
Summary When designing digital systems, there is often a requirement to synchronize incoming data and
clock signals with an internal system clock, i.e., the internal and external clock are at exactly the
same frequency, but due to variable backplane, board, or application-specific standard product
(ASSP) delays, the phase relationship is not known. The circuit described in this application
note addresses this issue for both single traces and data busses up to 160 MHz in a
Virtex™-E, -7 device. The speed limitation is imposed by the maximum frequency that can be
accepted by the Data Locked Loop (DLL), in a mode where it is capable of providing both a new
clock and a new clock shifted by 90 degrees. A typical application is shown in Figure 1.

Introduction There are two classical methods of achieving synchronization. One is to sample the data with
four different clocks and decide which of the four possible clocks is most valid. A multiplexer is
used to provide the most valid clock to the rest of the required logic running at the
communications link speed. Since there are only four global clock buffers in a Virtex device,
they would be used up immediately with this method. In addition, inserting a multiplexer in the
clock path effectively disables the DLL clock zeroing function.

Application Note: Virtex Series

XAPP225 (v1.0) September 18, 2000

Data to Clock Phase Alignment
Author: Nick Sawyer

R

Figure 1: Typical Application of Data to Clock Phase Alignment

CLK0 CLK90

Virtex Series�
FPGA

x225_01_082200

DLL Phase�
Aligner�
Module

External�
Device

3

Phase�
Aligner�
Module

External�
Device

4
Clock 4

Clock 3

External�
Device

1

Data Bus�
n bits

Data Bus�
n bits

Data Bus�
n bits

Data Bus�
n bitsExternal�

Device
2

Clock 1

Clock 2

System Clock Example (155 MHz)

Devices using �
phase aligner modules(s) �

to transfer data

Devices using clock�
to transfer data
XAPP225 (v1.0) September 18, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www .xilinx.com/legal.htm .
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Data to Clock Phase Alignment
R
The other method (described in detail here) is to sample the data on four phases of the same
clock, decide which phase is the most "valid", and then resynchronize the data to the system
clock. This method is more resource efficient, requiring only one DLL and two global buffers.

The incoming system clock is fed to a DLL component, and the DLL CLK0 is used to provide a
clock (CLK) for the synchronizer circuit, as well as feedback for the DLL. There is also a version
of the input clock delayed by 90 degrees (CLK90), and synchronized with the original clock.
These waveforms are shown in the Figure 2 timing diagram along with the four possible data
arrival cases used in the next section.

As shown in Figure 3, the incoming data is applied to four flip flops, two clocked by CLK (one
rising edge and one falling edge), and two by CLK90 (rising and falling edges). It is important
that the delay from the input pin to these four flip flops be almost equal. This is easily achieved
by giving the software a MAXSKEW parameter for this net, of 500 ps, for example. The
absolute delay is irrelevant; only the skew is important. However, when dealing with data
busses, it is also prudent to apply a MAXDELAY parameter of approximately 1.5 ns to each net
in the bus.

Figure 2: Timing Diagram

A B C D

CLK

CLK90

CASE1 Data

CASE2 Data

CASE3 Data

CASE4 Data

x225_02_082400
2 www.xilinx.com XAPP225 (v1.0) September 18, 2000
1-800-255-7778

http://www.xilinx.com

Data to Clock Phase Alignment
R
The first flip flop is clocked by the rising edge of the clock described as time domain A. The
second flip flop is clocked by the rising edge CLK90 (time domain B); the third flip flop is
clocked by the falling edge of CLK, (time domain C); and the fourth is clocked by the falling
edge CLK90, (time domain D). As shown in the timing diagram (Figure 2), this gives four data
sample points, each separated by 90 degrees of the original clock frequency. In the case of a
160 MHz system clock, this logic is effectively running at 640 MHz.

These four sample points are then clocked once more, to remove any metastability issues and
to move them into the same time domain. This actually takes place in two stages (again to
avoid any four times clock frequency logic paths).

