
Summary

XC4000-Series FPGAs include Select-RAMTM memory, which can be configured as ROM or as single- or dual-port RAM,
with edge-triggered or level-sensitive timing. This application note describes how to implement Select-RAM memory in a
design: in schematic entry, MemGen memory block generator, X-BLOXTM schematic-based synthesis, and HDL-synthesis
environments. Specifying timing requirements, evaluating performance, and floorplanning are also described.

Select-RAM Memory
Select-RAM memory is a major feature distinguishing Xilinx
FPGAs from competitive devices. Select-RAM memory can
be described as the capability of programming the look-up
tables in XC4000-Series Configurable Logic Blocks (CLBs)
as ROM or as single- or dual-port RAM, with edge-trig-
gered or level-sensitive timing. The dual-port option consid-
erably simplifies the implementation of some applications,
such as FIFOs, while the simultaneous read/write function-
ality doubles the effective through-put. Edge-triggered
(synchronous) timing doubles the speed again, as
described in the application note “Implementing FIFOs in
XC4000 Series RAM.” The simplified timing also consider-
ably accelerates the entire RAM design process. The appli-
cation note “XC4000 Series Edge-Triggered and Dual-Port
RAM Capability” provides a brief overview of Select-RAM
functionality.

Note : At the time of this publication, software for the
XC4000EX family was still under development. This appli-
cation note is therefore directed to the 5.2.1/6.0.1 release
of XACTstepTM (and the V1.0.0 XC4000E Pre-Release soft-
ware, which is obsoleted by XACTstep V5.2.1/6.0.1). For
specific instructions on using newer software releases or
XC4000EX software with Select-RAM memory, see the
documentation supplied with the software package. Most
sections of this application note are independent of the Xil-
inx software release.

Specifying Select-RAM Memory
Select-RAM memory can be used in any design environ-
ment that allows translation to Xilinx XC4000-Series
FPGAs. The most common design entry methods include:

• Schematic entry
• MemGen — memory block generator from Xilinx
• X-BLOX — schematic-based synthesis from Xilinx
• HDL synthesis.

Use of Select-RAM memory in each of these design envi-
ronments is described in this section.

For detailed information about the various configurations of
Select-RAM memory, see the XC4000 Series Field Pro-
grammable Gate Arrays product specification and the appli-
cation note “XC4000 Series Edge-Triggered and Dual-Port
RAM Capability.”

Schematic Entry
When entering a design using a schematic editor, the
selection of Select-RAM memory mode is made by placing
the appropriate library symbol. The library symbol names
are coded based on the size of the memory and the config-
uration mode, as shown in Figure 1. Table 1 shows all
memory blocks available in the Xilinx XC4000E and
XC4000EX libraries. Each block is implemented as either a
library primitive (basic component) or a library macro (cre-
ated from library primitives and/or other library macros).
Primitives and macros have different properties, as dis-
cussed throughout this application note.

Using Select-RAM Memory
in XC4000 Series FPGAs

XAPP 057 July 7,1996 (Version 1.0) Application Note by Lois Cartier



Xilinx Family

XC4000E, XC4000EX, XC4000L, XC4000XL

Demonstrates

Select-RAM memory

Figure 1: RAM Library Symbol Naming Conventions

S = Single-port, edge-triggered
D = Dual-port, edge-triggered
None = Single-port, level-sensitive

Data word width

Memory depth (number of words)

RAM or ROM

RAM 16 X 2 S

X7274

APPLICATION NOTE
XAPP 057 July 7,1996 (Version 1.0) 1

Using Select-RAM Memory in XC4000 Series FPGAs
Initializing Select-RAM in a Schematic

An initial value can be specified for Select-RAM blocks by
attaching an INIT attribute or property to any RAM or ROM
primitive. For example, the attribute “INIT=xxxx” can be
attached to a placement of a RAM16X1S, RAM16X1D,
RAM16X1, or ROM16X1 symbol, where xxxx is any 4-digit
hexadecimal number. Any 8-digit hexadecimal number can
be similarly attached to any of the 32-bit memory primitives.

The INIT attribute or property cannot be used on macros.
To initialize a RAM macro, copy the macro to a new name,
and attach INIT attributes to the primitives inside the macro.

The initialization values are specified beginning with the
most significant number, e.g., INIT=020A places a “1” in bit
locations 1, 3, and 9, and “0” at all other locations. The
default initialization value for RAMs is all zeros.

The initial value is assigned to the memory at configuration
only. Global Set Reset (GSR) has no effect on the memory
contents.

Mapping Into CLBs

The XACTstepTM software automatically maps RAMs,
ROMs, and flip-flops into Configurable Logic Blocks
(CLBs). However, if desired, the library symbols designated
as primitives in Table 1 can be marked with a BLKNM or
HBLKNM attribute or property to group them with one or
two flip-flops into a single CLB, as shown in Figure 2.

BLKNM and HBLKNM attributes cannot be used with mac-
ros. See the Libraries Guide for more information about
these attributes.

Directing Placement of Memory Blocks from the
Schematic

For larger memory blocks, substantially improved perfor-
mance results if the RAM or ROM blocks are placed in pat-
terns that minimize delay on address lines. (See
“Floorplanning Select-RAM Memory” on page 15 for a dis-
cussion of optimal placement.) This placement can be
specified either with the Xilinx Floorplanner, or directly in
the schematic.

Placement of Select-RAM memory blocks can be con-
trolled in the schematic by adding either location (LOC) or
relative location (RLOC) attributes to the library symbols.

LOC Attributes or Properties

LOC attributes specify a particular CLB or group of CLBs
into which the RAM must be placed; therefore, it is not easy
to change the location of a large memory block once it is
placed using LOC attributes. Further, a macro locked to a
particular location can only be used once in a design.

Table 1: Select-RAM Symbols in Xilinx Libraries

Symbol Name
Primitive or

Macro
of CLBs

RAM16X1 Primitive 0.5
RAM16X1D Primitive 1
RAM16X1S Primitive 0.5
RAM16X2 Macro 1
RAM16X2D Macro 2
RAM16X2S Macro 1
RAM16X4 Macro 2
RAM16X4D Macro 4
RAM16X4S Macro 2
RAM16X8 Macro 4
RAM16X8D Macro 8
RAM16X8S Macro 4
RAM32X1 Primitive 1
RAM32X1S Primitive 1
RAM32X2 Macro 2
RAM32X2S Macro 2
RAM32X4 Macro 4
RAM32X4S Macro 4
RAM32X8 Macro 8
RAM32X8S Macro 8
ROM16X1 Primitive 0.5
ROM32X1 Primitive 1

