
Summary

This application note describes a specific design for implementing a high speed, full precision, adaptive filter in the
XC4000E/EX family of FPGAs. The design may be easily modified, and demonstrates the suitability of using FPGAs in
digital signal processing applications.

Xilinx Family

XC4000 Series

Demonstrates

Adaptive filters and FPGA-based DSP design techniques

General Description of Adaptive
Filters
Adaptive filters are digital filters capable of self adjustment.
These filters can change in accordance to their input sig-
nals. An adaptive filter is used in applications that require
differing filter characteristics in response to variable signal
conditions. Adaptive filters are typically used when noise
occurs in the same band as the signal, or when the noise
band is unknown or varies over time.

The adaptive filter requires two inputs: the signal and a
noise or reference input. An adaptive filter has the ability to
update its coefficients. New coefficients are sent to the filter
from a coefficient generator. The coefficient generator is an
adaptive algorithm that modifies the coefficients in
response to an incoming signal. In most applications the
goal of the coefficient generator is to match the filter coeffi-
cients to the noise so the adaptive filter can subtract the
noise out from the signal. Since the noise signal changes
the coefficients must vary to match it, hence the name
adaptive filter. The digital filter is typically a special type of
finite impulse response (FIR) filter, but it can be an infinite
impulse response (IIR) or other type of filter.

Adaptive filters have uses in a number of applications
including noise cancellation, linear prediction, adaptive sig-
nal enhancement, and adaptive control.

General Description of FPGA-based
Signal Processing
Most digital signal processing done today uses a special-
ized microprocessor, called a digital signal processor,
capable of very high speed multiplication. This traditional
method of signal processing is bandwidth limited. There is
a fixed number of operations that the processor can per-
form on a sample before the next sample arrives. This limits
either the applications that can be performed on a signal or
it limits the maximum frequency signal that the application
can handle. This limitation stems from the sequential

nature of processors. DSPs using a single core can only
perform one operation on one piece of data at a time. They
can not perform operations in parallel. For example, in a 64
tap filter they can only calculate the value of one tap at a
time, while the other 63 taps wait. Nor can they perform
pipelined applications. In an application calling for a signal
to be filtered and then correlated, the processor must first
filter, then stop filtering, then correlate, then stop correlat-
ing, then filter, etc. If the applications could be pipelined, a
filtered sample could be correlated while a new sample is
simultaneously filtered. Digital Signal Processor manufac-
turers have tried to get around this problem by cramming
additional processors on a chip. This helps, but it is still true
that in a digital signal processor most of your application is
idle most of the time.

FPGA-based digital signal processing is based on hard-
ware logic and does not suffer from any of the software-
based processor performance problems. FPGAs allow
applications to run in parallel so that a 128 tap filter can run
as fast as a 10 tap filter. Applications can also be pipelined
in an FPGA, so that filtering, correlation, and many other
applications can all run simultaneously. In an FPGA, most
of your application is working most of the time. An FPGA
can offer 10 to 1000 times the performance of the most
advanced digital signal processor at similar or even lower
costs.

Adaptive Filter Design Overview
This application note is based on a 12 bit data, 12 bit coef-
ficient, full precision, block adaptive filter design. This
design can be modified to accommodate different data and
coefficient sizes, as well as lesser precision. The applica-
tion note covers how to modify the design including the
trade-offs involved. The filter is engineered for use in the
XC4000E and XC4000EX families. The synchronous RAM
and carry logic in these families make this design possible.

Block Adaptive Filter

XAPP 055 January 9, 1997 (Version 1.1) Application Note by Bill Allaire and Bud Fischer

APPLICATION NOTE
XAPP 055 January 9, 1997 (Version 1.1) 1

.

There are a large number of designs that could fit this appli-
cation. This design has a good balance between perfor-
mance and density (gate count). This design can sustain a
15.5 MHz, 12 bit sample rate with an unlimited number of
filter taps. Modified versions of this design can provide
higher throughput at the expense of consuming more
resources, or modified versions can provide better
resource efficiency at a lower performance. Design modifi-
cations are discussed later in this application note.

Figure 1 is an overview of the entire adaptive filter. There
are four basic components to the filter: the Table Generator,
the Data Framer, the Filter Tap, and the Adder Tree.

