
Summary

This paper identifies two points at which constant coefficient multipliers become the optimum choice in DSP, and implements
constant (k) coefficient multipliers (KCMs) in the XC4000E. It also reveals the solution to an interesting design problem
which emerges, and some additional enhancements since the original paper, introducing a hybrid technique, was first
published in 1993.

Xilinx Family

XC4000E

Demonstrates

Distributed product arithmetic to avoid data bottlenecks and
increase performance.

Introduction
The Xilinx XC4000E devices are becoming increasingly
employed to implement functions associated with Digital
Signal Processing (DSP). Often the key to such DSP func-
tions is the ability to implement multipliers which are both
efficient in their use of silicon, and of adequate perfor-
mance.

During 1993, a hybrid technique combining on-chip mem-
ory and fast carry logic addition was published, and its use
gained momentum.

In line with the requirements of the time, the technique
offered a way to vary the multiplicand for a high speed data
path. Although it was clear that a fixed multiplicand (or con-
stant coefficient, ‘k’) could also be performed with the
attractive advantage of occupying less silicon, it did not suit
the applications targeted. Now, in 1996, there is a demand
for DSP to be performed at the very highest of data rates.
This naturally leads to a high degree of parallel processing
where no longer is it always required to vary multiplicand
values.

This paper identifies two points at which constant coeffi-
cient multipliers become the optimum choice in DSP, and
implements constant (k) coefficient multipliers (KCMs) in
the XC4000E. It also reveals the solution to an interesting
design problem which emerges, and some additional
enhancements since the original paper.

High Performance = Constant
Coefficient
As always, the FIR filter forms such a perfect example by
which to explain this strange “equation” (see Figure 1).

During the period between the capture of data samples, the
DSP activity of an FIR filter must multiply and accumulate
each of the previous data samples (taps), by an associated
coefficient value. For a given filter characteristic, each of

the coefficients are fixed. The method employed in stan-
dard “DSP” devices is akin to the operation of a micropro-
cessor with a dedicated multiply and accumulate (MAC)
instruction performed in hardware. When implementing a
16 tap FIR filter, the tap data and associated coefficients
are applied to the MAC in turn. Not only does this require
16 MAC instructions to be performed with associated data
handling, but also a fully operational high performance mul-
tiplier in which both input operands will be changing. Even
provided with a MAC instruction rate of 20 ns (or 50 MIPS),
the maximum sample period of such a filter will be
restricted to 320 ns (16x20 ns), or 3.125 Msamples/s.
When such a sample rate is adequate, resource sharing
provides an optimum solution.

Constant Coefficient Multipliers for
the XC4000E

XAPP 054 December 11, 1996 (Version 1.1) Application Note by Ken Chapman

Figure 1: Principle of an FIR Filter

Input
Sample

Σ

Output Sample

TAP 0 TAP 2TAP 1 TAP n

xk0 xknxk2xk1

n=15
 DOUT = ∑ tn kn

n=0

APPLICATION NOTE
XAPP 054 December 11, 1996 (Version 1.1) 1

To increase the performance of this filter requires a degree
of parallel processing. In simple terms the introduction of a
second 50 MIP processor will double the sample rate to
6.25 Msamples/s. The additional overhead of resolving this
system would in fact prevent a full doubling of performance.
Multipliers in each processor still require full functionality as
each still services 8 taps with a single MAC. To continue
increasing performance, more and more processors can be
introduced. In the limit, there are 16 processors, each ser-
vicing a single tap. Although in theory the performance
would now have reached a full 50 Msamples/s, the system
servicing overhead would now severely impair this figure or
require several additional processors. This is by no means
a practical implementation! However, the important obser-
vation to make is that at this extreme limit of performance,
each multiplier is performing tap data multiplication by one
fixed coefficient value. This means that the fully functional
multiplier provided in the processor is no longer an opti-
mum solution.

Hence, in full parallel processing, constant (k) coefficient
multipliers (KCMs) can often be considered.

A Non-Linear Progression
As the technique for implementing KCMs in the XC4000E is
so efficient in its use of silicon, it becomes practical to opt
for a fully parallel implementation earlier than expected.

