
XAPP067 July, 1997 (Version 1.1) 1-1

1

Summary

This application note describes how to program XC9500 devices in-system, using standard Serial Vector Format (SVF)
stimulus files.

Xilinx Family

XC9500

Introduction
XC9500 devices use a standard 4-wire Test Access Port
(TAP) for both In-System Programming (ISP) and IEEE
1149.1 boundary scan (JTAG) testing. Therefore, manufac-
turers can reduce their overall system cost and reduce
device damage due to unnecessary handling by using
automatic test equipment (ATE) or boundary-scan based
tools development to both program and test these devices.
The XC9500 Boundary-scan architecture is shown in
Figure 1.

The Xilinx EZTagTM software helps make this possible by
automatically generating a Serial Vector Format (SVF) file
describing the programming and test algorithms required
by the XC9500 devices. Most ATE platforms and boundary-
scan based development tools accept SVF as a test vector
input format. This application note describes the steps

required to generate an SVF file and how to use this file to
program and test a device.

SVF Overview
The original Serial Vector Format was developed jointly by
Texas Instruments and Teradyne in response to a need for
the exchange of boundary-scan test vectors between such
tools as test generation software and ATE. At that time,
usage of the IEEE standard 1149.1 was increasing but no
common format or language existed to satisfy the need for
a common data exchange.

The developers of SVF chose a format that did not use test
vectors solely to provide TCK (clock) and TMS (mode con-
trol) signals to the IEEE 1149.1 TAP. Instead, the underly-
ing models of the SVF format assume that all operations
begin and end in stable states. This results in a much sim-
pler and more concise description of the stimulus vectors.

Figure 1: XC9500 Boundary Scan Architecture

Using Serial Vector Format Files to
Program XC9500 Devices In-System on
Automatic Test Equipment and Third
Party Tools

XAPP067 July, 1997 (Version 1.1) Application Note

TMS
TCK

.

XC9500 System Logic

TDI

Instruction Register

Data Registers

I/O Pins

>

State Machine
JTAG

Boundary Scan Register

TCK

TDO

mux

. . .

.

.

.

.

.

.

Device

Test
Access

Port

Programming
and

Device

Using Serial Vector Format Files to Program XC9500 Devices In-System on Automatic Test Equipment and Third Party Tools

1-2 XAPP067 July, 1997 (Version 1.1)

Between mid-1991 and the autumn of 1994 three revisions
of SVF were developed, with the goal of creating a format
that was independent of the test application vehicle. By late
1994 over 100 companies had developed SVF-based tools
and at least ten vendors of CAE tools and ATE were sup-
porting SVF.

SVF has proven itself to be a useful and reliable format for
exchanging data between the boundary-scan TAP and the
software that drives it.

SVF Specification
For the purposes of XC9500 ISP, only three records of the
thirteen SVF records that describe the standard are
needed. Those three records are discussed in this section.

An SVF file contains a set of ASCII statements. The maxi-
mum number of characters allowed on a line is 256, how-
ever one SVF statement can span more than one line.
Each statement consists of a command and its associated
parameters, terminated by a semicolon. SVF is not case
sensitive and comments are indicated by an exclamation
point (!) or a pair of slashes (//) at the beginning of a line,
terminated by a carriage return.

Scan data within a statement is expressed in hexadecimal
and is always enclosed in parenthesis. The scan data can-
not specify a data string that is larger than the specified bit
length; the Most Significant Bit (MSB) zeros in the hex
string are not considered when determining the string
length. The bit order for scan data defines the LSB (right-
most bit) as the first bit scanned into the device for scan
data specified by the TDI and SMASK keywords, and is the
first bit scanned out for data specified by the TDO and
MASK keywords.

The following SVF Commands are supported by the
XC9500 EZTag software:

• SDR (Scan Data Register).
• SIR (Scan Instruction Register).
• RUNTEST.

In each of the following command descriptions the parame-
ters are mandatory. Optional parameters are enclosed in
brackets ([]). Variables are shown in italics. Parenthesis
“()”are used to indicate hexadecimal values.

A scan operation is defined as the execution of an SIR or
SDR command and any associated header or trailer com-
mands.