The Filter Tap Design
The heart of any filter is the tap. The tap multiplies coeffi-
cient data (a constant) by sample data (variable input data)
and outputs the result. A new result is calculated for every
sample. The tap also forwards the sample data to the next

tap in the filter. In the case of the adaptive filter the coeffi-
cient can be changed periodically.

To conserve resources the filter tap described in this appli-
cation note imports the sample data in four pieces. Each
piece is multiplied by the coefficient to produce a partial
product. The partial products are added together to pro-
duce the sample’s final result for the tap. This tap has three
main sections: Time Skew Buffer, Partial Product Multiplier,
and Scaling Accumulator.

Implementing separate scaling accumulators in each tap
increases the performance of the filter. Fewer resources
could be used by sharing a single scaling accumulator at
the output of the adder tree. However, adder trees are
inherently slower than the tap. If they are used at the bit-
rate they will limit the performance. By replicating the scal-
ing accumulator in each tap, the adder tree operates at the
word rate, and its delay is non-critical.

Figure 1: Block Diagram of the Block Adaptive Filter

Table
Generator

Data
Framer TAP 0

TAP 1

TAP N

LUT Data

LUT Addr

flagged triplet

flagged triplet Adder

 Adder

 Adder

 4x CLK

 data-In

Tap_addr

coefficients

clk12

15

4

Tap_sel

4

25

25

25

26

27
2 XAPP 055 January 9, 1997 (Version 1.1)

.

The Tap Time Skew Buffer
The tap is depicted in Figure 2. The incoming data has
already been broken into 4 bit pieces (3 bits data, 1 control)
by the Data Framer before it enters the tap. The data enter-
ing the tap is placed in the Time Skew Buffer (TSB). The
TSB is simply a 4 x 4 bit shift register. The TSB is able to
contain an entire sample (4 pieces of data, 4 bits each),
storing the filter data. The TSB shifts 4 bit data out every
clock cycle to both the Partial Product Multiplier and the
next tap. The TSB is not strictly necessary for Tap 0, but
can be included to make all the taps identical.

The Tap Partial Product Multiplier
The Partial Product Multiplier is a RAM look-up table. The
theory behind a look-up table (LUT) multiplier is straightfor-
ward. A 4-bit variable, for example, (the data) multiplied by
a constant (the coefficient) has only 16 possible solutions.
These solutions can be pre-calculated. If the solutions are
accurately loaded into a 16 word RAM then the 4 bit data
can be used as a read address to the RAM to select the
correct partial product result for itself.

The filter is adaptive, meaning that the coefficients will
change, therefore, the LUT must be able to change. To con-
tinue processing samples while new table results are calcu-
lated requires two look-up tables. One table can be
providing answers while the other is being updated with
results calculated using a new coefficient. Two multiplexers
determine which LUT is reading data out and which is writ-
ing data in. The two multiplexers receive read address lines
(Data) and write address lines for both LUTs. A Bank_sel

line is sent to each multiplexer to select either the read
address or write address for each LUT. The Bank_sel line is
inverted to one of the multiplexers so that a write address is
always available to one LUT while a read address is being
sent to the other LUT.

LUTs are a straightforward, high-performance method of
generating filter tap solutions, but they are very resource
intensive. A standard LUT for a 12 bit filter tap would
require a RAM of 4K words (24 bit words) to provide every
possible result. An adaptive filter requires two LUTs per tap,
quickly making this method unfeasible. To be more
resource efficient the sample data is partitioned into 4 seg-
ments.

Each sample is divided into 4 sections of 3 bit data which is
called an octet. A control signal accompanies every octet.
Each octet, with its control signal, acts as a four line read
address bus for a 16 word RAM-based LUT. Each word is
15 bits (12 bit coefficient multiplied by a 3 bit octet). The
results from the 4 octets in each sample are then accumu-
lated to produce the tap’s complete, full-precision solution.

There are 4 octets per sample, so the octets must be pro-
cessed at a clock rate equal to 4 times the sample rate.
Therefore the sample rate is one quarter of the device max-
imum throughput speed. A later section in this application
note will discuss methods for running higher sample rates.

The octets, generated in the Data Framer, are arranged
and presented to the filter tap from least significant octet to
most significant octet. See Figure 3 on page 4.

