
Summary Content Addressable Memory (CAM) or associative memory, is a storage device, which can be
addressed by its own contents. Each bit of CAM storage includes comparison logic. A data
value input to the CAM is simultaneously compared with all the stored data. The match result is
the corresponding address. A CAM operates as a data parallel processor. CAMs can be used
to design Asynchronous Transfer Mode (ATM) switches. Implementing CAM in ATM
applications are specifically described in this application note. As a reference, the application
note XAPP201 “An Overview of Multiple CAM Designs in Virtex™ Devices” presents diverse
approaches to implement CAM in other designs.

Introduction A CAM is a memory device used in applications requiring fast searches of a database, list, or
pattern. Image or voice systems, computer and communication systems are all users of CAM.
CAMs have a performance advantage over other memory search algorithms. This is due to the
simultaneous comparison of the desired information against the entire list of prestored entries.
CAMs are an outgrowth of RAM technology.

XAPP201 has an overview of CAM blocks versus RAM blocks. It also compares three
approaches to designing CAM in Virtex devices. This application note focuses on a large CAM
approach for ATM designs.

CAM in ATM
ATM switches, due to their connection based protocol, must translate each ATM cell address at
every point along the routing path. As shown in Figure 1, each ATM cell address is contained in
two fields in a 5-byte header. The Virtual Path Identifier (VPI) is eight to 12 bits wide. Usually
described as a 12-bit word. The Virtual Circuit Identifier (VCI) is 16 bits wide.

Application Note: Virtex Series and Virtex-II Series

XAPP202 (v1.2) January 6, 2001

Content Addressable Memory (CAM) in
ATM Applications
Author: Marc Defossez

R

Figure 1: ATM Cell Address

Header Payload

5 Bytes 48 Bytes

HEC

PT+CLPVCI (4)

VCI (8)

VCI (4)VPI (4)

VPI (8)

8 Bits

x202_01_022500
XAPP202 (v1.2) January 6, 2001 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Content Addressable Memory (CAM) in ATM Applications
R

An addressable space of 26.8 billion possible values is defined by 28 bits of VPI/VCI. Decoding
all these values in a short time is impossible. Fortunately, only a few thousand values are active
at once in a switch. The switch can maintain a table in memory of the outbound VPI, outbound
VCI, and port values corresponding to incoming cells. Figure 2 illustrates this point.

For example, if four thousand connections need to be active in a switch, the VPI/VCI values can
be stored in a 4096-word by 28-bit CAM. The resulting 12-bit address output can be used as an
index for the RAM table where the translated VPI/VCIs are stored.

CAM in Virtex Devices for ATM
The Virtex and Virtex-II architectures have two types of RAM internally: distributed RAM and
block RAM. Virtex devices can also access external RAM at the common speed of that RAM
using Virtex SelectI/O features. This CAM implementation uses the distributed RAM (built from
Look-Up Tables or LUTs) for the VPI/VCI table and the block RAM or an external RAM
component as the RAM data table.

CAM Bit Table

In this design example the VPI uses 12 bits and the VCI uses 16 bits hence a 28-bit wide
search table is essential. The connections list for a CAM is at least 4096 words long. Therefore,
the RAM size required is 28 t 4096 words. There are two types of memory in the Virtex and
Virtex-II architectures, distributed RAM and block RAM. Distributed RAM is built using the four,
4-input LUTs in a CLB. It can be configured as a 1-bit by 16 word RAM. Block RAM is an

Figure 2: Outbound VPI, Outbound VCI and Output Port Table

VPI VCI Output Port

X-bit, most 20-bit or 24-bit16-bit12-bit

4K entries

VPI

VCI

x202_02_073099
2 www.xilinx.com XAPP202 (v1.2) January 6, 2001
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

embedded RAM block that can be configured as a 1-bit by 4096 word, a 2-bit by 2048 word, a
4-bit by 1024 word, an 8-bit by 512 word, or a 16-bit by 256 word RAM.

The suggested approach for this design is to build the CAM in distributed RAM. The
implementation of a 1-bit by 4096 words RAM will require 256 RAM. Since this application
needs 28 bits by 4096 words, there is a requirement for 7,168 distributed RAM. The XCV400
device can be used for this purpose. The 20 block RAM available in the XCV400 can be used
as the output table.