Figure 2: RAM Mapping Example Using BLKNM

CLK

BLKNM=MEM1

FDCE

QD

CLR

CE

C

BLKNM=MEM1

FDCE

QD

CLR

CE

C

BLKNM=MEM1

RAM16X1S

O

WE

D

A0

A1

A2

A3

WCLK

BLKNM=MEM1

RAM16X1S

O

WE

D

A0

A1

A2

A3

WCLK

OUT1

OUT0D0

D1

WREN

AD3

AD2

AD1

AD0

VCC

GND

AD0

AD1

AD2

AD3

X7275
2 XAPP 057 July 7,1996 (Version 1.0)

LOC attributes can be used with both library primitives and
macros. For example, LOC=CLB_R1C1 attached to a
RAM16X2S symbol specifies that the 16x2 RAM block be
placed in the CLB in the upper left corner of the device. For
a symbol representing more than one CLB, such as a large
library macro, a range of locations, such as
LOC=CLB_R1C1:CLB_R4C4, can be specified. All mem-
ory blocks in the macro so tagged will be placed some-
where in the upper left 4 x 4 array of CLBs. To specify that
all RAM or ROM in a macro be placed in the leftmost col-
umn of CLBs, specify LOC=CLB_R*C1.

RLOC Attributes or Properties

RLOC attributes placed on two or more library symbols in a
single schematic specify a relative location between the
blocks. Macros with a given size and shape imposed by
RLOC attributes can be automatically placed anywhere in a
device, and moved by the software. They can, therefore, be
used multiple times in one or more designs. The Relation-
ally Placed Macros (RPMs) in the Xilinx library are imple-
mented using RLOCs.

Figure 3 shows an example of a 16 x 4 single-port edge-
triggered RAM constrained with RLOC attributes to be
placed in two adjacent CLBs in a column. This simple
example implements a customized version of the
RAM16X4S macro from the Xilinx library. It is referenced
throughout this application note.

For further information on LOC and RLOC attributes or
properties, see the Libraries Guide.

MemGen Memory Block Generator
The Xilinx MemGen program, called by the Xilinx Memory
Generator, automatically generates RAM and ROM blocks,
with accompanying control logic, according to specifica-
tions provided by the user.

One of the specifications required by MemGen is the RAM
or ROM type. Type SYNC_RAM specifies single-port edge-
triggered (synchronous) RAM. Type DP_RAM specifies
dual-port RAM, which is always edge-triggered. Type RAM
selects traditional, single-port level-sensitive RAM, and
type ROM indicates that a ROM block (look-up table)
should be generated.

A sample MemGen input file, implementing a 16 x 4 single-
port edge-triggered RAM, is shown in Figure 4. Alterna-
tively, MemGen can be run in interactive mode.

MemGen initialization data is specified one word at a time,
with the data for address zero specified first. The initializa-
tion data in Figure 4 places a “0” at address 0000, a “1” at
address 0001, etc. This file implements the same RAM,
with the same initialization data, as the schematic shown in
Figure 3. (However, the relative locations of the RAM
blocks are not set in the MemGen output file.)

MemGen also creates a symbol that can be placed in a
schematic, using Viewlogic or OrCAD schematic entry. The
Foundation software Memory Generator creates a symbol
for Aldec schematic entry. If these symbols are used in
schematics, the XACTstep software automatically includes
the generated memory block in the netlist description.

MemGen is described in detail in the Development System
Reference Guide.

Figure 3: 16 x 4 Single-Port Edge-Triggered RAM Schematic

A3

A2

A1

A0

WCLK

WE

D1

D0

O3

RLOC=R1C0

RAM16X1S

O

WE

D

A0

A1

A2

A3

WCLK

O2

RLOC=R1C0

RAM16X1S

O

WE

D

A0

A1

A2

A3

WCLK

O1

RLOC=R0C0

RAM16X1S

O

WE

D

A0

A1

A2

A3

WCLK

O0

RLOC=R0C0

O0

O1

O2

O3

D2

D3

RAM16X1S

O

WE

D

A0

A1

A2

A3

WCLK

INIT=AAAA

INIT=CCCC

INIT=F0F0

INIT=FF00

X7276
XAPP 057 July 7,1996 (Version 1.0) 3

Using Select-RAM Memory in XC4000 Series FPGAs
X-BLOX Schematic-Based Synthesis
X-BLOX is a set of parameterized library symbols and soft-
ware that synthesizes these symbols into logic optimized
for Xilinx FPGAs.

X-BLOX has three parameterized modules for implement-
ing static RAMs: SYNC_RAM, DP_RAM, and SRAM. The
SYNC_RAM module implements single-port edge-trig-
gered (synchronous) RAM; DP_RAM is used for dual-port
RAM, which is always edge-triggered, and SRAM imple-
ments level-sensitive (asynchronous) static RAM. Read-
only memories are implemented with the PROM module.
The library symbols for these modules are shown in
Figure 5.

To include an X-BLOX memory block in a schematic, simply
place the appropriate symbol and set the necessary
parameters by adding attributes or properties to the sym-
bol. (The special X-BLOX library must be on the library
search path for the schematic tool.) Symbol inputs, outputs,
and supported attributes for the memory modules are
shown in Table 2.

Figure 6 shows the X-BLOX implementation of a 16 x 4 sin-
gle-port edge-triggered RAM block. The initialization file for
this design is shown in Figure 7. The data format is the
same as for the MemGen program. The initialization data in
Figure 7 places a “0” at address 0000, a “1” at address
0001, etc. If initial values are not specified, the RAM is ini-
tialized to all zeros.

X-BLOX is fully described in the X-BLOX Reference/User
Guide. Additional information on the Select-RAM memory
blocks is available in the “Release Document, XACTstep
V5.2.1/6.0.1”.

; ==
; Memory file for 16 x 4 Single-Port Edge-Triggered RAM
; ==
TYPE SYNC_RAM
DEPTH 16
WIDTH 4
PART 4005EPG156
SYMBOL VIEWLOGIC PINS
DEFAULT 0
DATA 0 1 2 3 4 5 6 7 8 9 a b c d e f

; The memory is a Synchronous RAM Block
; The memory is 16 words deep
; Each memory word is 4 bits wide
;
; Build a Viewlogic symbol with pin inputs (rather than bus inputs)
; Use this default value for unspecified locations
; Initialize RAM with this data

Figure 4: Sample MemGen Input File

Figure 5: X-BLOX Select-RAM Library Symbols

Figure 6: 16 x 4 Single-Port Edge-Triggered RAM
Implemented in X-BLOX

; ==================================
; Initialization file for 16 x 4 RAM in X-BLOX
; ==================================
DATA 0 1 2 3 4 5 6 7 8 9 a b c d e f

Figure 7: Initialization File for X-BLOX RAM

DEPTH=

WR_CLK

SYNC_RAM

ADDR

WR_EN

D_IN D_OUT
SP_OUT

DP_OUT

D_IN

WR_EN

ADDR

DP_RAM

DPRD_ADDR

WR_CLK

DEPTH=

DEPTH=

ERROR
ADDR_

ADDR

D_OUT

PROM

MEMFILE=DEPTH=

ERROR
ADDR_

ADDR

WR_EN

D_IN D_OUT

SRAM

X7277

BOUNDS=3:0

WCLK

WE

D

A

O
WR_CLK

SYNC_RAM

ADDR

WR_EN

D_IN D_OUT

DEPTH=16
MEMFILE=FNAME

XBLOX_BUS

BUS_DEF

ENCODING=

X7278
4 XAPP 057 July 7,1996 (Version 1.0)

HDL Synthesis
Select-RAM memory elements are supported in most syn-
thesis packages—including Synopsys, Cadence, Metamor,
and Exemplar—through instantiation in the HDL source
code. Although RAM can be described behaviorally, this
methodology currently synthesizes to inefficient latch- or
register-based implementations. ROM can be described
behaviorally or instantiated, as desired.