Figure 2: Block Diagram of the Filter Tap

Time
Skew
Buffer

Mux

Mux

Write_address

Mux x

 Adder

Mux Reg

Shift
Reg

MSB_add

LSB_in
LSB_out

Tap_out

First_oct

13

2416

9

3

1616

15

16

15

15

15

Read
data

4

4

4

4

4

15

Bank_sel

To next tap TSB

Tap_sel

write_en

write_en

Scaling A ccumula tor Sec tionTime Sk ew Buffer Section

Write_Data

Partial Pr oduct Multiplie r Sec tion

L
U
T

R
E
G

L
U
T

R
E
G

R
E
G

XAPP 055 January 9, 1997 (Version 1.1) 3

.

The LUT values are shown in Table 1. Normally the 3 bit
octets would only require an eight word LUT to cover every
possible result. The most significant octet (MSO), however,
carries signed data and must be handled as an exception.
The control signal accompanying every octet acts as an
exception indicator. The added control signal occupies the
highest address line in the now 4 bit data. The control sig-
nal is only asserted for the most significant octet so that the
address of the MSO always points to the upper 8 words of
the LUT. The upper 8 words are of the LUT are loaded with
signed data in twos complement form. The most significant
bit of the MSO is the signed bit. Zero is positive. A 1 is neg-
ative with a magnitude, equaling -4, by virtue of its position
in the third bit. The second and first bit are positive numbers
that are added to the -4. Therefore, 101 equals -3 (-4 +1 =
-3) in twos complement math.

The results for the 3 lower order octets (LOOs) are
unsigned, use standard binary math, and are found in
words 0 through 7 of the LUT. See Table 1.

The output for the LUT is a 15 bit twos complement result.
This accounts not only for potential negative data in the
MSO, but also for the possibility of a negative coefficient.

The LUT output is the result of the Partial product Multiplier.
The output of both LUTs are multiplexed. The Bank_sel line
ensures that the result from the correct LUT is chosen, and
sent on to the Scaling Accumulator Section.

Applications using magnitude only can eliminate the upper
8 words of the LUT.

The Tap Scaling Accumulator
This job of the tap scaling accumulator is to take the 4 par-
tial product results created for each sample and to add
them together to produce the tap’s full precision solution for
the sample.

There are two important things to remember in regard to
adding the octet results. The first is that the incoming data
carries signed information and is therefore in twos comple-
ment form. The second is that each successive octet result
is 3 bits more significant than the last octet result. This is
due to the bit position of the octets in relation to the original
sample data. For example octet 0 is comprised of sample
bits [2:0], octet 1 is 3 bits (8 times) more significant
because it is made of sample bits [5:3], etc. This relative

Figure 3: Octet Timing Diagram

4x clock

Data_reg Sample data

Oct_data

Control signal

octette 3 octette 2 octette 1 octette 0 octette 3

Bits [11:9] Bits [8:6] Bits [5:3] Bits [2:0] Bits [11:9]

Table 1: LUT Values

LUT Address
LUT Value Sign Data

CS Octet
0 000 0 * coefficient

Unsigned
Results:
Octets
0, 1, 2

0 001 1 * coefficient
0 010 2 * coefficient
0 011 3 * coefficient
0 100 4 * coefficient
0 101 5 * coefficient
0 110 6 * coefficient
0 111 7 * coefficient
1 000 0 * coefficient

Signed
Results:
Octet 3

1 001 1 * coefficient
1 010 2 * coefficient
1 011 3 * coefficient
1 100 -4 * coefficient
1 101 -3 * coefficient
1 110 -2 * coefficient
1 111 -1 * coefficient
4 XAPP 055 January 9, 1997 (Version 1.1)

positioning must be recreated when adding the octet
results.

To recreate the significance of each octet as they are added
we need to perform the equivalent of the following. The
result of octet 0 divided by 8, added to the result of octet 1,
that result divided by 8, added to the result of octet 2, that
result divided by 8 and added to the result of octet 3. This
provides the tap’s final result.

An efficient way to accomplish this is to shift the less signif-
icant result 3 places to the right before adding. Notice that
when this occurs the least significant bits in the lower signif-
icance result have nothing to add, so we can remove and
save them (they will be discussed later).

