target
Devices for
Configuration

In the default configuration flow, the complete JTAG scan chain is defined in the JTAG
Programmer software. Designs are assigned to devices within the JTAG scan chain, and the
devices to be configured are selected prior to the creation of the SVF file. The devices selected
for configuration are called target devices. JTAG Programmer generates an SVF file that
contains a separate set of configuration commands and data for each target device. Target
devices are configured sequentially, one device at a time. When a target device gets
configured, the non-target devices are put into bypass mode. Each set of SVF commands and
data for a target device contains an exact complement of bits corresponding to the bypassed,
non-target devices. Thus, the exact assignment of designs and exact selection of target
devices must be known in advance, because each SVF is built for a specific scan chain and
specific selection of target devices.

The default configuration flow is inefficient for systems that use identical designs on multiple
FPGAs or that use multiple combinations of designs for a set of FPGAs. For systems that
configure multiple FPGAs with the same design, the SVF must still be created with separate
sets of commands and data for each FPGA. That is, the design data is duplicated for each
FPGA to be configured. For systems that use multiple combinations of designs across a set of
FPGAs, SVF files must exist for each possible combination of design assignments. Again,
design data is duplicated within the system. Because a one-to-one correspondence exists
between the original SVF file and the corresponding XSVF file used in the embedded
environment, the creating of inefficient SVF files equivalently affects the XSVF file storage
requirements.

Using Dynamic Targeting to Reduce System Storage Requirements
To improve the data storage efficiency of these particular systems, a special version of the
XSVF player is included in the XAPP058 download package. This special version of the XSVF
player uses XSVF files built to configure just one device and supports the ability to dynamically
target a given XSVF file to configure any compatible device in the scan chain. Only one XSVF
file per design is required. In a system that uses identical designs on multiple FPGAs, a single
XSVF (design) file can be reused to configure all of the FPGAs. In a system that uses multiple
combinations of designs for a set of FPGAs, separate XSVF files corresponding to each design
can be dynamically selected and targeted to the FPGAs.

The dynamic targeting feature reduces system storage requirements in the following systems:

• Systems in which FPGAs are configured with identical designs

• Systems in which a set of FPGAs can be configured with multiple combinations of
selected designs.

C-Code Files for the Dynamic Targeting XSVF Player
The files for this special version of the XSVF player are located in the dynamic_target directory
from the download package. The dynamic_target directory contains two files:
micro_dynamic_target.c and micro_dynamic_target.h. These two files are modified versions of
the base micro.c and micro.h source files from the src directory in the download package. The
code in the micro_dynamic_target.c file has been modified to support dynamic selection of the
device to be configured within a scan chain. The micro_dynamic_target.h file simply contains
the declaration of the modified procedural interface that supports this dynamic targeting
feature.

Substitute the dynamic_target files for the base micro.c and micro.h files in src directory to
build an XSVF player that supports the dynamic targeting feature:

• Copy dynamic_target\micro_dynamic_target.h src\micro.h

• Copy dynamic_target\micro_dynamic_target.c src\micro.c

Building SVF (XSVF) Files for Dynamic Targeting
An XSVF file that is used to configure a dynamically selected device at run-time must contain
just the set of commands and data to configure a single, compatible device.
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 33
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

To create an SVF file for dynamic targeting, use JTAG Programmer to:

1. Define a scan chain that contains just the single device.

2. Assign the design file to the device in the scan chain.

3. Select the device as the operation target.

4. Generate the SVF file that contains the program operation commands and data for the
assigned design.

Finally, the XSVF file must be created from the SVF file using the SVF2XSVF translator.

A separate XSVF file must be created for each design used to configure a device. These XSVF
files are individually used to configure selected devices in the system.

A Primer on the Dynamic Targeting Feature
The basic commands within an XSVF file are designed to shift instruction and data bits through
the JTAG scan chain into a target device. The commands in an XSVF file built for a single-
device scan chain effectively shift the instruction and data bits directly into the JTAG ports of the
target device. To dynamically retarget a single-device XSVF file to a specific device in a multi-
device scan chain, the XSVF player must account for the shift registers of the non-target
devices in the scan chain and insert the appropriate bits before or after the target device’s
instruction or data bit sets.