By doing the compare table in distributed RAM, the other logic in the CLB (carry chain, muxes,
flip-flops, etc.) is still available to the designer. The Virtex datasheets are a good source of
information on the Virtex CLBs. When building the complete CAM described in this application
note, the LUTs required are 1.6 t 7168 = 11,469 LUTs.

The compare table needs to be initialized with data. This can be done by:

• Initializing at configuration by using the INIT parameter of the distributed RAM.

• Writing to a continuous list of data (block RAM).

• Or a combination of these methods.

No matter how the list is built, using the INIT parameter is always possible. Building the RAM
table as a consecutive list may lengthen the search as the list grows. It is prohibitive for even a
4096 word table. The distributed RAM approach appears more useful in this example. The table
in Figure 3 is built as a continuous list for initialization and as small parts of 16 entries for the
Compare-and-Match operation.

CAM Compare (ByteEngine)

The ByteEngine is the basic block of the CAM. The data width size is not a concern when using
the LUT approach. A straightforward data width of 16 bits is used in this basic building block
(12-bit VPI or 16-bit VCI). A combined VPI/VCI data width is possible (28-bit VPI/VCI).

Figure 3: Distributed RAM Table

F

0

254 B
locks of 16 E

ntries

FFF

FF0

Only four lowest
addresses used
to cycle in parallel
all the 256 small
RAM blocks.

Clk

WriteEna

RamAddress [11:0]

RamData [15:0]

Width = 16

Depth = 16

Depth = 16

x202_03_072699

Clk

WriteEna

RamAddress [11:0]

RamData [15:0]

0000

FFF

Fill or
modify
the RAM
search
table.

RAM
looks as
one
sequential
block.

Depth = 4069

Width = 16
XAPP202 (v1.2) January 6, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

The ByteEngine in Figure 4 is a small CAM used as often as needed to form the requested
CAM size. It has a compare table with 16 entries, the XNOR-gate to do the compare and all the
necessary logic for generating a valid and stable Match (HIT) signal.

The RAM table can be initialized using the RamData bus and cycling through the RAM by using
the RamAddress bus. Once the table is initialized, the RamWe signal is set to false, and
cycle-read can be done through the table. When a compare value drives the DataToComp bus,
the XNOR and the Wide-AND gate performs the Compare-and-Match operation. Only when all
XNOR are valid is a Match signal produced (Figure 4). A registered and combinatorial output of
the match signal is produced. Note: The combinatorial output can produce spikes. Therefore, if
it is not registered when the Match signal is produced, it must be registered at a higher level in
the design. A simulation of the output of this basic block is shown in Figure 5.

Figure 4: ByteEngine

LUT

C
A

R
R

Y
 C

H
A

IN
CombHit

RegHit

LUT
RAM

LUT
RAM

1

0

15

Rst

Clk

DataToComp[15:0]

StartComp

RAMData[15:0]

RAMAddr[3:0]

RAMWe

Clk

X202_04_122700

LUT
RAM

Figure 5: Functional Simulation of ByteEngine
4 www.xilinx.com XAPP202 (v1.2) January 6, 2001
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

CAM Size

By using the basic ByteEngine block, any size CAM can be built. Figure 6 details the 256-entry
table called EntriesEngine256.

EntriesEngine256 is a larger building block for designing large CAMs. It has only the necessary
logic to bank select a 16 ByteEngine block at the input, and to generate the Output Address and
the Match. The 16 ByteEngine blocks are put together to form a list with 256 entries. An
address decoder makes it possible to address (initialize) the list as one long table. On the
output, an encoder (Wide-OR-gate) is made for generating the Match signal. A second encoder
is made for generating the address where the Match occurred. With Virtex and Virtex-E devices
OR-gates are designed using the carry logic. For Virtex-II devices the OR-gates can be made
out of normal logic instead of only carry logic. The following example applications use the basic
block EntriesEngine256.