 111100011010110
+ 010101101001011

Removing these gives:

111100011010
+ 010101101001011

These numbers, however, are both in twos complement
form, and carrying sign data in their most significant bit. To
maintain the sign value for both numbers it is necessary to
sign extend the less significant result 3 places. To sign
extend, the most significant bit (now bit 12) is replicated
onto newly created bits 13, 14, and 15. This gives:

111111100011010
+ 010101101001011

The purpose for this is to have the sign bits line up. Sign
extending does not change the number’s value. This is
obvious if the bit extended is zero, but is also true if the bit
value is one. This is because the one carries both a magni-
tude and a negative sign. Recall the section on the LUT
Multiplier. The example there showed that 101 = -3 (-4 + 1
= -3). If 101 is sign extended to 1101 it is still equal to -3 (-
8 + 4 + 1 = -3). This is true no matter how many places the
sign is extended.

Using this method the least significant 3 bits of the result of
octet 0 are removed and saved (these become bits [2:0] in
the final tap result). The remaining data is sign extended 3
places and added to the result of octet 1. The least signifi-
cant 3 bits of this result are removed and saved (these
become bits [5:3] in the final tap result). The remaining data
is sign extended 3 places and added to the result of octet 2.
The least significant 3 bits of this result are removed and
saved (these become bits [8:6] in the final tap result). The
remaining data is again sign extended 3 places and added
to the result of octet 3. This result becomes bits [23:9].of
the final result. Combining this bus with the already derived
bits [8:0] provides the final tap result.

The section designated Scaling Accumulator in Figure 2 on
page 3 shows how the design implements the method
explained above. The 15 bit twos complement result from
the Partial Product Multiplier is sign extended to 16 bits.
This will account for overflow when the results of the octets
are added. To sign extend, the value of bit 15, the most sig-
nificant bit, is replicated onto a newly created line 16 (now
the most significant bit). This does not change either the
magnitude or sign of the data.

The 16 bit data is sent to both a multiplexer and a 16 bit
adder. The output from the adder becomes the other input
for the same multiplexer. This creates a bypass channel
where the multiplexer can either send the data through
directly or choose the accumulated result. The multiplexer
output is then registered. The purpose of the multiplexer is
to enable the first octet data (octet 0) to be sent through
without being added to the accumulated result of the last
sample. This effectively clears the adder after every sam-
ple.

The three least significant bits are sent to a shift register.
The most significant 13 bits are fed back and logically
mapped 3 bits down (bit 3 to bit 0, bit 4 to bit 1, etc.). Then
they are sign extended 3 places and sent into the adder to
be added to the result of the next octet.

On the addition of the MSO (octet 3) data, the 16 bit result
is combined with the 9 bit data from the shift register to cre-
ate a 24 bit full precision tap result. The lower 15 bits from
the adder will be the most significant bits and the 9 bits from
the shift register will be the least significant bits of the 24 bit
Tap_out bus. Note that interim solutions (from octet 0-2
data) require the input data to be sign extended to prevent
over flow. During the accumulation of the MSO (octet 3),
there is no possible overflow allowing the MSB to be
removed from the adder’s final output. The three interim
values will be sent out of Tap_out. The clock rate outside
the tap, however, is only 1/4 of the tap clock. Therefore data
valid outside the tap will only occur for the MSO (octet 3)
accumulated result.

This completes the section for building a filter tap. It is sug-
gested, however that the user create a relationally placed
macro (RPM) for the design. An RPM provides partitioning
and relative placement information to the design compiler.
RPMs insure that the taps all maintain identical perfor-
mance and do not vary with place and routing. It also guar-
antees that none of the taps will change when other logic is
added or subtracted from the rest of the design. Placement
of the logic for the RPM is conveniently handled by the
Floorplanner tool. Combining the use of the RPM with the
TimeSpec feature insures that a consistent minimum per-
formance is met.
XAPP 055 January 9, 1997 (Version 1.1) 5

Combining the Tap Results
To derive the solution for the entire filter, it is necessary to
add together all of the tap results for each sample cycle. To
do this an adder tree is created.

The Adder Tree is very straightforward. The results of all
the taps are paired and added. Those results are paired
and added, and so on, until only one result remains. This
result is the solution for the entire filter. Please note that the
inputs for all the adders, on all levels, is in twos complement
form and must be sign extended to account for possible
overflow.