SDR, SIR
SDR length [TDI (tdi)] [TDO (TDO)] [MASK
(msk)] [SMASK (smask)][PIO (pio)];

SIR length [TDI (tdi)] [TDO (TDO)] [MASK
(msk)] [SMASK (smask)][PIO (pio)];

These commands specify a scan pattern to be applied

to the target scan registers. The SDR command (Scan
Data Register) specifies a data pattern to be scanned
into the target device Data Register. The SIR command
(Scan Instruction Register) specifies a data pattern to
be scanned into the target device Instruction Register.

Parameters:

length — A 32-bit decimal integer specifying the num-
ber of bits to be scanned.

[TDI (tdi)] — (optional) This specifies the value to be
scanned into the target, expressed as a hex value. If
this parameter is not present, the value of TDI to be
scanned into the target device will be the TDI value
specified in the previous SDR/SIR statement. If a new
scan command is specified, which changes the length
of the data pattern with respect to a previous scan, the
TDI parameter must be specified, otherwise the default
TDI pattern is undetermined and is an error.

[TDO (tdo)] — (optional) This specifies the test values
to be compared against the actual values scanned out
of the target device, expressed as a hex string. If this
parameter is not present, no comparison will be per-
formed. If no TDO parameter is present, the MASK will
not be used.

[MASK (mask)] — (optional) This specifies the mask to
be used when comparing TDO values against the
actual values scanned out of the target device,
expressed as a hex string. A “0” in a specific bit position
indicates a “don’t care” for that position. If this parame-
ter is not present, the mask will equal the previously
specified MASK value specified for the SIR/SDR state-
ment. If a new scan command is specified which
changes the length of the data pattern with respect to a
previous scan, the MASK parameter must be specified,
otherwise the default MASK pattern is undefined and is
an error. If no TDO parameter is present, the MASK will
not be used.

[SMASK (smask)] — (optional) This specifies which
TDI data is “don’t care”, expressed as a hex string. A “0”
in a specific bit position indicates that the TDI data in
that bit position is a “don’t care”. If this parameter is not
present, the mask will equal the previously specified
SMASK value specified for the SDR/SIR statement. If a
new scan command is specified which changes the
length of the data pattern with respect to a previous
scan, the SMASK parameter must be specified, other-
wise the default SMASK pattern used is undefined and
is an error. The SMASK will be used even if the TDI
parameter is not present.

Example:

SDR 24 TDI (000010) SMASK (0) TDO (818181)
MASK (FFFFFF);

SIR 16 TDO (ABCD);

XAPP067 July, 1997 (Version 1.1) 1-3

1

RUNTEST
RUNTESTrun_count TCK;

This command forces the target IEEE 1149.1 bus to the
Run- Test/Idle state for a specific number of TCK clock
periods. This can be used to specify latency periods
when operating the TAP.

Parameters:

run_count — The number of TCK clock periods that
the 1149.1 bus will remain in the Run Test/Idle state,
expressed as a 32 bit unsigned number.

Example:
RUNTEST 1000 TCK;

A Sample XVF File is shown as follows:

Using EZTag to generate an SVF file
This procedure shows how to create an SVF file; it
assumes that the Xilinx XACT version 6.0.0 software, or
newer, which includes the XC9500 fitter and the EZTag
software, is being used.

 1. Create the design using XABEL-CPLD or any compati-
ble third-party design entry tool.

 2. Fit the design and save it to a JEDEC output file.

 3. Invoke the EZTag software from the XACT command
line using the following command:

eztag -svf
The following message appears:
Xilinx (R) EZTAG XC9500-CPLD-6.0.0 - JTAG
Boundary-Scan Download
Copyright (C) Xilinx Inc. 1991-1995. All
Rights Reserved.
--
SVF GENERATION MODE.
EZTAG?

 4. At the EZTAG? Prompt type the following command:

part deviceType1:designName1
deviceType2:designName2
deviceTypeN:designNameN <CR>

where designName is the name of the design to trans-
late into SVF. Multiple deviceType:designName pairs
are separated by spaces.