In general, a KCM is one quarter of the size of a fully func-
tional multiplier. Therefore, regardless of whether perfor-
mance targets have been reached by resource sharing a
single full functional multiplier up to four times, a full parallel
implementation using several KCMs becomes a smaller
solution, with increased performance a free bonus.

The Hybrid Technique

Back to School
Consider how decimal multiplication is performed by hand
using the following 85x37 example:

We use each digit of the second number in turn to multiply
all of the first number. Unfortunately, we do not naturally
know our 85 times table, so we actually perform a localized
single digit multiplication and add the value carried over
from the previous column. By this time, we do know our 7
times table having been “programmed” at school. Finally,
we add the two products.

Improving Speed
If we had to perform a lot of multiplications involving 85, it
would save a great deal of time to build an 85 times table.
This would reduce our task to looking up single digit prod-
ucts and then addition.

Logic
The hybrid technique of multiplication is a hexadecimal
equivalent of the long hand method. Look-up tables imple-
mented in RAM or ROM are programmed with an appropri-
ate times table. Since a single hex digit represents four bits,
the table has entries for 0 to 15(F). The table for multiplica-
tion by 85 decimal (55 Hex) is shown in Table 1.

Just as with manual multiplication, having the 85 times
table on hand makes this part of the multiplication process
very fast. It also eliminates the requirement to build logic
that emulates either a calculator (slow) or the memory of a
school child (huge!).

Just as before, the final result is obtained by simple addi-
tion, with appropriate offset. An 8-bit (2 hex digit) hybrid
multiplier as shown in Figure 2.

85
x 7

35 85
+ 560 x 37

595 7x85 595
3x85x10 + 2550

3145

Table 1: Table for Multiplication by 85 Decimal (55 Hex)

0 x 55 = 000 8 x 55 = 2A8
1 x 55 = 055 9 x 55 = 2FD
2 x 55 = 0AA A x 55 = 352
3 x 55 = 0FF B x 55 = 3A7
4 x 55 = 154 C x 55 = 3FC
5 x 55 = 1A9 D x 55 = 451
6 x 55 = 1FE E x 55 = 4A6
7 x 55 = 253 F x 55 = 4FB

0 x 85 = 0
1 x 85 = 85

85 2 x 85 = 170
x 476 3 x 85 = 255

 510 4 x 85 = 340
 5950 5 x 85 = 425

+ 34000 6 x 85 = 510
 404600 7 x 85 = 595

8 x 85 = 680
9 x 85 = 765

55
x 2B

3A7
+ 0AA0

0E47

B x 55
2 x 55
2 XAPP 054 December 11, 1996 (Version 1.1)

.

In an optimum implementation, the addition logic can be
reduced. During the addition of the two products obtained
from the look-up tables, the least significant hex digit (4
bits) is always added to zero. These bits will therefore not
be affected, or contribute a carry into the next column.

Engineering an Optimum Solution

FPGA Features
The XC4000 FPGA provides an excellent target architec-
ture for this hybrid technique for the following reasons:

• The configurable Logic Blocks (CLBs) contain all the
logic to perform 2-bit addition including a fast carry
propagation to adjacent CLBs. This yields optimum
adders of any size with the minimum of design effort.

• Any CLB can be used to represent RAM or ROM. In
each case, a CLB can be configured for either a
32 x 1-bit, or 16 x 2-bit memory. RAM or ROM of any
data width can then be made by combining these small
elements, and is ideal for building the look-up tables in
the multiplier.

Building a Look-up Table
In the 8-bit example, the look-up tables must provide 16
results ranging from 0 to 15 times the multiplicand value.
Such products are up to 12 bits wide (4+8). This requires 6
CLBs to implement as shown in Figure 3.

Programming the Table
The data content of each CLB memory is a bit-slice across
all the required products and is indicated in the 85 (deci-
mal) times table below (see Table 2). It is necessary to pro-
gram each memory element with its required pattern.