The number of adders required is equal to the number of
taps minus one.

Preparing the Sample Data
The Data Framer is located before the first tap. It breaks the
12 bit incoming data into four 3 bit octets. The data is
arranged in octets to save resources in the filter tap. The
Data Framer also adds the control signal to each octet that
identifies the most significant octet. See Figure 4.

The 12 bit sample data is registered and then sent on to
one of three 4 to 1 multiplexers. The three multiplexers

each output one bit of the three bit octet. The multiplexers
are used to select the most significant bit, the middle bit,
and the least significant bit for each octet. The input sample
data is alternated between the multiplexers so that line 0
goes to the first multiplexer, line 1 goes to the second mul-
tiplexer, and line 2 goes to the third multiplexer. The pattern
then repeats until all 12 lines are connected to multiplexers.
The multiplexer selections are controlled by a 2 bit counter:
00 selects octet 0, 01 selects octet 1, 10 selects octet 2,
and 11 selects octet 3. The results from the counter are
also sent to an AND gate to create the control signal. This
makes the control signal high when octet 3 is selected. The
output of the multiplexers (the octet) and the control signal
are registered and sent to the tap.

Partial Products Generation
This filter is an adaptive filter, therefore, it must change to
accommodate changing signal conditions. The filter
changes when it is sent a new coefficient. When the coeffi-
cient changes the LUT values in the Partial Product Multi-
plier become obsolete. The Partial Products Table
Generator uses the new coefficient to create new values to
be sent to the tap LUTs. It does this for every tap in the fil-
ter. See Figure 5 and refer to Table 1.

Figure 4: Block Diagram of the Data Framer

Input
flip
flop

12 bit
register

2 bit
counter

Mux

Mux

Mux

4x clock

Triplet
&

control
signal

register

To _Tap
Data

 [11:0]
Data

enable

bit 11

bit 8

bit 5

bit 2

bit 10

bit 7

bit 4

bit 1

bit 9

bit 6

bit 3

bit 0

control signal

triplet MSB

triplet bit

triplet LSB 412
6 XAPP 055 January 9, 1997 (Version 1.1)

.

The new coefficient and Tap_address are sent to the filter
and received by the Partial Products Table Generator. A
new tap address accompanies each new coefficient. This is
a block adaptive filter so the coefficients are not updated
after every sample. The coefficient and tap address can be
updated after every fourth sample, which is 16 clock cycles.
This means that it takes 4 sample periods (16 clock cycles)
to reload the LUT in each tap. The number of samples the
entire filter takes to reload is 4 times the number of taps in
the filter.

To determine which tap is to be updated with the new coef-
ficient a tap address is sent to the filter and received by the
Partial Products Table Generator. The Partial Products
Table Generator decodes the address and selects the
appropriate tap. The tap_address, decode, and tap select
lines are minimally sketched in Figure 5, because the num-
ber of address lines, decode logic, and tap select lines will
vary based on the number of taps used in the application.
Only a standard address decode is required and this
should be straightforward for the user.

The actual partial product generator creates the LUT val-
ues and is somewhat complex. It is more resource efficient,
however, than using a more standard multiplier. A 4 bit
counter is used to create the LUT write address. These
address lines can be logically combined to create control
signals for the LUT generator.

Look at Table 1 on page 4. It shows that an accumulator will
work very well for words 0-7. If an initial value of zero is
used the coefficient need only be added to the last result to
achieve the next result. The same is true for words 8-11.
Multiplexer 1 chooses between ground (zero) and the out-
put of the adder. The control signal for multiplexer 1 is the
NAND of the 3 lower bits of the write address. This ensures
that a zero is sent to the LUT for addresses 0 and 8. It also
effectively clears the adder. The adder takes its own output
from a register and feeds it back to itself to be added to the
coefficient. This provides exactly the results needed for
addresses 1-7 and 9-11. For example the scaling accumu-
lator output for address 1 is the coefficient, address 2 is
coefficient + coefficient (which is equal to 2 * coefficient),
address 3 is coefficient + coefficient + coefficient (which is
equal to 3 * coefficient), etc. Address 9 is equal to the coef-
ficient again because address 8 had cleared the adder.