This command defines the JTAG device chain, from one
to any number of devices. The parts specified in the
part command should be arranged in order beginning
with the first device to receive TDI and ending with the
last device to output TDO.

Note: For any non-XC9500 part in the JTAG chain
make certain that the BSDL file for the specified part is
available along the XACT path and is called device-
Type.bsd (e.g., 4003pc84.bsd for a XC4003 in the PC84
package).

 5. Enter any one of the following commands:

erase designName — generates an SVF file that spec-
ifies the bit sequence to erase the specified part.

verify designName [-j jedecFileName] — generates
an SVF file that specifies the bit sequence to read back
the device contents and compares it against the con-
tents of the specified JEDEC file.

program [-b] designName [-j jedecFileName] — gen-
erates an SVF file that specifies the bit sequence to
program the specified part from a JEDEC file named
designName.jed (or alternately, the JEDEC file name
specified after the “-j”). The program command options
add the following functionality:

-b — When using new devices shipped from the factory,
this switch skips the erasure process that usually pre-
cedes programming. Erasure is not necessary for a
device that has not been previously programmed.

 6. Exit EZTag by entering the following command:

quit

NOTE: The SVF file will be named designName.svf,
and will be created in the current working directory (the
directory in which EZTAG is being run). Consecutive
operations on the same designName file will overwrite
the SVF file each time. The SVF file contains all data
and commands necessary to perform the specified
function.

SVF Interpretation
The simplicity of SVF is also one of its major weaknesses.
Much of the behavior of SVF, while running, is left
unspecified by the standard. In order to optimize SVF
stimulus for an application, the interpretations of some
operations must be defined more precisely.

RUNTEST TCK
Many ATE boundary-scan tool manufacturers prefer not to
generate bursts of TCK activity because this results in sig-
nificantly increased test vector file sizes. This increases the
overall test cost and can cause the vector set to run ineffi-
ciently. Because the RUNTEST record is used to wait for
something to happen, the TCK burst specified is generally
interpreted as a time value. The favored interpretation is

! Begin Test Program

TRST OFF; !disable test reset line
ENDIR IDLE; !End IR scan in IDLE
SIR 8 TDI (FE) MASK (FF)
SDR 14 TDI (3afe) MASK (3ff) TDO (0003)

SMASK (3ff)
RUNTEST 100 TCK
!End test program

Using Serial Vector Format Files to Program XC9500 Devices In-System on Automatic Test Equipment and Third Party Tools

1-4 XAPP067 July, 1997 (Version 1.1)

that the number represents a wait time in microseconds.
This is how the EZTag-generated SVF files should be inter-
preted.

SDR predicted TDO values
The SVF specification describes a method for specifying
predicted TDO values. It does not, however, specify actions
to be taken when the predicted TDO value does not equal
the expected values.

When using Xilinx XC9500 parts, the TDO values predicted
reflect the status of the just completed operation (which
could be an erase or a program operation). If the status is
not the success status (which is the value predicted as the
TDO value in the generated SVF file) then the following
1149.1 TAP controller state transition sequence should be
followed (assuming the TDO validation failure is detected in
the EXIT1-DR state):

 1. EXIT1-DR

 2. PAUSE-DR

 3. EXIT2-DR

 4. SHIFT-DR

 5. EXIT1-DR

 6. UPDATE-DR

 7. RUN-TEST/IDLE

The above state transition sequence is illustrated in the
1149.1 TAP state diagram in Figure 2.

The net effect of the state transition sequence is to nullify
the just-shifted-in programming or erase data and re-apply
the previous program or erase data. Note that the applica-
tion interpreting the SVF must acknowledge this by not
advancing beyond the current SVF record.

Figure 2: Test Access Port State Diagram

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Test-Logic-Reset

Run-Test/Idle

1

0

1

0

1

0

1

1

1

0

0

1

0

1

0

1 0

1

1

1

0

0

0

1 0

0

0

0

1

0

1

1

Exception
Handling
Loop

XAPP067 July, 1997 (Version 1.1) 1-5

1

Figure 3: SVF File Fragment Illustrating ATE Flow

Using the SVF file as an example, as shown in Figure 3, the
required operation should then be as follows:

 1. When reading an SDR instruction with a TDO specified
(like the second one in Figure 3), the predicted TDO
value must match the value output from the device on
the tester. If it does not match, then the failure recovery
loop is executed. In the RUN-TEST/IDLE state a pause
is inserted for the amount of time specified in the previ-
ously applied RUNTEST instruction.