Figure 6: EntriesEngine256 CAM

DataToComp[15:0]

RAMData[15:0]

RAMAddr[3:0]

RAMWe

StartCompStartComp

Clk

15

15

DataToComp[15:0]

RAMData[15:0]

DataToComp[15:0]

RAMData[15:0]

StartComp

RAMAddr[3:0]

RAMWe

Clk

OR

OR

0 15

0 0

15

0

Hit RegHit

CombHitCombHit

WriteEna

RAMAddress[7:0]

Clk

UpAddr[3:0]

Hit256

SuccessFullMatch

X202_06_122700
XAPP202 (v1.2) January 6, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

CAM example

Figure 7 shows a 16 t 256 CAM using up to 257 Virtex slices. It will run at around 70 MHz in a
Virtex device.

Figure 8 shows a cycle diagram. The assumptions for the CAM are as follows:

- If DataToCompare = "1" and DataToRun = "0", then data can be clocked into the
DataToCompare register.

- If DataToRAM = "1" (the DataToCompare register is disabled) then data is passed to
the RAM.

- If RAMOrCnt = "0", then the CycleCnt is passed to the RAM for reading the contents.

- If RAMOrCnt = "1", then the addresses are passed to the RAM.

- To fill the RAM table: DataToRAM and RAMOrCnt must both = "1".

- Make DataToCompare = "1" and DataToRAM = "0" and set RAMOrCnt = "0".

- The "value_to_compare_to" can be loaded into the register.

- Make DataToCompare = "0" afterwards

- Start the cycle counter by bringing the signal StartCompare = "1".

When this is done, the cycle counter (CycleCnt) reads (CycleCnt) through the RAM data and
compares it against the DataToComp. When a match is found in one of the 16 banks (for 256
deep), the match register of that bank is set. The value is decoded and a Hit256 signal is
generated. Hit256 stops the cycle counter. MatchSuccess loads the "address composer" logic.
The address that matches the incoming data is generated out of the decoding of the bank
where the Hit is found and the state of the counter. Hit256 and StartCompare enable an
AddressMatch register to load the valid address.

When no Hit is found and the Cycle counter reaches the end, a CompleteMatch cycle signal is
generated and the Cycle counter is stopped.

Figure 7: 16 × 256 CAM

C
ycleC

nt

DataToComp[15:0]

RAMData[15:0]

RAMAddress[7:0]

WriteEna

StartComp

Clk

Rst

Hit256

Upaddr[3:0]

EntriesEngine256

Addr[7:4]

CycleCnt[3:0]

0

1

Addr[3:0]

MatchAddress[7:0]

TC (registered in counter) MatchComplete

Rst

Clk

StartCompare

RAMOrCnt

Address[7:0]

Data
DataCompareEn

DataRAMEn

MatchSuccess

x202_07_122700
6 www.xilinx.com XAPP202 (v1.2) January 6, 2001
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

Figure 8: Cycle Diagram

0 1 2 14 15CycleCnt

AddressMatch

AddressMatch

CompletedMatch

SuccessFullMatch

CompletedMatch

SuccessFullMatch

When no match is found, then the Cycle
Counter runs out, and a CompletedMatch
signal is generated. The address
'AddressMatch' will be "0000F."

Assume that a match is found at
the end of the cycle, then a CompletedMatch
signal will be generated and a valid
AddressMatch and SuccessFullMatch
are generated.

When the match is found somewhere during
the cycle, then no CompletedMatch signal will
be generated, but there will be a
SuccessFullMatch and AddressMatch.

0 1615
x202_07_073099

StartCompare

RAMOrCnt

DataToCompare

DataToRAM

Address

Data

Clk

Data to fill the RAM table
Value to compare to

Load the value to compare to

Up to here is filling the RAM Table
XAPP202 (v1.2) January 6, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

Figure 9 describes a 4096 word CAM built in the same manner using 16 basic
EntriesEngine256 modules and more decoding logic.

Figure 9 outlines a complete CAM solution using the block RAM as the output data table. The
data in the output table can be easily modified when using the full Dual Read/Write Port™
capabilities of the block RAM.