The upper 8 words of the LUT are strictly used for finding
the partial product of the MSO. This is because the MSO
contains sign data. The lower 4 words (addresses 8:11)
account for positive data in the MSO and their handling has
been described in the paragraph above. The upper 4 words
(addresses 12-15) need to account for negative answers
and this makes things interesting. Inverting the coefficient
and adding 1 yields the complement (negative) of the coef-
ficient. Multiplexer 0 chooses between the coefficient and

Figure 5: Block Diagram of the Partial Product Table Generator

12
Bit
Reg

Mux 0

 Adder

Mux 1 Reg

Mux 2

4 Bit
Counter

Reg

Mux 3

coefficient
Data

15

15

15

15

15 15

12
12

12 write_data

write_address

clk

comp-
liment

DecoderTap_sel Bus

Tap select lines
XAPP 055 January 9, 1997 (Version 1.1) 7

its complement. The multiplexer 0 select line is the AND of
address lines 3 and 2. This means that the complement is
always chosen for addresses 12-15.

Clock cycle 13 is when the table results transition from pos-
itive to negative. Starting at address 12 (clock cycle 13) the
coefficient input to the adder is complemented, but the
adder must also be cleared during clock cycle 13 to send
through negative data. Multiplexer 2 selects zero to be fed
back during clock cycle 13 (AND address lines 3 and 2,
NAND address lines 1 and 0, and AND the results of both
operations). The result from the adder is then 0 + -coeffi-
cient. Looking at Table 1 on page 4 shows that this is not
the correct result for address 12, but it is correct for address
15. Continuing in this manner the output of the adder during
clock cycle 14 would be -coefficient + -coefficient. Again
this is incorrect for address 13 but correct for address 14.
The adder result for address 14 is incorrect, but correct for
address 13, and the adder result for address 15 is incorrect,
but correct for address 12. Notice, however, if the write
address lines [1:0] are inverted during clock cycles 13 - 16
the LUT will be loaded correctly. Multiplexer 3 chooses
between address lines [1:0] and their inverse. The inverse
is selected by the AND of address lines [3:2]; the same line
that chooses the complemented coefficient for multiplexer
0.

As noted earlier this Partial Products Table Generator takes
4 times the number of taps to reload all the LUTs in the fil-
ter. To converge more quickly multiple Table Generators
can be used. Choosing initial coefficients that are near the
conversion point, if possible, will also speed convergence. If
ultimate convergence time is required, however, a block
adaptive filter is not the best solution.

Performance and Sizing Estimates
All of the performance and sizing estimates are based on
the XC4000E family using the -3 speed grade, which is the
fastest available at the time of this writing. The XC4000EX
family offers the potential for slightly better performance, in
the same speed grade, for very large filters due to its more
abundant routing resources. Note that the sample rate per-
formance is for a 12 bit sample.

Data Framer Size and Performance
Only one data framer is needed for the adaptive filter so it
uses a relatively small portion of the overall resources. The
data framer is not a bottleneck for the filter so any perfor-
mance increase will not improve the filter throughput until
other sections are enhanced.

The Adder Tree Size and Performance
The size and performance of the adder tree will vary
according to the number of taps. Not only does the number
of adders change in accordance with the number of taps,
but the size of the adders will change according to the num-
ber of levels in the tree, because the number of bits to be
added will change (to handle overflow). In general the num-
ber of CLBs needed per adder will be half the number of
bits plus one. Minor changes in the adder tree will not affect
overall filter performance.

Table Generator Size and Performance
Only one table generator is needed for the adaptive filter so
its impact on the overall size of the filter is not great. The
table generator is not a bottleneck for the filter so any per-
formance increase will not improve the filter throughput.

Filter Tap Size and Performance
The tap is the most important factor in the size and perfor-
mance of the adaptive filter. Since the tap is used many
times its size has the greatest impact on the filter density.
The tap also contains the filter performance bottleneck.
The Adder in the Scaling Accumulator Section takes a max-
imum of 14 nanoseconds. This limits the total performance
of both the tap and the entire filter.