The IEEE Standard 1149.1 specifies the BYPASS instruction to consist of all one-bits and the
BYPASS data register to be exactly one-bit wide. With this information, the exact bit patterns for
the bypassed, non-target devices can be calculated. During an instruction shift, one-bits must
be shifted into the instruction registers of all the bypassed, non-target devices. During a data
shift, an extra data (zero) bit must be shifted into the bypass registers of all non-target devices.

Using the Special XSVF Player to Dynamically Select Target Devices
In the regular XSVF player, a pointer to the beginning of the XSVF data is first set. Then, the
start function (xsvfExecute) is called to execute the XSVF data. The same flow applies to the
special XSVF player with additional parameters that must be specified to the start function.

The primary function (xsvfExecute) that starts the special dynamic_target XSVF player has
been enhanced with five additional parameters. These parameters specify the number of
leading and trailing instruction and data bits to be inserted before or after the main set of bits
from the XSVF commands. An additional parameter is accepted that aligns Virtex configuration
data to a 32-bit boundary. (See XAPP139 for additional information on the Virtex 32-bit
configuration frame that imposes the 32-bit boundary requirement on the bitstream.)

The enhanced xsvfExecute function is declared in the micro_dynamic_target.h file as follows:

int xsvfExecute(int iHir, int iTir, int iHdr, int iTdr, int iHdrFpga);

The parameters are described in Table 5.
34 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

These parameters are equivalent to the HIR, TIR, HDR, and TDR commands in the SVF
specification. See the SVF specification for further details: http://support.asset-
intertech.com/svf.htm

From the given set of parameters, the micro_dynamic_target.c implementation automatically
adds the necessary set of complementary bits to the XSVF commands to compensate for the
bypassed devices in the scan chain.

Table 5: XSVF Player Parameters

Parameter Name Description

iHir Header Instruction
Register

The number of (one) bits to shift before the target
set of instruction bits. These bits put the non-target
devices after the target device into BYPASS mode.

The iHir value must be equivalent to the sum of
instruction register lengths for devices following the
target device in the scan chain.

iTir Trailer Instruction
Register

The number of (one) bits to shift after the target set
of instruction bits. These bits put the non-target
devices before the target device into BYPASS
mode.

The iTir value must be equivalent to the sum of
instruction register lengths for devices preceding
the target device in the scan chain.

iHdr Header Data Register The number of (zero) bits to shift before the target
set of data bits. These bits are placeholders that fill
the BYPASS data registers in the non-target
devices after the target device.

The iHdr value must be equivalent to the sum of
devices following the target device in the scan
chain.

iTdr Trailer Data Register The number of (zero) bits to shift after the target set
of data bits. These bits are placeholders that fill the
BYPASS data registers in the non-target devices

before the target device.

The iTdr value must be equivalent to the sum of
devices preceding the target device in the scan
chain.

iHdrFpga Header Data Register
for the Virtex FPGA
Commands

The number of (zero) bits to shift before the target
set of Virtex FPGA data bits. These bits are used to
align the configuration bitstream for Virtex devices
to a 32-bit boundary.

The iHdrFpga value must be equivalent to 32 minus
the sum of devices preceding the target device in
the scan chain. If no devices precede the target
device, the value is zero. If the sum of devices is
greater than 32, then the value must be 32 minus
the modulo [32] of the sum of devices preceding the
target device.
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 35
1-800-255-7778

http://www.xilinx.com
http://support.asset-intertech.com/svf.htm
http://support.asset-intertech.com/svf.htm

Xilinx In-System Programming Using an Embedded Microcontroller
R

Notes:

If all of the xsvfExecute parameters are equal to zero, then the special XSVF player
functionality is equivalent to the base XSVF player that takes an XSVF file created for a fully
specified scan chain! Thus, the special XSVF player with the dynamic targeting feature can be
used in both the normal (fully-specified XSVF) and special (dynamic targeting) modes.