MemGen blocks can be generated, as described in “Mem-
Gen Memory Block Generator” on page 3, and then instan-

tiated in the code. Alternatively, the seven Select-RAM
primitive library components from Table 1 can be instanti-
ated directly. Table 3 shows the input and output port
names for each of these elements.

Figure 8 shows how to instantiate a MemGen module in
VHDL code. The sample module is the 16 x 4 single-port
edge-triggered RAM block shown in Figure 3, Figure 4, and
Figure 6.

Table 2: X-BLOX Select-RAM Symbols: Inputs, Outputs, and Supported Attributes

SYNC_RAM DP_RAM SRAM PROM
Inputs Bus?

ADDR Yes Address port X X X X
D_IN Yes Data Input port X X X
DPRD_ADDR Yes Dual-Port Read Address port X
WR_CLK No Load D_IN into RAM X X
WR_EN No Write Enable, active-High X X X

Outputs Bus?
ADDR_ERROR No Address Error (out-of-bounds), active High X X
D_OUT Yes Data Output port X X X
DP_OUT Yes Dual-Port Out, selected by DPRD_ADDR X
SP_OUT Yes Single-Port Out, selected by ADDR X

Supported Attributes
BOUNDS Defines width of the buses X X X X
DEPTH Number of locations in the RAM X X X X
ENCODING Bus data types X X X X
INIT Specify initial RAM contents X X X X
MEMFILE Specify name of file with initial RAM contents X X X X
TNM Identify timing groups for XACT-Performance X X X X

Table 3: Select-RAM Memory Components for HDL Synthesis

Cell Outputs Inputs
Single-Port, Edge-Triggered RAM
MemGen Output O(n:o) D(n:o), A(n:o), WE, WCLK
RAM16X1S O D, A3, A2, A1, A0, WE, WCLK
RAM32X1S O D, A4, A3, A2, A1, A0, WE, WCLK
Dual-Port, Edge-Triggered RAM
MemGen Output SPO(n:o), DPO(n:o) D(n:o), A(n:o), DPRA(n:o), WE, WCLK
RAM16X1D SPO, DPO D, A3, A2, A1, A0, DPRA3, DPRA2, DPRA1, DPRA0, WE, WCLK
Level-Sensitive RAM
MemGen Output O(n:o) D(n:o), A(n:o), WE
RAM16X1 O D, A3, A2, A1, A0, WE
RAM32X1 O D, A4, A3, A2, A1, A0, WE
ROM
MemGen Output O(n:o) A(n:o)
ROM16X1 O A3, A2, A1, A0
ROM32X1 O A4, A3, A2, A1, A0
XAPP 057 July 7,1996 (Version 1.0) 5

Using Select-RAM Memory in XC4000 Series FPGAs
-- ==
-- Instantiating a Memgen 16 x 4 Single-Port Edge-Triggered RAM Module
-- ==
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity RAM_MEMGEN is
port (DATA: in STD_LOGIC_VECTOR (3 downto 0);

ADDR: in STD_LOGIC_VECTOR (3 downto 0);
WR_EN, WR_CLK: in STD_LOGIC;
DOUT: out STD_LOGIC_VECTOR (3 downto 0));

end RAM_MEMGEN;

architecture BEHAV of RAM_MEMGEN is
component RAMDATA

port (D3, D2, D1, D0: in STD_LOGIC;
A3, A2, A1, A0: in STD_LOGIC;
WE, WCLK: in STD_LOGIC;

 O3, O2, O1, O0: out STD_LOGIC);
end component;
begin

u1: RAMDATA port map (D3=>DATA(3),D2=>DATA(2),D1=>DATA(1),D0=>DATA(0),
 A3=>ADDR(3),A2=>ADDR(2),A1=>ADDR(1),A0=>ADDR(0),
WE=>WR_EN,WCLK=>WR_CLK,
O3=>DOUT(3),O2=>DOUT(2),O1=>DOUT(1),O0=>DOUT(0));

end BEHAV;

Figure 8: Instantiating a MemGen Module (VHDL)

// ===
// Instantiating a Memgen 16 x 4 Single-Port Edge-Triggered RAM Module
// ===

module RAM_MEMGEN (DATA, ADDR, WR_EN, WR_CLK, DOUT);
input [3:0] DATA, ADDR;
input WR_EN, WR_CLK;
output [3:0] DOUT;

RAMDATA U1(.D3(DATA[3]), .D2(DATA[2]), .D1(DATA[1]), .D0(DATA[0]),
.A3(ADDR[3]), .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),
.WE(WR_EN), .WCLK(WR_CLK),

 .O3(DOUT[3]), .O2(DOUT[2]), .O1(DOUT[1]), .O0(DOUT[0])) ;
endmodule

module RAMDATA (D3, D2, D1, D0, A3, A2, A1, A0, WE, WCLK, O3, O2, O1, O0);
input D3, D2, D1, D0, A3, A2, A1, A0, WE, WCLK;
output O3, O2, O1, O0;

endmodule

Figure 9: Instantiating a MemGen Module (Verilog)
6 XAPP 057 July 7,1996 (Version 1.0)

Figure 9 shows how to instantiate the same module in Ver-
ilog code. When instantiating a MemGen or other XNF for-
mat file in Verilog code, use the Synopsys “remove_design”
command on the module before writing out the SXNF file.
(If this step is not performed, a “shell” of an SXNF file is
written out, the Xilinx XNFMerge program reads this “shell”
instead of the XNF file for the instantiated block, and
XNFMerge does not complete.) When instantiating Unified
Library primitives, or when using VHDL code, this step is
not required.

Figure 10 shows the instantiation of four 16 x 1 library prim-
itives in VHDL code, to implement the same 16 x 4 RAM
block. Figure 11 also implements the same RAM function,
but in Verilog format.