CLBs CLK/ Octet Rate Sample Rate
16 Performance is tap limited

Single 24 Bit Adder
CLBs CLK/ Octet Rate Sample Rate

16 Performance is tap limited

CLBs CLK/ Write Cycle Sample Rate
56 Performance is tap limited

Time Skew Buffer
CLBs CLK/ Octet Rate Sample Rate

10 Scaling Accumulator limited

Partial Product Multiplier
CLBs CLK/ Octet Rate Sample Rate

27 Scaling Accumulator limited

Scaling Accumulator
CLBs CLK Sample Rate

14 62MHz 15.5 MSPS

Tap Total
CLBs CLK Sample Rate

51 62MHz 15.5 MSPS
8 XAPP 055 January 9, 1997 (Version 1.1)

Modifying the Design
There are four basic ways to lower the amount of resources
used by this filter: Reduced Precision, Smaller Sample
Size, Smaller Coefficient Size, and Reduced Performance.

Reduced Precision
Reduced precision will provide a small, but significant
amount of resource abatement. For example changing
from full precision to 16 bit precision will reduce every
adder in the adder tree by 4 CLBs. It will also eliminate the
shift register from the filter tap, saving 5 CLBs per tap.
Changing the precision will not affect the filter throughput.

Sample or Coefficient Size in Regard to the
Adder Tree
Sample or coefficient size alteration will change the number
of CLBs needed by the adders in the Adder Tree by one
CLB for every two bits of modification. For example; 8 bit
data and 8 bit coefficient require a 16 bit adder which takes
9 CLBs. A filter using a 12 bit sample and 12 bit coefficient
needs a 13 CLB adder. The adder sizes do not have any
affect on the performance of the filter, because the perfor-
mance bottleneck is in the tap.

Performance, Sample Size, and Coefficient
Size in the Tap
Performance, Sample Size, and Coefficient Size are all
very interrelated inside the tap. The most important factor,
however, is the data frame size. The frame size is the size
of the segments into which the sample is broken. In this
application note the sample has been broken into octets,
but the design could be modified to use a single bit, paired
bits, nibbles, etc. The frame size has the most impact on
both performance and resources. Table 3 on page 10
shows some examples of the relationship between frame
sizes, coefficient sizes, sample sizes, and performance.

The frame size plus the control signal governs the depth of
the LUTs. The LUTs are organized so that the partial prod-
uct determines the width, and the frame size plus the con-
trol signal (address lines) determine the depth of the RAM.
RAM in the XC4000E/EX families is organized as 16 x 1
bits. This requires the depth (addresses) of both LUTs
together to be a multiple of 16. Since the frame size deter-
mines the number of address lines, the frame size dictates
the RAM depth. The LUT width is the partial product size,
which is equal to the coefficient bit width plus the frame bit
width.

The partial product size, which is a function of the coeffi-
cient size and frame size, controls the resources used by
everything after the LUT, except the shift register. Every two
bits in the partial product size changes the number of CLBs
per tap by about four; one each for the two multiplexers, the
adder, and the register.

Performance is also a function of the frame size. The size of
the adder in the scaling accumulator section determines
the maximum clock rate for the filter, but the frame size
determines the actual throughput. The number of seg-
ments into which the sample is divided is the main factor in
performance. The segments are processed sequentially in
the tap, so the sample throughput is the adder speed
divided by the number of segments per sample.

Example Using a 2 Bit Frame Size
Employing the paired data frame size (2 bits) for a 12 bit
sample and 12 bit coefficient filter saves about 10 CLBs per
tap (versus octets), at the expense of a 33% degradation in
performance.

The performance is slower for paired 12 bit sample and 12
bit coefficient data because it takes 6 clock cycles per sam-
ple instead of the four clock cycles needed for octets.

In using paired data the majority of the CLB savings come
from the use of smaller LUTs. The two LUTs change from
16 words of 15 bits each, to 8 words of 14 bits each. This is
an 8 CLB reduction. The TSB will need to become a 6 by 3
bit shift register. The scaling accumulator section also
changes. The partial product is smaller so all the functions
are now smaller (15 bits), but the shift register now must
hold 10 LSBs.

Note that the Data Framer and Partial Products Table Gen-
erator will need modification to accommodate different
frame, sample and coefficient sizes. The Data Framer for
the 12 coefficient, 12 bit sample, paired data filter must now
have two 6 to 1 multiplexers. The counter must be a 3 bit
counter, the control signal needs to be set to 1 when the
counter reaches 5 and the counter must be reset after 5.
The Partial Products Table Generator must generate
Table 2.