Figure 9: 4096 Word CAM

DataToComp[15:0]

RAMData[15:0]

RAMAddress[7:0]

WriteEna

Clk

Rst

Hit256 Hit256_15

Upaddr[3:0]

EntriesEngine256

15

DataToComp[15:0]

RAMData[15:0]

RAMAddress[7:0]

WriteEna

Clk

Rst

Hit256

Upaddr[3:0]

EntriesEngine256

1

C
ycleC

nt

DataToComp[15:0]

RAMData[15:0]

RAMAddress[7:0]

WriteEna

Clk

Rst

Hit256

WriteEna 0

WriteEna 0

WriteEna 15

Upaddr[3:0]

EntriesEngine256

UpAddr[11:8]

CycleCnt[3:0]

0

15

CycleCnt[3:0]
UpAddr[7:4]

AddressMatch[11:0]

UpAddress[7:4]

UpAddress[11:8]

SuccessFullMatch

Hit256_0

TC (registered in counter) CompletedMatch

Rst

Clk

StartCompare

SuccessFullMatch

AddrRAMOrAddrCnt

Address[7:0]
Address[11:0]

Address[11:8]

Data
DataToCompare

DataToRAM

0

OR

x202_09_122700

Hit256_0

Hit256_15

Figure 10: Complete CAM Solution

BlockRAM
or

External RAM

Port used to fill,
and possibly update
contiguously the
contents of this
table.

WEA

ENA

RSTA

CLKA

ADD[11:0]

DIA[19:0]

WEA

ENA

RSTA

CLKA

ADD[11:0]

DIA[19:0]

AddressMatch[11:0]

CompletedMatch

SuccessFullMatch

20 bits * 4K = 20 Virtex BlockRAM Modules = XCV400

DOB[19:0]

VPI or VCI Table
of 4K (or smaller)

Entries Build
from LUT RAM

Data[15:0]

Address[11:0]

DataToRAM

DataToCompare

RAMOrCnt

StartCompare

Clk

Rst

X202_10_122700

Clk
8 www.xilinx.com XAPP202 (v1.2) January 6, 2001
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

Summary CAM Design
• Use the 1t16 distributed RAM in an arrangement of 4096 words (or less). Look-up the

contents of the RAM in 16 clock cycles (Synchronous RAM).

• When a match is found, the generated address is used to select data in the block RAM or
in the external RAM outside the FPGA.

• Between two Compare-and-Match operations, the Search RAM Table can be easily
adapted. Since it appears as a normal consecutive RAM and only the address and data
are needed to write to a specific location in the table.

• By using the full Dual Read/Write Port capabilities of the block RAM, the data stored in the
block RAM can be independent of the modified search table. For ATM the data stored in
the block RAM is the Output Port.

• This design is not concerned about the size of the data or the size of the Search Table
because there is a new data look-up in every 16 clock cycles. Some extra cycles are
needed to latch the VPI or VCI address and to output the address found in the register
(maximum of 18 cycles).

• A CAM with 4096 entries will fit into a XCV600 or a XCV600E. This will use all 24 block
RAMs available as a 24-bit by 4096 word data table.

• Smaller CAMs such as an 256 words by 80 bits can be made entirely with distributed
RAM.

• Both the data to be compared and compare tables need to be initialized before using the
CAM. When initialization is done during operation the following occurs:

- The compare table in the distributed RAM needs to be switched to the continue RAM
configuration mode. During normal CAM operation, this memory is divided into
smaller words (16 words).

- The compare table in the block RAM can be updated at any time by using the second
port. The block RAM is a true Dual Read/Write Port RAM with two completely
separate ports.

Conclusion This CAM design enables a look-up every 18 cycles. Sixteen of these cycles are needed to
scroll through the small distributed RAM blocks. One clock cycle is needed to load the data to
be compared and one cycle is needed to output the matched value.

As demonstrated by the application note XAPP201, the flexibility of the Virtex and Virtex-II
series is a key advantage when designing a CAM. In addition to the solution in this application
note, XAPP203 and XAPP204 offer different approaches based upon different application
needs.

The most economical way of making a large CAM in ATM applications is to use both the
distributed RAM (basic configuration 1 t 16) and the block RAM (basic configuration 1 t 4096)
available in both Virtex and Virtex-II architectures. The distributed RAM and an external RAM
block can also be used to make a large CAM. The CAM compare table can be made using the
distributed RAM while the data can be stored in the block RAM or an external RAM. A CAM with
a 24-bit by 4096 word compare table will fit into the XCV600 or the XCV600E.
XAPP202 (v1.2) January 6, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

Appendix A:
Synthesizable
HDL Code
Reference
Design

This appendix describes a hierarchical, synthesizable design implementing a search engine or
CAM in Virtex slices.