Figure 2: 8-bit Hybrid Multiplier with Optimum Adder Stage

X [7:0]

[7:4]

[3:0]

8

4

4

12

A
D
D

LOOK - UP TABLE

LOOK - UP TABLE
0 x k = 0
1 x k = 2k
3 x k = 3k
.
.
15x k = 15k

0
k
2k
3k
.
.
15k

12

12

8

4

16

Y = kX

Figure 3: Forming a 12-bit Wide Look-Up Table Using
Six XC4000 CLBs

4

 4

4

4

 4

4

p11
p10

p9
p8

p7
p6

p5
p4

p3
p2

p1
p0

= CLB4
XAPP 054 December 11, 1996 (Version 1.1) 3

In a RAM based hybrid multiplier, as used so often in the
past, a simple state machine is used to control a counter
and accumulator which program the appropriate pattern
into the memory elements. In effect, the designer never
needs to work out what the bit-slice patterns really are.
However, when designing a fixed coefficient multiplier using
ROM tables, the designer must state the memory contents.
See Table 2.

Standard Tools
In general, a designer can not be expected to manually per-
form the bit-slice process. Such a task is prone to errors at
the very least. For this reason a memory generator utility is
provided into which the designer specifies the size of ROM
required and the data which it should hold. For example:

DATA 000, 055, 0AA, etc.

The memory generator (MemGen) rapidly produces a
netlist with the required number of CLBs tagged with bit-
slice data for programming.

Topology
In common with just about everything else in nature, the
layout of logic gates in a structured and orderly manner
yields improvement in several ways. First, local proximity of
communicating elements not only reduces time delay for

the propagation of signals, but also avoids congestion,
which expedites the routing process. Secondly, an ordered
placement (or floorplan) improves density, making optimum
use of the target silicon. Finally, when provided with imple-
menting a whole system, the more detail that is resolved
and fixed in each module, the simpler it is for people and
software tools to make rapid progress.

The hybrid method of producing KCM modules, while opti-
mum in size and performance, are in themselves quite
involved subsystems. A 16-bit version would in fact require
eighty of the 16x1 ROM elements to build the four look-up
tables, two 20-bit adders, and one 24-bit adder (where
each bit of an adder requires sum and carry logic). In addi-
tion, 160 registers are required to provide full data path
pipelining for maximum data rate should it be required. In
total that is 368 discernible logic functions to be arranged in
an optimum relationship to each other.

Jig-Saw Puzzle
Automatic placement software has been evolving for many
years, not only in the area of Field Programmable Logic, but
also in standard cell, gate array and PCB development.
These tools are now very good, often producing results bet-
ter than any novice user. However, just like any 400 piece
jig-saw puzzle, it takes intense processing and time to com-
plete. Implement an FIR filter using several KCMs and sud-

p7 = DB6C

Table 2: Bit Slice Data for an 85 (Decimal) Look-Up Table

Address Data
(hex) (hex)

p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

0 x 55 = 000 = 0 0 0 0 0 0 0 0 0 0 0 0
1 x 55 = 055 = 0 0 0 0 0 1 0 1 0 1 0 1
2 x 55 = 0AA = 0 0 0 0 1 0 1 0 1 0 1 0
3 x 55 = 0FF = 0 0 0 0 1 1 1 1 1 1 1 1
4 x 55 = 154 = 0 0 0 1 0 1 0 1 0 1 0 0
5 x 55 = 1A9 = 0 0 0 1 1 0 1 0 1 0 0 1
6 x 55 = 1FE = 0 0 0 1 1 1 1 1 1 1 1 0
7 x 55 = 253 = 0 0 1 0 0 1 0 1 0 0 1 1
8 x 55 = 2A8 = 0 0 1 0 1 0 1 0 1 0 0 0
9 x 55 = 2FD = 0 0 1 0 1 1 1 1 1 1 0 1
A x 55 = 352 = 0 0 1 1 0 1 0 1 0 0 1 0
B x 55 = 3A7 = 0 0 1 1 1 0 1 0 0 1 1 1
C x 55 = 3FC = 0 0 1 1 1 1 1 1 1 1 0 0
D x 55 = 451 = 0 1 0 0 0 1 0 1 0 0 0 1
E x 55 = 4A6 = 0 1 0 0 1 0 1 0 0 1 1 0
F x 55 = 4FB = 0 1 0 0 1 1 1 1 1 0 1 1

1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0
4 XAPP 054 December 11, 1996 (Version 1.1)

denly the puzzle grows to 3000 pieces! Unlike a jigsaw,
there is not just one solution. Instead there are thousands
of solutions ranging from very good (high performance), to
very poor (low performance).

Since KCMs are fixed functions which are likely to be used
repeatedly in a system, it makes sense to complete these
smaller “jig-saws” once and for all, effectively making some
“larger pieces.”