Additional information on implementing Select-RAM mem-
ory in VHDL can be found in Synopsys (XSI) for FPGAs
Interface/Tutorial Guide, and in the “Release Document,
XACTstep V5.2.1/6.0.1”.

-- ==
-- Instantiating Library Primitives to Create a 16 x 4 Single-Port Edge-Triggered RAM
-- ==
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity RAM_PRIM is
port (DATA : in STD_LOGIC_VECTOR (3 downto 0);

 ADDR : in STD_LOGIC_VECTOR (3 downto 0);
WR_EN, WR_CLK : in STD_LOGIC;
DOUT : out STD_LOGIC_VECTOR (3 downto 0));

end RAM_PRIM;

architecture BEHAV of RAM_PRIM is

component RAM16X1S
port (D, A3, A2, A1, A0, WE, WCLK : in STD_LOGIC;

 O : out STD_LOGIC);
end component;

begin
RAMCELL : RAM16X1S port map (D=>DATA(0), A3=>ADDR(3), A2=>ADDR(2), A1=>ADDR(1),

A0=>ADDR(0), WE=>WR_EN, WCLK=>WR_CLK, O=>DOUT(0));
RAMCELL_1: RAM16X1S port map (D=>DATA(1), A3=>ADDR(3), A2=>ADDR(2), A1=>ADDR(1),

A0=>ADDR(0), WE=>WR_EN, WCLK=>WR_CLK, O=>DOUT(1));
RAMCELL_2: RAM16X1S port map (D=>DATA(2), A3=>ADDR(3), A2=>ADDR(2), A1=>ADDR(1),

A0=>ADDR(0), WE=>WR_EN, WCLK=>WR_CLK, O=>DOUT(2));
RAMCELL_3: RAM16X1S port map (D=>DATA(3), A3=>ADDR(3), A2=>ADDR(2), A1=>ADDR(1),

A0=>ADDR(0), WE=>WR_EN, WCLK=>WR_CLK, O=>DOUT(3));
end BEHAV;

Figure 10: Instantiating Select-RAM Library Primitives (VHDL)
XAPP 057 July 7,1996 (Version 1.0) 7

Using Select-RAM Memory in XC4000 Series FPGAs
Initializing Select-RAM Memory in Synthesized
Designs

If instantiating MemGen blocks in the HDL code, an initial
value can be specified by placing initial RAM values in the
MemGen file. Because the MemGen module is a “black
box” instantiation, the synthesis tool and the behavioral
simulator are unaware of the contents of the module. TIm-
ing simulation after implementing and back-annotating the
design is therefore the only means of simulating the con-
tents of memory blocks generated by MemGen. This pro-
cess conveys the initialization values to the simulator.

If instantiating library primitives directly in the code, the
method for initializing RAM or ROM may differ depending
on the synthesis tool. For Synopsys designs, enter initial-
ization values for the RAM or ROM using the set_attribute
command during synthesis. The procedure is the same for
VHDL or Verilog code. For 16-location memory blocks,
specify a 4-digit hexadecimal value. For 32-location mem-
ory blocks, specify an 8-digit hexadecimal value. An exam-
ple of the set_attribute statements for the 16 x 4 single-port
edge-triggered RAM example is included in Figure 12. This
file places a “0” at address 0000, a “1” at address 0001, etc.
For instructions on initializing RAM or ROM when using
other synthesis tools, see the user guide provided by the
software company.

The initial value is assigned to the memory at configuration
only. Global Set Reset (GSR) has no effect on the memory
contents.

Directing Placement of Synthesized Memory
Blocks

For larger memory blocks, substantially improved perfor-
mance results if the RAM or ROM blocks are placed in pat-
terns that minimize delay on address lines. (See
“Floorplanning Select-RAM Memory” on page 15 for a dis-
cussion of optimal placement.) This placement can be
specified with the Xilinx Floorplanner. Floorplanning tech-
niques for synthesized Select-RAM blocks are discussed at
length in the HDL Synthesis for FPGAs Design Guide.

XDE Graphical Editor Support
Select-RAM memory is also supported in XDE, the Xilinx
graphical Design Editor, for designers who require com-
plete control over the implementation of their designs. For
details on how to configure Select-RAM memory in XDE,
see the “Release Document, XACTstep V5.2.1/6.0.1”.

// ===
// Instantiating LIbrary Primitives to Create a 16 x 4 Single-Port Edge-Triggered RAM
// ===

module RAM_PRIM (DATA, ADDR, WR_EN, WR_CLK, DOUT);
input [3:0] DATA;
input [3:0] ADDR ;
input WR_EN, WR_CLK;
output [3:0] DOUT ;
RAM16X1S RAMCELL (.D(DATA[0]), .A3(ADDR[3]), .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),

 .WE(WR_EN), .WCLK(WR_CLK), .O(DOUT[0])) ;
RAM16X1S RAMCELL_1 (.D(DATA[1]), .A3(ADDR[3]), .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),

 .WE(WR_EN), .WCLK(WR_CLK), .O(DOUT[1])) ;
RAM16X1S RAMCELL_2 (.D(DATA[2]), .A3(ADDR[3]), .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),

 .WE(WR_EN), .WCLK(WR_CLK), .O(DOUT[2])) ;
RAM16X1S RAMCELL_3 (.D(DATA[3]), .A3(ADDR[3]), .A2(ADDR[2]), .A1(ADDR[1]), .A0(ADDR[0]),

 .WE(WR_EN), .WCLK(WR_CLK), .O(DOUT[3])) ;
endmodule

Figure 11: Instantiating Select-RAM Library Primitives (Verilog)

set_attribute RAMCELL xnf_init AAAA -type string
set_attribute RAMCELL_1 xnf_init CCCC -type string
set_attribute RAMCELL_2 xnf_init F0F0 -type string
set_attribute RAMCELL_3 xnf_init FF00 -type string

Figure 12: Initializing Select-RAM Memory in
Synopsys
8 XAPP 057 July 7,1996 (Version 1.0)

Select-RAM Memory Performance
XACT-PerformanceTM is a Xilinx software utility that
enforces timing requirements on the implementation soft-
ware. These specifications are taken into account during
each phase of the design implementation process: map-
ping, placement, and routing. The designer can dictate
required performance for a design containing Select-RAM
memory with XACT-Performance, then use the Xilinx Tim-
ing Analyzer and/or industry-standard simulators on the
implemented design to verify functionality at the required
speed.

Specifying Performance Requirements
Timing can be specified for paths through Select-RAM
memory, as for any other paths in XC4000-Series designs.

Paths, Endpoints, and Groups

XACT-Performance specifications are dictated by identify-
ing specific paths through the design, and tagging each
path with the required timing for the path. Paths are defined
by the two endpoints. Endpoints are specified by groups
(i.e., from one group of elements to another group of ele-
ments). Groups can be pre-defined by Xilinx or defined by
the user.