In the first decision stage, shown in Figure 4, the circuit detects only falling edges on the data
lines. This is easily changed to rising edges by reversing the connections to the AND gate.
Seven signals are now available for the decision process. These are labeled A to G. In Figure 5,
four mutually exclusive signals can be decoded, where only one transitions High whenever
there is a negative data transition. These four conditions are as follows:

Figure 3: Input Stage

DATA0
D

A01PRE

FDP

C

Q

Internal
CLK

DATA0

RST

D A02
PRE

FDP

CLK

RST

RST

C

Q

D
B01PRE

FDP

C

Q

Internal�
CLK90

D B02
PRE

FDP

CLK

RST

C

Q

RST

D
C01PRE

FDP

C

Q

D C02
PRE

FDP

CLK

RST

C

Q

RST

D
D01PRE

FDP

C

Q

D D02
PRE

FDP

CLK

RST

C

Q

x225_03_091800

1 Clock Period

1 Clock Period

1 Clock Period1 Clock Period

3/4 Clock Period

1/2 Clock Period

3/4 Clock Period 1/2 Clock Period
XAPP225 (v1.0) September 18, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Data to Clock Phase Alignment
R
1. B = 1 and C = D = E = 0. Time domain C recognized the transition first. Use the data
clocked in during time domain A for forwarding into the system. This is the data that has
been sampled midway through its period, i.e., the best noise margin.

2. C = 1 and D = E = F = 0. Time domain D was the first to see the data. Therefore, the data
from B is used for forwarding.

3. D = 1 and E = F = G = 0. Time domain A was the first to see the data. Therefore, the data
from C is used for forwarding.

4. A = 1 and B = C = D = 0. Time domain B was the first to see the data. Therefore, the data
from D is used for forwarding.

Figure 4: Decision Stage 1

D
PRE

FDP

E
A03

A02

RST

CLK C

Q D A
PRE

FDR

CLK

RST

C

Q

R

D
PRE

FDP

FB03B02

RST

CLK C

Q
D B

PRE

FDR

CLK

RST

C

Q

R

D
PRE

FDP

AND2B1

G
C03

C02

RST

CLK C

Q
D C

PRE

FDR

CLK

RST

C

Q

R

D
PRE

FDP

HD03
D02

RST

CLK C

Q
D D

PRE

FDR

CLK

RST

C

Q

R

x225_04_091800

AND2B1

AND2B1

AND2B1

Case 1

Case 2

Case 3

Case 4
4 www.xilinx.com XAPP225 (v1.0) September 18, 2000
1-800-255-7778

http://www.xilinx.com

Data to Clock Phase Alignment
R
The selection of data is done with a very simple multiplexer used to select data from the
appropriate time domain (Figure 6). The complexity increases, in the real world, since the data
is not fixed in time, but moves slightly with temperature and voltage changes. That is, it is quite
possible that the circuit will synchronize with one time domain, but will resynchronize later to
another. At 160 MHz, this implies that the data could have "moved" at least 1.6 ns. This also
illustrates another use for the circuit, in bus systems, where clock delays will change as boards
are added and removed. The circuit will automatically compensate for these delays.

Figure 5: Decision Stage 2

CASE 1

CASE 2

CASE 3

CASE 4
OR4

FDRE

USEA

CEUSED

AND483

CASE4

CLK

RST

D

CE

C

Q

R

FDRE

USEB

AND483

CASE3

CLK

RST

D

CE

C

Q

R

FDRE

USEC

AND483

CASE2

CLK

RST

D

CE

C

Q

R

A FDRE

USED

AND483

CASE1

CLK

RST

B
C
D

D
E
F
G

C
D
E
F

B
C
D
E

D

CE

C

Q

R

x225_05_082200
XAPP225 (v1.0) September 18, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Data to Clock Phase Alignment
R
As the data "moves", the multiplexer is used to select the data from one of the four available
time domains, with one exception. If the data moves from domain A to domain D, then
effectively one stage of delay to the circuit is added, i.e., a "wraparound" occurs. This is done
by detecting this transition (and also the opposite, i.e., going from D to A) and using a variable
length shift register. This is easily achieved by using the SRL16 primitives in the Virtex series.
When the circuit starts up, the SRL16s are programmed to be a 2-bit delay, if the transition
mentioned above (A to D) is detected, then the SRL16s are reconfigured to be a 3-bit delay,
and vice versa for D to A (Figure 7)