Relationally Placed Macros
The Xilinx software tools (XACTstepTM) provide a method
for tagging logic elements with placement information rela-
tive to other elements. This mechanism permits macros to
be shaped while not defining an exact position for any one
element on the die. A KCM can now be engineered into
shape with consideration for performance, connectivity and
overall dimensions. Tagging up to 368 elements in a macro
in this way is not for the faint hearted, but it does only need
to be done once, and it makes near perfection available for
all subsequent uses of each KCM (see Figure 4). Manual
floorplanning or automatic placement of a system also
becomes a large piece jig-saw as opposed to a large jig-
saw of many pieces!

There’s Always a Problem
In order to tag logic elements with these relative place-
ments (RLOC parameters), these elements must be acces-
sible. Unfortunately the memory generation utility can be
considered as a specialized synthesis program. The mem-
ory elements which form the look-up tables of a KCM do
not exist until synthesized by the program and conse-
quently RLOC tags would need to be added to every indi-
vidual element after each new look-up table was
synthesized. That would be eighty tags for every 16-bit
KCM!

To gain access to memory elements earlier, the memory
primitives must be directly specified in the macro. This
solves the issue of applying RLOC tags, but brings back the
issue of how to specify the bit-slice data for each memory
element forming the look-up tables.

Where There’s a Will There’s a Way
Faced with having to use memory primitives in order to
define the placement, a new user-friendly way to program
the look-up tables is required. The solution is a new soft-
ware utility.

The program is required to perform the same bit-slice task
as the memory generation utility, but instead of synthesiz-
ing the memory elements required, it needs to identify
existing memory elements and change their programming
data (INIT property).

Regardless of the method used for design entry (sche-
matic, VHDL, etc.), the processing of a design results in
some form of “Netlist” describing the types of components
and their connectivity. The Xilinx Netlist Format (XNF), in
common with many other netlists, is a fairly simple ASCII
file in which locating logic elements is easy. Substituting the
programming data for these elements is then a straight for-
ward process of string manipulation and file handling; see
Figure 5.

Figure 4: RPM of a 16-Bit Pipelined KCM
XAPP 054 December 11, 1996 (Version 1.1) 5

.

Capitalizing on Software
The primary purpose of this software utility is to generate
memory bit-slice data, and then perform string substitution.
However, having covered such basic requirements, a soft-
ware utility can add value of its own.

The Calculator
Although very obvious, the first value the program can give
is the fundamental data for the look-up table. The user
should only need to specify the constant (k) for the multi-
plier and subsequently all details of the table (as in Table 2)
can be performed.

The hybrid technique is ultimately an integer multiplier.
Even so, this does not prevent fractional multiplication from
being performed since integers can be used to represent

fixed point values. In this example, the same binary pat-
terns illustrate true integer and fixed point multiplication
(note the position of the binary point in the result).

83 x 29 = 240710

01010011 x 00011101 = 0000100101100111

10.375 x 3.625 = 37.60937510

01010.011 x 00011.101 = 0000100101.100111

In this case the software utility would help the user by per-
mitting constants to be entered in their true form, but then
allowing the hybrid technique to formulate the best position
for the binary point to both minimize rounding errors and
maximize result resolution. Some additional research is
required before making this automatic.

It is important that designers today realize that “integer”
does not exclude fractions; they are just hiding!

Figure 5: Schematic and Netlist for Two ROM Elements

LOW_PROD10

LOW_PROD9
ROM16X1

A 0 0

A 1

A 2

A 3

A 0 0

A 1

A 2

A 3

RLOC = R0C0

I NI T = B37C

RLOC = R1C0

I NI T = 2A1F

ROM16X1

LP10

LP9

SYM, LP9, ROM, SCHNM=ROM16X1, LIBVER=2.0.0, DEF=ROM, RLOC=R1C0, INIT=2A1F
PIN, A0, I, X0
PIN, A1, I, X1
PIN, A2, I, X2
PIN, A3, I, X3
PIN, O, O, LOW_PROD9
END
SYM, LP10, ROM, SCHNM=ROM16X1,LIBVER=2.0.0, DEF=ROM, RLOC=R0C0, INIT=B37C
PIN, A0, I, X0
PIN, A1, I, X1
PIN, A2, I, X2
PIN, A3, I, X3
PIN, O, O, LOW_PROD10
END
6 XAPP 054 December 11, 1996 (Version 1.1)