There are four pre-defined logic groups: FFS, LATCHES,
PADS, and RAMS. The RAMS group refers to XC4000-
Series Select-RAM blocks configured as RAM. When a
performance requirement of the form:

FROM:RAMS:TO:user_group=max_delay or
FROM:user_group:TO:RAMS=max_delay

is used, only paths with RAM blocks at the source or desti-
nation are referenced. (ROM blocks cannot be made part of
a group, as they are not clocked elements. They are treated
as combinatorial logic.)

User-defined timegroups are created by using the TNM
(timing name) attribute or property to flag each member of
the group with the user-defined name of the group. To add
all RAMs in a macro to the group time_group, add a TNM
attribute of the form:

TNM=RAMS:time_group

to the symbol. Only the Select-RAM blocks within the
macro are tagged as belonging to the group.

Groups defined with TNM attributes can be combined into
larger groups using TIMEGRPs.

Three Types of Paths

Three types of paths can be identified.

• Paths with RAMs at the beginning (read cycle):
Path timing includes worst-case delay from a change on
D, WE, or WCLK to data valid.

• Paths with RAMs in the middle:
These paths are traced through address pins only,
since changes on D or WE are assumed to be of
interest only when the RAM is being read during a write.
To specify a path through another input, split the path
into two segments — one ending at the RAM input pin,
the other beginning at the RAM output pin — and
specify the timing separately for each segment.

• Paths with RAMs at the end (write cycle):
Path timing includes setup time at the destination pin.
Paths are not traced to the DPRA address pins, as
these pins define only a read address, and paths that
end at a RAM are performing a write function.

Table 4 shows under what circumstances XACT-Perfor-
mance specifications are applied to each type of path.

See the “XACT-Performance Utility” section of the Develop-
ment System Reference Guide and the Interface Tutorials
manuals from Xilinx for further information on defining
groups, using groups to define paths, and specifying timing
requirements for defined paths.

Three Methods of Entry

Timing specifications can be defined in any of three ways:

• Schematic entry
• Constraints files (enter manually, or generate from

MakeTNM and AddTNM for HDL designs)
• Command-line options

The Interface Tutorials manuals describe at length methods
for entering XACT-Performance specifications in schemat-
ics. An example using the Viewlogic schematic editor is
shown in Figure 13. (Bus labels are omitted for clarity.)

Table 4: When XACT-Performance Requirements Are Applied to Paths Containing Select-RAM Memory

RAM at the Beginning RAM in the Middle RAM at the End
Single-Port
Edge-Triggered

Always applied
Applied to paths through address pins only

(A[3:0] to O or A[4:0] to O)
Always applied

Dual-Port
Edge-Triggered

Always applied
Applied to paths through address pins only

(A[3:0] to SPO and DPRA[3:0] to DPO)
Applied to all paths except
those ending at DPRA[3:0]

Level-Sensitive Always applied
Applied to paths through address pins only

(A[3:0] to O or A[4:0] to O)
Always applied
XAPP 057 July 7,1996 (Version 1.0) 9

Using Select-RAM Memory in XC4000 Series FPGAs
Figure 13: Schematic Specifying Timing Requirements (Viewlogic)

==
Sample Constraints File for Edge-Triggered (Synchronous) RAM
==
--- Defining new groups in the constraints file ---
Define the group of all Select-RAM blocks labeled with a name beginning with “FIFO”
TIMEGRP = “fifogroup=RAMS(fifo*)”;
Define the group of all other Select-RAM blocks
TIMEGRP = “nonfifo=RAMS:EXCEPT:fifogroup”;
Combining groups defined in the constraints file, the schematic, or MakeTNM and AddTNM (synthesis)
TIMEGRP = “newgroup=nonfifo:other_ram_group”;
#
--- Specifying timing requirements using user-defined and pre-defined groups ---
Read cycle timing: paths beginning at the RAM
TIMESPEC = “TS01=FROM:fifogroup:TO:PADS=20ns”;
TIMESPEC = “TS02=FROM:nonfifo:TO:FFS=30ns”;
Paths through the RAM
TIMESPEC = “TS03=FROM:FFS:TO:FFS=20ns”;
Write cycle timing: paths ending at the RAM
TIMESPEC = “TS04=FROM:FFS:TO:fifogroup=20ns”;
TIMESPEC = “TS05=FROM:FFS:TO:nonfifo=30ns”;

Figure 14: Constraints File Specifying Timing for HDL Design

IBUF
IPAD

IBUF
IPAD

IPAD4
IBUF4

IPAD4
IBUF4

IPAD
IBUF

IPAD
BUFG

FD4

C

D Q
OBUF4

OPAD4

OBUF4
OPAD4

O[3:0]

D[3:0]

WE

EXAMRAM

A[3:0]

WCLK

TNM=RAMS:FIFOGROUP

O[3:0]

D[3:0]

FIFO

RD

WR

CLK

NEWGROUP=NONFIFO:OTHER_RAM_GROUP
NONFIFO=RAMS:EXCEPT:FIFOGROUP

TIMEGRP

TS02=FROM:NONFIFO:TO:FFS=30NS
TS01=FROM:FIFOGROUP:TO:PADS=20NS

TIMESPEC

X7279
10 XAPP 057 July 7,1996 (Version 1.0)

As an alternative to schematic entry, timing specifications
can be entered using constraints files, as described in the
Libraries Guide. Figure 14 shows a sample constraints file
defining several groups (TIMEGRP constraints) and perfor-
mance requirements for these groups (TIMESPEC con-
straints).

A third method of entering XACT-Performance require-
ments is through PPR command-line options, as described
in the “PPR” chapter of the Development System Refer-
ence Guide. However, this method does not allow as much
flexibility as the other two alternatives. Level-sensitive RAM
timing cannot be specified using this method. Edge-trig-
gered timing can be broadly specified using the
dc2s=max_delay option to define maximum clock-to-setup
as in the following example:

ppr input_file dc2s=40

The clock-to-setup restriction is applied to all clocked ele-
ments in the design, including flip-flops, latches, and edge-
triggered RAMs.

Any of these three methods can be used for schematic-
based designs. Either constraints files or command-line
options can be used for designs entered using HDL source
code.

Recommended Method for HDL Designs

The constraints file method of specifying timing require-
ments is recommended for HDL designs.

Synopsys has the capability of placing timing requirements
directly in the Xilinx netlist (SXNF file), but the list of con-
straints so created is likely to be more extensive than is
necessary or desirable. Instead, prevent the software from
writing timing specifications to the SXNF file by using the
“xnfout_constraints_per_endpoint = 0” command.

For HDL designs, use the MakeTNM and AddTNM pro-
grams to generate the constraints file. This procedure is
described in detail in the HDL Synthesis for FPGAs Design
Guide.