Figure 6: Data Multiplexer

USEA

USEB

USEC

USEC

CC0
AND2

USED

AUSED

CUSED

BUSED

DUSED

OR4

OR4

FDPE

SDATA
PRE

D

CE

CLK

RST

SD0

C

Q

USEA

AA0
AND2

USEB

BB0
AND2

USED

DD0
AND2

x225_06_081200
6 www.xilinx.com XAPP225 (v1.0) September 18, 2000
1-800-255-7778

http://www.xilinx.com

Data to Clock Phase Alignment
R
.

If no transition has occurred, the circuit is locked, i.e., the selection logic does not change state,
and if the transition wanders into another phase, then the selection logic is changed
appropriately, as described above.

Metastability Since it is possible that the data will not change state properly between clock sample points,
there is the possibility of metastability. As the data transition approaches a sample point, (in this
example "A"), it will eventually end up inside the setup time to the clock CLK, and one of several
outcomes could occur.

If the flip flop is fast enough to still see the zero, then A = 1 and B = C = D = 0, (i.e., case 1) and
all will work as previously described. If the flip flop does not see the zero, and remains High,
then B = 1 and C = D = E = 0, (i.e., case 2,) and again all will work properly.

Finally, the flip flop could briefly enter a metastable state. If this occurs, then the second
synchronizing flip flop will still "see" a one or a zero and will register that state, leading to the
same arguments as above. There is no problem as long as the load on the potentially
metastable flip flop is one, except when the metastable period is EXACTLY equal to the input
clock period. However, this event is extremely unlikely, and even then, there is one further
register in the data path. Therefore, the chance of a metastable event upsetting the operation
of the circuit is small.

Conclusion Virtex series devices can be used to interface to external components running off the same
clock but with an unknown phase relationship. This phase relationship can also be allowed to
vary up to plus-or-minus one clock cycle in operation without affecting data integrity. Data
transfers can therefore occur at speeds up to 160 MHz, without having to use a clocked
mechanism, which would waste clock resources, when using the phase aligner described in
this application note.

Figure 7: Variable Length Shift Register

D

CE

A0

A1

A2

A3

CLK

SRL16

Q

LOW

LOW

CLK

NCTRLCTRL

Transition Detection�
Logic

A02

B02

AA0

D

CE

A0

A1

A2

A3

CLK

SRL16

Q

LOW

LOW

CLK

CTRL

NCTRL

BB0

C02 D

CE

A0

A1

A2

A3

CLK

SRL16

Q

LOW

LOW

CLK

CTRL

NCTRL

CC0

D02 D

CE

A0

A1

A2

A3

CLK

SRL16

Q

LOW

LOW

CLK

CTRL

NCTRL

DD0

x225_07_082400

"1" = 2 bit delay�
"0" = 3 bit delay

USEA
USEB
USEC
USED
XAPP225 (v1.0) September 18, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Data to Clock Phase Alignment
R
Reference
Design

The reference design circuit is implemented in HDL. It is fully synthesizable and comes in two
variations. One variation is a master unit (sync_master.vhd), which will deskew one or two data
lines and provide the control signals for further slave units. The slave modules (sync slave.vhd)
also deskew two data lines and because all the clocks are on global buffers the slave modules
can be added to a design ad infinitum.

The reference design files (xapp225.zip) include a top.ucf file, containing all the timing
constraint information. It is important to use this file, because some paths are very fast. Of
course, in the case of busses, the data input delays have to be very closely matched. The best
way to achieve this is to locate the bus input pins closely together.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/18/00 1.0 Initial Xilinx release.
8 www.xilinx.com XAPP225 (v1.0) September 18, 2000
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Metastability
	Conclusion
	Reference Design
	Revision History