Negative Thoughts
Representing negative values can be performed in two
ways:

• Signed Binary – A bit is used as a flag to indicate that
the value is negative. The value is then represented in
standard unsigned binary:

-12 10001100

• Twos-complement – This format still uses the leading
bit to represent the polarity, but negative values now
require interpretation:

-12 11110100

Signed Binary has an initial simplicity, but during arithmetic
operations the sign bits require separate handling. Twos
complement representation inherently processes using
standard arithmetic logic for addition and hence has
become the generally adopted format in most microproces-
sors and digital systems.

The hybrid technique described thus far has only consid-
ered positive values for coefficient and incoming data. It is
possible for the technique to also handle twos complement.

The partial products emerging from the look-up tables are
applied to adders. As long as the partial products are them-
selves in twos complement format then this section
requires no special logic. It is important to sign extend one
input to each adder to compensate for the offset (see
Figure 6)

So the mechanism for implementing signed multiplication is
contained in the look-up table data. For negative coeffi-
cients (k) the look-up table becomes filled with negative val-
ues, i.e. if k = -3 then each look-up table is programmed
with; 0, -3, -6, -9, -12, etc. This will then produce correct
results providing the input data (x) is still unsigned binary.
When the input (x) is also twos complement there would be
a failure; consider X = -1, now the bit pattern of “1111 1111”
will attempt to access 15k (F x k) from each look-up table
and produce totally the wrong result.

The art is to analyze a twos complement number in a par-
ticular way. The leading bit not only indicates the polarity of

the data, but can be considered to be the only negative
contribution to the value. For example, the most significant
bit of an 8 bit number normally represents 12810 (i.e., 27).
However, in a twos complement 8 bit number, this one bit
now represents -128, but with all other bits still representing
positive contributions to the total value (see Table 3)

Looking now at X = -1, it can be seen to be made up as fol-
lows; -128 +64 +32 +16 +8 +4 +2 +1 = -1. It can be seen
that the lower four bits (bits 3 down to 0) still form an
unsigned binary number, and hence the look-up table
which these lower bits address remains the products 0k to
15k.

The upper four bits (bits 7 down to 4) actually form a 4-bit
twos complement number which can represent values -8
up to +7. The look-up table which these address must be
programmed with products which reflect these values.
These are 0k to 7k, followed by -8k to -1k in ascending
address order. For larger operands, such as 16 bits where
four look-up tables are employed, only the look-up table
associated with the sign bit of “X” requires this special pro-
gramming consideration. Such considerations are best
removed from the designer and implemented in the soft-
ware utility.

Results
The KCMs which have been produced at time of publication
are 8, 10, and 16-bit versions. The 8 and 16-bit versions
often form a reference point for many users as well as inter-
facing well with microprocessors. The 10-bit version is
more practical for several of today’s video applications and
definitely proves to be fast enough.

Since all details of the KCM size and shape are fixed, the
number of CLBs (configurable logic blocks) occupied is
known before implementing the macro on silicon. Table 4
indicates this CLB count for each KCM. Often in the combi-
natorial KCMs, several of the CLBs are not fully utilized and
may implement additional logic in a system design. Also,
unused CLBs will be removed by the software should they
not be required, such as when using only 16 of the 32 bit
result from a 16-bit KCM.

Performance in system depends on three factors:

• Speed grade of device.
• Quality of interconnection within macro.
• Connectivity of macro to surrounding system.

The -3 speed grade was selected. This grade is the fastest
XC4000 available today (January 1996), for which the fig-
ures are fully defined. Faster silicon is available but prelim-
inary figures would introduce uncertainty. The static timing

Figure 6: Sign Extension of Partial Products During
4-bit Offset Addition

1111 1110 0110 1101

0010 1011 1001

0010 1011 1001 1101

Sign
Extend

Low Product (x1)

High Product (x16) +
Adder
Bypass

Table 3: Bit Values for an 8-bit Twos Complement
Number

Bit 7 6 5 4 3 2 1 0
Value -128 +64 +32 +16 +8 +4 +2 +1
XAPP 054 December 11, 1996 (Version 1.1) 7

analyzer (XDelay) identifies the critical path in a design
independent of test vectors. The performance figure it
specifies is for highest temperature and lowest voltage
(worst-worst-case).