Analyzing Select-RAM Performance
Xilinx also offers timing analysis of implemented designs. In
the XACTstep software, the Timing Analyzer (a shell for a
program called XDelay) is a static timing analyzer that
reports the worst-case timing delays of a routed FPGA
design. This software is a sophisticated graphical tool fully
capable of analyzing timing for Select-RAM designs.

The Timing Analyzer follows the same rules for tracing
paths as are used by the XACT-Performance utility. (See
“Three Types of Paths” on page 9.)

The Timing Analyzer can report three types of information.

• The Performance Summary reports worst-case timing
for each of four typical design path types: pad-to-setup,
clock-to-setup, clock-to-pad, and pad-to-pad.

• Performance To TimeSpecs reports which XACT-
Performance constraints are met, and reports all
constrained paths in detail.

• The Detailed Path report displays detailed path timing
information for designated paths according to options
set by the user.

In the Performance Summary report, edge-triggered RAM
is included in the clock-to-setup report. Since edge-trig-
gered RAM is clocked, it is essentially treated as if it were
an addressable flip-flop.

For more information about the Timing Analyzer, see the
Timing Analyzer Reference/User Guide and “The XDelay
Timing Analysis Program” in the Development System Ref-
erence Guide. Tutorials demonstrating how to perform a
simple timing analysis are included in the Interface Tutorial
manuals.

Simulating Select-RAM Memory
Industry-standard timing simulators are supported via sim-
ulation netlists that include timing information. Xilinx-sup-
plied simulation models accurately model Select-RAM
timing.

Simulation of edge-triggered RAM modes is much simpler
than simulation of level-sensitive RAM. All that is necessary
is to provide a clock at the specified frequency, and demon-
strate that the read, write, and read-during-write cycles
function at the desired clock speed without generating
setup or hold violations.

Functional and timing simulation of Xilinx designs is
described in the appropriate Interface Guides and demon-
strated in the Interface Tutorial manuals.

Simulating Select-RAM Memory in Viewlogic

A Viewlogic simulation command file is shown in Figure 15.
This command file is directed to the 16 x 4 single-port
edge-triggered RAM shown in Figure 3 or generated from
the MemGen file in Figure 4. The command file tests the
initialization contents of the memory (which should be 0, 1,
2, 3, etc.). It then re-writes the RAMs with the inverse
sequence (15, 14, 13, etc.), and verifies that the data is
actually stored. Pattern files are used to supply input data
and comparison data for the output, as shown in Figure 16.

Extra steps are required to include initial values in the sim-
ulation, when they are specified for a Select-RAM block.

The Viewlogic simulator does not automatically implement
the INIT attribute on RAM or ROM symbols. The Loadm
command must be used to enter the initialization value
before simulating the design. The Loadm command can
only be issued from the keyboard or from a command file; it
does not appear in the menus.

The syntax for the Loadm command is as follows:

loadm instance_name\RAM [lowadrs:highadrs value\radix]
XAPP 057 July 7,1996 (Version 1.0) 11

Using Select-RAM Memory in XC4000 Series FPGAs
| ===================================
| Viewlogic Simulation Command File
| ===================================

| roll back to time 0, reset internal network nodes
restart
| initialize RAM: call command file in Figure 17
execute examram.xmm

| define input and output vectors
vector A A3 A2 A1 A0
vector D D3 D2 D1 D0
vector O O3 O2 O1 O0
vector ram16x4s A3 A2 A1 A0 D3 D2 D1 D0 WE +

WCLK O3 O2 O1 O0

| define waveforms and text output
wave examram.wfm A D WE WCLK O
watch A D WE WCLK O
break ram16x4s ? do (print > examram.out)

| define clock and initial values for inputs
clock WCLK 1 0
step 50ns
l WE
assign A 0\h
assign D F\h
cycle

| check initial contents of the RAM
| at each location, the output data should equal the
| address. First set the address, then, one clock
| cycle later, check the data
every 100ns for 16 do (assign A < up1.pat)
after 100ns do +

(every 100ns for 16 do (check O < up2.pat))
cycle 16

| test the ability to store new data in the RAM
| enable RAM write
s 50ns
h WE
s 50ns
| load f, e, d, ... 1, 0 into addresses 0, 1, ... e, f.
| verify data after each write
every 100ns for 16 do +

(assign A < up1.pat; assign D < down1.pat)
after 100ns do +

(every 100ns for 16 do (check O < down2.pat))
cycle 16

Figure 15: Viewlogic Simulation Command File for 16
x 4 Single-Port Edge-Triggered RAM

up1.pat & up2.pat down1.pat & down2.pat

0\h
1\h
2\h
3\h
4\h
5\h
6\h
7\h
8\h
9\h
a\h
b\h
c\h
d\h
e\h
f\h

f\h
e\h
d\h
c\h
b\h
a\h
9\h
8\h
7\h
6\h
5\h
4\h
3\h
2\h
1\h
0\h

Figure 16: Up and Down Pattern Files

| ===================================
| examram.xmm: Initialization Command File
| ===================================

LOADM O0\RAM (15:15) 1\h
LOADM O0\RAM (14:14) 0\h
LOADM O0\RAM (13:13) 1\h
LOADM O0\RAM (12:12) 0\h
LOADM O0\RAM (11:11) 1\h
LOADM O0\RAM (10:10) 0\h
LOADM O0\RAM (9:9) 1\h
LOADM O0\RAM (8:8) 0\h
LOADM O0\RAM (7:7) 1\h
LOADM O0\RAM (6:6) 0\h
LOADM O0\RAM (5:5) 1\h
LOADM O0\RAM (4:4) 0\h
LOADM O0\RAM (3:3) 1\h
LOADM O0\RAM (2:2) 0\h
LOADM O0\RAM (1:1) 1\h
LOADM O0\RAM (0:0) 0\h
.
.
. (48 lines omitted)

Figure 17: Viewlogic Simulation Command File for
Initializing 16 x 4 Single-Port Edge-Triggered RAM
12 XAPP 057 July 7,1996 (Version 1.0)

At this time, lowadrs and highadrs must be equal; in other
words, a separate Loadm statement is required for each bit.
A sample command file containing Loadm statements is
shown in Figure 17. This command file is called by the sim-
ulation command file shown in Figure 15.

Rather than tediously generating the Loadm statements by
hand, they can be generated using either the XNF2WIR
program or the XSimMake program, which calls XNF2WIR.
XNF2WIR places the Loadm statements in a file with the
extension XMM. (The -r option can be used to create the
XMM file without generating a WIR file, if desired.) The
XMM file can be referenced from a Viewlogic simulation
command file, or the statements can be copied into the
command file. XNF2WIR must be run on the top-level sche-
matic, in order to preserve the naming hierarchy.