 2. On exit from the RUNTEST instruction, re-apply that
same SDR record (in this case the second one in the
file) and test the TDO value again.

 3. If the TDO matches the expected value, the TAP state
machine is transitioned back to RUN-TEST/IDLE the
normal way (via EXIT1-DR and UPDATE-DR) and is
applied to the next SDR record.

 4. This “recovery loop” is to be attempted no more than 32
times. If the TDO value does not match after 32 times,
the part is considered defective and the process should
abort with some failure indication supplied to the user.

Normally, less than 1% of the addresses fail the TDO check
and require the additional erase or program time associ-
ated with execution of the failure recovery loop.

Pseudo-code Algorithm for SVF-based ISP
The following pseudo-code describes the sequence of
operations that should be used in interpreting the SVF file
on a generic SVF processor (ATE or boundary-scan devel-
opment tool).

 1. Go to Test-Logic-Reset state

 2. Go to Run-Test Idle state

 3. Read SVF record

 4. if SIR record then
go to Shift-IR state
Scan in <TDI value>

 5. else if SDR record then
set <repeat count> to 0
store <TDI value> as <current TDI value>
store <TDO value> as <current TDO value>

 6. go to Shift-DR state
scan in <current TDI value>
if <current TDO value> is specified then

if <current TDO value> does not equal <actual TDO
value> then

if <repeat count> > 32 then
LOG ERROR
go to Run-Test Idle state
go to Step 3

end if
go to Pause-DR
go to Exit2-DR
go to Shift-DR
go to Exit1-DR
go to Update-DR
go to Run-Test/Idle
increment <repeat count> by 1
pause <current pause time> microseconds
go to Step 6)

end if
else
go to Run-Test Idle state
go to Step 3

endif

 7. else if RUNTEST record then
pause tester for <TCK value> microseconds
store <TCK value> as <current pause time>
end if

// First SDR record
SDR 27 TDI (000003fe) SMASK (07ffffff); // Just apply the value - no test for
TDO
RUNTEST 160000 TCK; // Wait for 160 msec.
// Second SDR record
SDR 27 TDI (008003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
// Apply value to TDI read TDO test for concurrence
// if not as expected do “failure recovery loop” - hold
// at this SDR instruction.
RUNTEST 160000 TCK; // Wait for 160 msec
// Third SDR record
SDR 27 TDI (010003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
RUNTEST 160000 TCK; // Wait for 160 msec
// Fourth SDR record
SDR 27 TDI (018003fe) SMASK (07ffffff) TDO (00000003) MASK (00000003);
RUNTEST 160000 TCK; // Wait for 160 msec

Using Serial Vector Format Files to Program XC9500 Devices In-System on Automatic Test Equipment and Third Party Tools

1-6 XAPP067 July, 1997 (Version 1.1)

Conclusion
By using the EZTag-generated SVF files it is possible to
streamline manufacturing flows by programming XC9500
parts on automatic test equipment and third party bound-
ary-scan tools. This allows integration of the program and
test steps of the system manufacturing process. This inte-
gration will result in higher system yields, better manufac-
turability, and simpler part inventory management.

References
Serial Vector Format Specification, Rev C., Texas Instru-
ments.

The Boundary-Scan Handbook, Kenneth Parker, Klewer
Academic Publishers, 1994.

IEEE Standard Test Access Port and Boundary-Scan
Architecture, IEEE Std 1149.1-1990 (including IEEE Std
1149.1a-1993)

	Introduction
	SVF Overview
	SVF Specification
	SDR, SIR
	RUNTEST

	Using EZTag to generate an SVF file
	SVF Interpretation
	RUNTEST TCK
	SDR predicted TDO values
	Pseudo-code Algorithm for SVF-based ISP

	Conclusion
	References