While the KCMs are defined with regard to placement
(shape), their connectivity internally and externally is still
dependent on automatic routing tools. Analyzing several
designs containing KCMs indicated that so long as the
KCM was communicating with logic in relatively close prox-
imity, the critical path was actually within the KCM macro
(more specifically, associated with the final adder stage).
The close placement of these internal logic elements then
leads to very little variation in results. Table 4 presents per-
formance allowing for connection to other logic in the
FPGA.

Analysis
Fully functional multipliers (both inputs changing simulta-
neously) have been the subject of investigation within Xilinx
for the past year. There are several methods with various
advantages and disadvantages. An overview of all tech-
niques in the -3 speed grade is given in Table 5.

Although in some cases these techniques may have even
higher performance than a KCM, such speed results from
the highest number of CLBs. In general a KCM is 3 to 3.8
times smaller than a fully functional multiplier while offering
comparable performance.

Conclusions

KCM System Advantage
Where fixed coefficients can be employed in a system,
employing 3 to 4 KCM macros in place of one fully func-
tional multiplier will return higher system performance. This
distributed product arithmetic will also avoid data “bottle-
necks,” further increasing performance. Returning to the
example of an FIR filter, it has been very easy to obtain per-
formance greater than 50 Msamples/s on a single FPGA
using KCMs.

Engineering Solutions
This paper has attempted to describe not only the results of
a project, but also the engineering involved in arriving at a
solution. The technique of forming “near perfect” logic tem-
plates and then developing a simple software utility to mod-
ify the parameters would appear to be suitable for many
applications. Even at a system level, it is common for much
logic to remain unchanged, i.e. a UART could have a logic
template, and the baud rate could be modified to the exact
application requirement.

FPGAs Are Not Constant
It should always be remembered that FPGAs such as the
XC4000 are SRAM based devices and can be reconfig-
ured. This means that a KCM is only constant for a given
configuration and can easily be modified. This proves use-
ful during the tuning of a system or for future field upgrades.

Table 4: Size and Performance for 8, 10 and 16-bit
KCMs (XC4000E-3).

Operand
Size

Combinatorial
Delay (ns) CLBs

Pipelined
Perfor-
mance
(MHz)

No. of
Stages CLBs

8 19 19 66.5 2 20
10 29 39 58.2 2 40
16 41 75 50.0 3 80

Table 5: Overview of Size and Performance for Fully
Functional Multipliers

Operand Size CLBs
Combinatorial

Delay (ns)
8 57 to 73 23 to 36

16 230 to 270 38 to 84

The Programmable Logic CompanySM

© 1996 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Pro-
grammable Logic Company is a service mark of Xilinx, Inc. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patent, copy-
right or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in its prod-
ucts. Products are manufactured under one or more of the following U.S. Patents: (4,847,612; 5,012,135; 4,967,107; 5,023,606; 4,940,909; 5,028,821; 4,870,302;
4,706,216; 4,758,985; 4,642,487; 4,695,740; 4,713,557; 4,750,155; 4,821,233; 4,746,822; 4,820,937; 4,783,607; 4,855,669; 5,047,710; 5,068,603; 4,855,619;
4,835,418; and 4,902,910. Xilinx, Inc. cannot assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other
third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

Headquarters Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (800) 255-7778
or 1 (408) 559-7778
Fax: 1 (800) 559-7114

Net: hotline@xilinx.com
Web: http://www.xilinx.com
8 XAPP 054 December 11, 1996 (Version 1.1)

	Introduction
	High Performance = Constant Coefficient
	A Non-Linear Progression

	The Hybrid Technique
	Back to School
	Improving Speed
	Logic

	Engineering an Optimum Solution
	FPGA Features
	Building a Look-up Table
	Programming the Table
	Standard Tools
	Topology
	Jig-Saw Puzzle

	Relationally Placed Macros
	There’s Always a Problem
	Where There’s a Will There’s a Way

	Capitalizing on Software
	The Calculator
	Negative Thoughts

	Results
	Analysis
	Conclusions
	KCM System Advantage
	Engineering Solutions
	FPGAs Are Not Constant