Simulating Select-RAM Memory in Synopsys

For a Synopsys design, no special steps are required to
perform timing simulation of Select-RAM memory.
Figure 18 shows an implementation of the familiar 16 x 4
single-port edge-triggered RAM design. A VHDL test bench
for this file is shown in Figure 19. The test bench tests the
initialization contents of the memory (which should be 0, 1,
2, 3, etc.). It then re-writes the RAMs with the inverse
sequence (15, 14, 13, etc.), and verifies that the data is
actually stored.

Figure 18 provides an example of a second method of
instantiating memory primitives in a VHDL file. Using the
“generate” statement, the synthesis software repeatedly
instantiates the referenced component for each value of the
index. This statement makes the creation of wide memory
blocks more succinct.

For behavioral simulation, initial values for the RAM or
ROM (other than the zero default value) can be specified in
the HDL file using the “constant” statement, as shown in
Figure 18. It is vital to remember that this initialization value
is totally ignored during compilation, along with everything
between the translate_off and translate_on statements. In
this example, the behavioral simulation will not match the
behavior of the compiled design, unless the initial values
are also specified during compilation.

Initial values are attached to RAM or ROM primitives during
compilation by using the set_attribute command, as
described in “Initializing Select-RAM Memory in Synthe-
sized Designs” on page 8. The commands shown in
Figure 12 can be used to initialize this example. If these
commands are properly issued while compiling a design,
the initial values are already present when performing a
timing simulation on the back-annotated netlist.

library IEEE;
use IEEE.STD_LOGIC_1164.all;
library XC4000E;
use XC4000E.COMPONENTS.all;

entity RAM is
port (ADDR : in STD_LOGIC_VECTOR (3 downto 0);

DATA_IN : in STD_LOGIC_VECTOR (3 downto 0);
DATA_OUT: out STD_LOGIC_VECTOR (3 downto 0));
WEN : in STD_LOGIC;
WCK : in STD_LOGIC;

end RAM;

architecture TEST of RAM is

component RAM16X1S
-- synopsys translate_off
generic (INIT : string(4 downto 1));
-- synopsys translate_on
port (D, A3, A2, A1, A0, D, WE, WCLK : in STD_LOGIC;

O : out STD_LOGIC);
end component;

type INIT_DATA_ARRAY is array(0 to 3) of string(4 downto 1);

-- (continued in next column)

-- These values are for behavioral simulation only.
-- These values are IGNORED during compilation.
-- Use “set_attribute” command during compilation
-- to assign initial values to the synthesized design.
constant INIT_VALUES : INIT_DATA_ARRAY :=

(“AAAA”,”CCCC”,”F0F0”,”FF00”);

begin

BUILDRAM : for i in 0 to 3 generate
RAMCELL : RAM16X1S

-- synopsys translate_off
generic map (init => INIT_VALUES(i))
-- synopsys translate_on
port map (D=>DATA_IN(i),

O=>DATA_OUT(i),
A3=>ADDR(3),
A2=>ADDR(2),
A1=>ADDR(1),
A0=>ADDR(0),
WE=>WEN,
WCLK=>WCK);

end generate BUILDRAM;

end TEST;

Figure 18: VHDL Code for 16 x 4 Single-Port Edge-Triggered RAM
XAPP 057 July 7,1996 (Version 1.0) 13

Using Select-RAM Memory in XC4000 Series FPGAs
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;

entity RAM_TESTBENCH is
end RAM_TESTBENCH;

architecture TEST of RAM_TESTBENCH is

component RAM
port (ADDR : in STD_LOGIC_VECTOR (3 downto 0);

DATA_IN : in STD_LOGIC_VECTOR (3 downto 0);
DATA_OUT : out STD_LOGIC_VECTOR (3 downto 0));
WEN : in STD_LOGIC;
WCK : in STD_LOGIC;

end component;

signal COUNT : STD_LOGIC_VECTOR (3 downto 0);
signal WRITE_DATA : STD_LOGIC_VECTOR (3 downto 0);
signal READ_DATA : STD_LOGIC_VECTOR (3 downto 0);
signal WRITE_ENABLE : STD_LOGIC;
signal WRITE_CLOCK : STD_LOGIC;

begin

UUT : RAM port map (ADDR => COUNT,
 DATA_IN => WRITE_DATA,
DATA_OUT => READ_DATA,
WEN => WRITE_ENABLE,
WCK => WRITE_CLOCK);

DRIVER : process
begin

-- Test initial contents of the RAM
WRITE_ENABLE <= '0';
WRITE_CLOCK <= '0';

-- (continued in next column)

for i in 0 to 15 loop

COUNT <= CONV_STD_LOGIC_VECTOR(i,4);
wait for 50 NS;
assert READ_DATA = COUNT

report "Initialization data mismatch!"
severity error;

wait for 50 NS;

end loop;

-- Test the ability to store new data in the RAM
WRITE_ENABLE <= '1';

for i in 0 to 15 loop

WRITE_CLOCK <= '0';
COUNT <= CONV_STD_LOGIC_VECTOR(i,4);
WRITE_DATA <=

CONV_STD_LOGIC_VECTOR(15-i,4);
wait for 50 NS;
WRITE_CLOCK <= '1';
wait for 50 NS;
assert READ_DATA = WRITE_DATA

report "RAM contents data mismatch!"
severity error;

end loop;

wait;

end process;

end TEST;

configuration CFG_tb of RAM_TESTBENCH is
for TEST
end for;
end CFG_tb;

Figure 19: VHDL Test Bench for 16 x 4 Single-Port Edge-Triggered RAM
14 XAPP 057 July 7,1996 (Version 1.0)

Design Tip: Optimizing Performance by
Using Both Clock Edges
One XC4000-Series CLB includes two function generators
or look-up tables (LUTs) and two flip-flops. (In XC4000EX
devices, each flip-flop can also be configured as a latch.)
The LUTs can be configured as RAM, with the RAM output
optionally registered in the same CLB.

For an edge-triggered RAM element, the RAM output can
be clocked into the register on either the same clock edge
used to write data, or the opposite edge. (See Figure 20.)
The Select-RAM was specifically designed to support
either configuration, provided all timing specifications are
followed.

The advantage of the configuration shown in Figure 20 is
that the read data is accessible half a clock cycle sooner
than it would be if the same clock edge was used for writing
and for registering the data.

Floorplanning Select-RAM Memory
For any memory block larger than a few CLBs, the address
lines are typically the critical paths in the design, as they
have the highest fanout. They are best routed on longlines
or quad lines. Experience has shown that memory blocks
using multiple CLBs are best placed in one or more vertical
columns.