The complete HDL code, the simulation files for ByteEngine, EntriesEngine and the 16 t ����

CAM are available in the reference design (File: xapp202.zip or xapp202.tar.Z).

The header of each VHDL module is listed below:

Module: MatchMachine4k.vhdl

-- Entity Name: MatchMachine4k

-- File Name: MatchMachine4k.vhd

-- File Path: D:\projects\Cam\vhdl\

-- Project :

--

-- Purpose: This is a machine that can do a CAM operation

-- on 16 bits for 4096 entries in 18 clock cycles.

-- files used :

-- ByteEngine.vhd

-- EntriesEngine256.vhd

--

---- Authors: Marc Defossez

--

-- Tools: Synplicity 5.2.1

--

-- Revision History: Created: 20/04/99

-- Last opened: Wednesday, 06 June 99

--

--

--

-- Disclaimer: THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY

-- WHATSOEVER AND XILINX SPECIFICALLY DISCLAIMS ANY

-- IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR

-- A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.

--

-- Copyright (c) 1999 Xilinx, Inc. All rights reserved.

Module: MatchMachine256.vhdl

-- Entity Name: MatchMachine256

-- File Name: MatchMachine256.vhd

-- File Path: D:\projects\Cam\vhdl\

-- Project :

--

-- Purpose: This is a machine that can do a CAM operation
10 www.xilinx.com XAPP202 (v1.2) January 6, 2001
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/

Content Addressable Memory (CAM) in ATM Applications
R

-- on 16 bits for 256 entries in 18 clock cycles.

-- files used :

--

-- ByteEngine.vhd

-- EntriesEngine256.vhd

--

...

Module: EntriesEngine256.vhdl

-- Entity Name: EntriesEngine256

-- File Name: EntriesEngine256.vhd

-- File Path: D:\projects\Cam\vhdl\

-- Project :

--

-- Purpose: This is the engine that compares in 16 clock

-- cycles 256 values against a given value on a

-- double byte width (16 bits).

-- This is one section of a VPI/VCI cam.

-- Makes use of

-- Byte Engine.vhd

-- EntireEngine256.ucf

--

...

Module: ByteEngine.vhdl

-- Entity Name: ByteEngine

-- File Name: ByteEngine.vhd

-- File Path: D:\projects\Cam\vhdl\

-- Project : CAM

--

-- Purpose: Engine over 16 bits.

-- Compares 16 bits over 16 deeh and give a Hit

-- signal if the 16 bit value is found in to table.

--

-- Because the depth will be bigger than 16 bit's there

-- is need for working in BANKS of 16.

-- Like for 256 entries, 16 banks will be needed.

-- In the file above this, two banks are combined.

-- Reason for doing this is RLOCing.

--

-- As the ByteEngine is made now, 8 CLBs are in this way:

-- If nicely lined up, there will be a column of 8 CLBs where
XAPP202 (v1.2) January 6, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Content Addressable Memory (CAM) in ATM Applications
R

-- slice S1 is used to store 2 x a RAM16X1S (16 bits).

-- and slice S0 will only contain 8 LUTs + carry chain for the

-- comparitor. Thus there is some mismatch between the RAM

-- column hight and the comparitor hight.

--

-- For UCF file test purposes, following is done

-- Combination of two of these ByteEngine.vhd files is done

-- in TwoBanks.vhd and a UCF file with RLOC's is made

-- (TwoBanks.ucf)

-- A small 256 entries engine is made, lateron this 256 engine

-- can be combined to form bigger chuncks of memory.

--

--

...

End of Appendix A.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/01/99 1.0 Initial release.

09/23/99 1.1 Initial Virtex_E Updates

01/06/01 1.2 Updated for Virtex-II series, added Figure 5, changed Figures 4, 6,
7, and 9.
12 www.xilinx.com XAPP202 (v1.2) January 6, 2001
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	CAM in ATM
	CAM in Virtex Devices for ATM
	CAM Bit Table
	CAM Compare (ByteEngine)
	CAM Size
	CAM example

	Summary
	CAM Design

	Conclusion
	Appendix A: Synthesizable HDL Code Reference Design
	Module: MatchMachine4k.vhdl
	Module: MatchMachine256.vhdl
	Module: EntriesEngine256.vhdl
	Module: ByteEngine.vhdl

	Revision History