Summary
There are literally hundreds of ways to modify the design in
this application note. Digital signal processing in the
XC4000E/EX allows the designer tremendous flexibility to
achieve the user’s exact goals.

Table 2: Partial Products Table Generator

LUT Address
LUT Value Sign Data

CS Pair
0 00 0 * coefficient Unsigned

Results:
Pairs

0, 1, 2, 3, 4

0 01 1 * coefficient
0 10 2 * coefficient
0 11 3 * coefficient
1 00 0 * coefficient Signed

Results:
Pair 5

1 01 1 * coefficient
1 10 -2 * coefficient
1 11 -1 * coefficient
XAPP 055 January 9, 1997 (Version 1.1) 9

Note: * All figures are approximate

Table 3: Relationship Between Frame Sizes, Coefficient Sizes, Sample Sizes, and Performance

Sample Size X
Coefficient Size

Data Frame Size
Pair Octet Nibble

Speed* CLBs* Speed* CLBs* Speed* CLBs*
8 X 8 19 MSPS 34 24 MSPS 39 35 MSPS 52

10 X 10 14 MSPS 39 16 MSPS 46 21 MSPS 61
12 X 12 10 MSPS 44 15 MSPS 51 19 MSPS 68
14 X 14 8 MSPS 49 11 MSPS 57 13 MSPS 76
16 X 16 7 MSPS 54 11 MSPS 63 13 MSPS 84

The Programmable Logic CompanySM

© 1996 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Pro-
grammable Logic Company is a service mark of Xilinx, Inc. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patent, copy-
right or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in its prod-
ucts. Products are manufactured under one or more of the following U.S. Patents: (4,847,612; 5,012,135; 4,967,107; 5,023,606; 4,940,909; 5,028,821; 4,870,302;
4,706,216; 4,758,985; 4,642,487; 4,695,740; 4,713,557; 4,750,155; 4,821,233; 4,746,822; 4,820,937; 4,783,607; 4,855,669; 5,047,710; 5,068,603; 4,855,619;
4,835,418; and 4,902,910. Xilinx, Inc. cannot assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other
third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (800) 255-7778
or 1 (408) 559-7778
Fax: 1 (800) 559-7114

Net: hotline@xilinx.com
Web: http://www.xilinx.com

North America

Irvine, California
(714) 727-0780

Englewood, Colorado
(303)220-7541

Sunnyvale, California
(408) 245-9850

Schaumburg, Illinois
(847) 605-1972

Nashua, New Hampshire
(603) 891-1098

Raleigh, North Carolina
(919) 846-3922

West Chester, Pennsylvania
(610) 430-3300

Dallas, Texas
(214) 960-1043

Europe

Xilinx Sarl
Jouy en Josas, France
Tel: (33) 1-34-63-01-01
Net: frhelp@xilinx.com

Xilinx GmbH
Aschheim, Germany
Tel: (49) 89-99-1549-01
Net: dlhelp@xilinx.com

Xilinx, Ltd.
Byfleet, United Kingdom
Tel: (44) 1-932-349401
Net: ukhelp@xilinx.com

Japan

Xilinx, K.K.
Tokyo, Japan
Tel: (03) 3297-9191

Asia Pacific

Xilinx Asia Pacific
Hong Kong
Tel: (852) 2424-5200
Net: hongkong@xilinx.com
10 XAPP 055 January 9, 1997 (Version 1.1)

	General Description of Adaptive Filters
	General Description of FPGA-based Signal Processin...
	Adaptive Filter Design Overview
	The Filter Tap Design
	The Tap Time Skew Buffer
	The Tap Partial Product Multiplier
	The Tap Scaling Accumulator

	Combining the Tap Results
	Preparing the Sample Data
	Partial Products Generation
	Performance and Sizing Estimates
	Data Framer Size and Performance
	The Adder Tree Size and Performance
	Table Generator Size and Performance
	Filter Tap Size and Performance

	Modifying the Design
	Reduced Precision
	Sample or Coefficient Size in Regard to the Adder ...
	Performance, Sample Size, and Coefficient Size in ...
	Example Using a 2 Bit Frame Size

	Summary