Dual-port RAM uses almost twice as many address lines as
single-port RAM or ROM, for the same number of CLBs.
For dual-port designs in the XC4000E, it is recommended
that no more than two adjacent CLB columns be used for
RAM. Place control logic in every third column to reduce
potential vertical routing congestion. In the XC4000EX,
with its additional routing channels, routing the address
lines should not be a problem, even for large dual-port
RAMs.

Figure 21 shows efficient performance-optimized place-
ments for single- and dual-port Select-RAM blocks in
XC4000E devices.

The XACTstep software provides three different methods of
floorplanning: schematic RLOC and LOC attributes or
properties, constraints files, and the Xilinx Floorplanner.
RLOC attributes are particularly useful when creating a
block (RPM) that will be reused in several schematics. Con-
straints files can be useful for synthesized designs, but the
Xilinx Floorplanner is the recommended method for synthe-
sized designs and for schematic macros not intended for
multiple placements. The Xilinx Floorplanner is described
in the Floorplanner Reference/User Guide. An on-line tuto-
rial is also available on the PC platform.Figure 20: Registering RAM Data on Opposite Clock

Edge

C

D Q

FD

INV

RAM16X1S

O

WE

D

A0

A1

A2

A3

WCLK

X7280

Figure 21: Efficient Select-RAM Block Placements

Single-Port
16x8 RAM

16x8 RAM
Dual-Port

16x8 RAM
Dual-PortSingle-PortSingle-Port Dual-Port

64x8 RAM64x16 RAM 16x16 RAM

X7281
XAPP 057 July 7,1996 (Version 1.0) 15

Using Select-RAM Memory in XC4000 Series FPGAs
Additional Information
This application note covers a wide variety of subjects. Ref-
erences are made throughout the text to additional materi-
als that can be accessed to obtain more detailed
information on these subjects. These references are sum-
marized below. All are Xilinx publications; some are avail-
able at the Xilinx WEB site at http://www.xilinx.com.

Select-RAM Memory, General Information
• 1996 Programmable Logic Data Book: XC4000 Series

Field Programmable Gate Arrays product specification
• “Implementing FIFOs in XC4000 Series RAM”

(application note)
• “XC4000 Series Edge-Triggered and Dual-Port RAM

Capability” (application note)

Schematic Entry
• Interface User Guide for the appropriate interface
• Libraries Guide (attributes and properties)

MemGen Memory Generator Tool
• Development System Reference Guide

X-BLOX Schematic-Based Synthesis
• X-BLOX Reference/User Guide
• “Release Document, XACTstep V5.2.1/6.0.1” or
• “Release Document, XC4000E V1.0.0 Pre-Release”

HDL Synthesis
• Synopsys (XSI) for FPGAs Interface/Tutorial Guide
• “Release Document, XACTstep V5.2.1/6.0.1” or
• “Release Document, XC4000E V1.0.0 Pre-Release”

Floorplanning
• HDL Synthesis for FPGAs Design Guide (HDL)
• Floorplanner Reference/User Guide
• On-line tutorial (PC platform only)

XDE Graphical Editor Support
• “Release Document, XACTstep V5.2.1/6.0.1” or
• “Release Document, XC4000E V1.0.0 Pre-Release”

XACT-Performance
• Development System Reference Guide: XACT-

Performance Utility
• Interface Tutorial manual for the appropriate interface
• Libraries Guide (constraints files syntax)
• HDL Synthesis for FPGAs Design Guide (HDL designs)

Timing Analyzer
• Timing Analyzer Reference/User Guide
• Development System Reference Guide: The XDelay

Timing Analysis Program
• Interface Tutorial manual for the appropriate interface

The Programmable Logic CompanySM

© 1996 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Pro-
grammable Logic Company is a service mark of Xilinx, Inc. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patent, copy-
right or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in its prod-
ucts. Products are manufactured under one or more of the following U.S. Patents: (4,847,612; 5,012,135; 4,967,107; 5,023,606; 4,940,909; 5,028,821; 4,870,302;
4,706,216; 4,758,985; 4,642,487; 4,695,740; 4,713,557; 4,750,155; 4,821,233; 4,746,822; 4,820,937; 4,783,607; 4,855,669; 5,047,710; 5,068,603; 4,855,619;
4,835,418; and 4,902,910. Xilinx, Inc. cannot assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other
third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.



Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (800) 255-7778
or 1 (408) 559-7778
Fax: 1 (800) 559-7114

Net: hotline@xilinx.com
Web: http://www.xilinx.com

North America

Irvine, California
(714) 727-0780

Englewood, Colorado
(303)220-7541

Sunnyvale, California
(408) 245-9850

Schaumburg, Illinois
(847) 605-1972

Nashua, New Hampshire
(603) 891-1098

Raleigh, North Carolina
(919) 846-3922

West Chester, Pennsylvania
(610) 430-3300

Dallas, Texas
(214) 960-1043

Europe

Xilinx Sarl
Jouy en Josas, France
Tel: (33) 1-34-63-01-01
Net: frhelp@xilinx.com

Xilinx GmbH
Aschheim, Germany
Tel: (49) 89-99-1549-01
Net: dlhelp@xilinx.com

Xilinx, Ltd.
Byfleet, United Kingdom
Tel: (44) 1-932-349401
Net: ukhelp@xilinx.com

Japan

Xilinx, K.K.
Tokyo, Japan
Tel: (03) 3297-9191

Asia Pacific

Xilinx Asia Pacific
Hong Kong
Tel: (852) 2424-5200
Net: hongkong@xilinx.com
16 XAPP 057 July 7,1996 (Version 1.0)

	Select-RAM Memory
	Specifying Select-RAM Memory
	Schematic Entry
	Initializing Select-RAM in a Schematic
	Mapping Into CLBs
	Directing Placement of Memory Blocks from the Sche...
	LOC Attributes or Properties
	RLOC Attributes or Properties

	MemGen Memory Block Generator
	X-BLOX Schematic-Based Synthesis
	HDL Synthesis
	Initializing Select-RAM Memory in Synthesized Desi...
	Directing Placement of Synthesized Memory Blocks

	XDE Graphical Editor Support
	Select-RAM Memory Performance
	Specifying Performance Requirements
	Paths, Endpoints, and Groups
	Three Types of Paths
	Three Methods of Entry
	Recommended Method for HDL Designs

	Analyzing Select-RAM Performance
	Simulating Select-RAM Memory
	Simulating Select-RAM Memory in Viewlogic
	Simulating Select-RAM Memory in Synopsys

	Design Tip: Optimizing Performance by Using Both C...

	Floorplanning Select-RAM Memory
	Additional Information
	Select-RAM Memory, General Information
	Schematic Entry
	MemGen Memory Generator Tool
	X-BLOX Schematic-Based Synthesis
	HDL Synthesis
	Floorplanning
	XDE Graphical Editor Support
	XACT-Performance
	Timing Analyzer