Dynamic Target Example
To configuring four Virtex 300E devices with identical designs using a single XSVF source file,
the original SVF file must be created using the instructions from the “Building SVF (XSVF) Files
for Dynamic Targeting” section. Assuming the design for an XCV300E is located in the
design.bit file, the XSVF file must be created as follows:

1. Define a scan chain in JTAG Programmer with just the single XCV300E device.

2. Assign the design.bit file to the single instance of the XCV300E in the scan chain.

3. Select the XCV300E as the operation target.

4. Generate an SVF to program the XCV300E.

5. Translate the SVF to XSVF using the SVF2XSVF translator with the –fpga option.

In the embedded environment,

1. Reset the XSVF program pointers to point to the beginning of the XSVF data.

2. To program device #1, call the xsvfExecute function with the following parameters:
xsvfExecute(15, 0, 3, 0, 0)

3. Reset the XSVF program pointers to point to the beginning of the XSVF data.

4. To program device #2, call the xsvfExecute function with the following parameters:
xsvfExecute(10, 5, 2, 1, 31)

5. Reset the XSVF program pointers to point to the beginning of the XSVF data.

6. To program device #3, call the xsvfExecute function with the following parameters:
xsvfExecute(5, 10, 1, 2, 30)

7. Reset the XSVF program pointers to point to the beginning of the XSVF data.

8. To program device #4, call the xsvfExecute function with the following parameters:
xsvfExecute(0, 15, 0, 3, 29)

Further examples of the code for the four device Virtex scan chain and a four device XC18V00
scan chain can be found in the dynamic_target directory of the download package.

An example XSVF player executable that provides this dynamic targeting capability is available
under the playxsvf\Release_DT directory. This executable runs on a Windows
95/98/Me/NT/2000 PC with the Xilinx Parallel Cable III.
36 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

Appendix E:
Binary to Intel
Hex Translator

This appendix contains C-code that can be used to convert XSVF files to Intel Hex format for
downloading to an EPROM programmer. Most embedded processor code development
systems can output Intel Hex for included binary files, and for those systems the following code
is not needed. However, designers can use the following C-code if the development system
they are using does not have Intel Hex output capability.

Overview
The ISP controller described in this application note allows designers to program and test
XC9500/XL CPLDs from information stored in EPROM. This information is saved in a binary
XSVF file that contains both device programming instructions as well as the device
configuration data. The 8051 microcontroller reads the EPROM (or EPROMs) that contain the
XSVF file, converts the binary information to XC9500/XL compatible instructions and data, and
outputs the programming information to the XC9500/XL device through a 4-wire test access
port.

After an XC9500/XL design has been converted to XSVF format, the XSVF information is
converted to Intel hex format which is downloaded to an EPROM programmer. The resulting
EPROMs, containing the CPLD programming information, can then be used in this ISP
controller design.

/*
This program is released to the public domain. It

prints a file to stdout in Intel HEX 83 format.
*/

#include <stdio.h>

#define RECORD_SIZE0x10/* Size of a record. */
#define BUFFER_SIZE 128

/*** Local Global Variables ***/

static char *line, buffer[BUFFER_SIZE];
static FILE *infile;

/*** Extern Functions Declarations ***/

extern char hex(int c);
extern void puthex(int val, int digits);

/*** Program Main ***/

main(int argc, char *argv[])
{
int c=1, address=0;
int sum, i;
i=0;
/*** First argument - Binary input file ***/

if (!(infile = fopen(argv[++i],"rb"))) {
fprintf(stderr, “Error on open of file %s\n”,argv[i]);
exit(1);

}

/*** Read the file character by character ***/

while (c != EOF) {
sum = 0;
line = buffer;
for (i=0; i<RECORD_SIZE && (c=getc(infile)) != EOF; i++) {
XAPP058 (v3.0) January 15, 2001 www.xilinx.com 37
1-800-255-7778

http://www.xilinx.com

Xilinx In-System Programming Using an Embedded Microcontroller
R

*line++ = hex(c>>4);
*line++ = hex(c);
sum += c; /* Checksum each character. */

}
if (i) {
sum += address >> 8;/* Checksum high address byte.*/
sum += address & 0xff;/* Checksum low address byte.*/
sum += i; /* Checksum record byte count.*/
line = buffer; /* Now output the line! */
putchar(':');
puthex(i,2); /* Byte count. */
puthex(address,4); /* Do address and increment */
address += i; /* by bytes in record. */
puthex(0,2); /* Record type. */
for(i*=2;i;i--) /* Then the actual data. */
putchar(*line++);

puthex(0-sum,2); /* Checksum is 1 byte 2's comp.*/
printf("\n");

}
}
printf(":00000001FF\n");/* End record. */

}

/* Return ASCII hex character for binary value. */

char
hex(int c)
{
if((c &= 0x000f)<10)
c += '0';

else
c += 'A'-10;

return((char) c);
}

/* Put specified number of digits in ASCII hex. */

void
puthex(int val, int digits)
{
if (--digits)
puthex(val>>4,digits);

putchar(hex(val & 0x0f));
}

Revision
History

The following table shows the revision history for this document.

Date Version Revision

01/15/01 3.0 Revised Xilinx release.
38 www.xilinx.com XAPP058 (v3.0) January 15, 2001
1-800-255-7778

http://www.xilinx.com

	Summary
	Xilinx Families

	Introduction
	Programming Xilinx CPLDs, FPGAs, and Configuration PROMs
	JTAG Instruction Summary
	Instructions Supported by All Devices
	Instructions Common to CPLD, FPGAs, and Configuration Proms
	Instructions Supported by XC4000/Spartan Only
	Instructions Supported by Virtex Only
	Commands Supported by CPLDs and Configuration PROMs
	Instructions Specific to CPLDs and Configuration PROMs
	Instructions Specific to XC4000/Spartan
	Instructions Specific to Virtex
	Instructions Specific to Configuration PROMs

	Creating an SVF File Using JTAG Programmer
	EPROM Programming
	Software Limitations

	Hardware Design
	Hardware Design Description
	Estimated EPROM Memory Requirements
	Modifications for Other Applications
	Debugging Suggestions

	Firmware Design
	Memory Map
	Port Map
	TAP Timing
	XC9500/XL/XV Programming Algorithm
	Exception Handling
	XC4000 and Spartan Programming Algorithm
	Virtex Programming Algorithm
	CoolRunner Programming Algorithm
	XC18V00 PROM Programming Algorithm
	Conclusion

	Appendix A: SVF File Format for Xilinx Devices
	SVF Overview
	SVF Commands
	SDR, SIR
	RUNTEST

	Appendix B: XSVF File Format and Conversion Utilities
	XSVF Commands
	XTDOMASK
	XREPEAT
	XRUNTEST
	XSIR
	XSDR
	XSDRSIZE
	XSDRTDO
	XSDRB
	XSDRE
	XSDRTDOB
	XSDRTDOC
	XSDRTDOE
	XSETSDRMASKS
	XSDRINC
	XCOMPLETE
	XSTATE
	XENDIR
	XENDDR

	svf2xsvf File Conversion Utility
	mergexsvf File Merge Utility

	Appendix C: C�Code Listing
	C-Code Files
	Header Files

	Appendix D: Dynamically Selecting Target Devices for Configuration
	Using Dynamic Targeting to Reduce System Storage Requirements
	C-Code Files for the Dynamic Targeting XSVF Player
	Building SVF (XSVF) Files for Dynamic Targeting
	A Primer on the Dynamic Targeting Feature
	Using the Special XSVF Player to Dynamically Select Target Devices
	Dynamic Target Example

	Appendix E: Binary to Intel Hex Translator
	Overview

	Revision History

