
Summary

The Tagalyzer is a diagnostic tool that helps debug long JTAG boundary scan chains. It can be modified to adapt to a wide
variety of different testing situations, and is made from a single XC9536 CPLD. It can be used to debug JTAG chains made
up of any manufacturers parts. The Tagalyzer can be expanded, to support arbitrarily long boundary scan chains and
adapted to change its functionality, as needed.

Xilinx Family

XC9500

Introduction
JTAG Boundary Scan designs can become complex and
difficult to debug. This can warrant the need for specialized
tools capable of isolating and defining the exact state of the
JTAG chain. One such tool - the Tagalyzer - is surprisingly
inexpensive and easy to use while providing highly useful
information to the board level engineer. Using a single Xil-
inx CPLD, this tool can be built for a few dollars and debug
JTAG test circuits of arbitrary length. This paper includes a
detailed discussion of the design, operation and modifica-
tion of the basic instrument. With the design presented in
this paper, designers will be able to rapidly debug their
JTAG systems in a practical and straightforward way.
Design details include complete VHDL code for the Taga-
lyzer as well as a technical discussion of its use.

JTAG Review and Other Resources
For this discussion, it will be assumed that the reader is an
experienced JTAG user. If that is not the case, that problem

is easily remedied by studying available resources. Please
refer to Xilinx application notes: XAPP068, XAPP069 and
XAPP070.

Currently, these application notes are located on Xilinx
World Wide Web at:

http://www.xilinx.com/apps/epld.htm

The heart of any JTAG test chain (Figure 1) is the Test
Access Port (TAP) controller (Figure 2). The TAP controller
is a 16 state Moore type state machine that dictates the
control of all JTAG activities. JTAG boundary scan testing is
accomplished with only four external signals: Test Mode
Select (TMS), Test Clock (TCK), Test Data Input (TDI) and
Test Data Output (TDO). When parts are interconnected
with a JTAG boundary scan chain, their various TMS, TCK,
TDI and TDO signals are attached in various configura-
tions. It is difficult to tell from the outside pin view, exactly
what is going on inside each chip. In particular, it is hard to
tell what state that chip's TAP controller is in. That is where
the Tagalyzer comes in.

0

The Tagalyzer - A JTAG Boundary
Scan Debug Tool

XAPP 103 January 23, 1998 (Version 1.0) 0 3* Application Note

Device 1 Device 2 Device 3 Device 4
TDI

TMS

TCK

TDO

Figure 1: JTAG Boundary Scan Control Signal Connections

APPLICATION NOTE
XAPP 103 January 23, 1998 (Version 1.0) 1

The Tagalyzer - A JTAG Boundary Scan Debug Tool
Note that in Figure 2, there are sixteen states. Each state
has a precise meaning and definition, which directly
reflects the state of the boundary scan test chain at any
point in time. In Figure 2, the upper left two states are key
beginning and ending states. The center column of states
(starts with Select-DR-Scan) describes bit processing for
the JTAG data register. The right column of states (starts
with Select-IR-Scan) describes bit processing for the JTAG
instruction register. Transitions between all states is done
by applying combinations of TMS, TCK and TDI. By attach-
ing to these signals, it is possible to create a separate ver-
sion of the TAP state machine that tracks the TAP states,
and displays them. It is also possible to capture and display
the JTAG instruction and data registers. That's what the
Tagalyzer does.

The Tagalyzer Structure
Although not required, the Tagalyzer is conveniently con-
structed on the XC9536 Customer Demo Card (Figure 3).
This card can be obtained for a nominal fee from Xilinx Cus-
tomer Support or Xilinx Sales. It combines an XC9536 with
power connections making it easy to use with a single 9V
battery. Delivered, the card has a set of 10 LEDs installed
that will be used as part of the Tagalyzer. Additional LED
displays will need to be installed to replicate the unit
described here. Basically, the idea is simple - build a copy
of the TAP controller in an XC9536 so that it externally dis-
plays the current TAP controller state. Additionally, it is pos-
sible to display (current LED column) the contents of the
JTAG instruction or data register. VHDL code for the TAP
controller is included in the appendix of this application
note.

Figure 2: The JTAG TAP CONTROLLER

Select-DR-Scan Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-IR

Update-DR

Run-Test/Idle

Test-Logic-Reset

1

11 1

1 1

00

1

0

0

0

1

0

1

1 1

1

0

1

0

0

1

0101

0

00

0

1

2 XAPP 103 January 23, 1998 (Version 1.0)

Figure 3: XC9536 Customer Demo Board

Figure 4 shows how the Tagalyzer can be connected to var-
ious points along a 4 device JTAG boundary scan chain. At
each site, 3 external leads must be attached to the respec-
tive TCK, TMS and TDI points of the chain. At that position,
the Tagalyzer will track the internal TAP controller and dis-
play its matching state. This permits debuggers the ability
to quickly identify misconnections and correct any TAP con-
troller misconceptions about internal operation. It also per-
mits, to some degree, the tracking of TDO (for subset
conditions like Bypass configurations). It is also useful to
display the current data and instruction registers. A point to
remember is that you won't be attaching the XC9536 JTAG
pins at these points, but rather pins which are attached to
ordinary XC9536 I/O points.

There is no limit on the number of parts that can be tested
with the Tagalyzer. It will track the state of whatever part to
which it is attached. Also, because the XC9536 can be eas-
ily modified, the design inside the Tagalyzer can be altered
to suit the specific problem addressed. For instance, the
column can display instruction in one version and data in

another. For larger problems, the design can be migrated to
larger XC9500 parts, if needed, but it must be rebuilt on a
larger card.

Software Support
Xilinx M1.4 Design Software includes a JTAGProgrammer
module. The JTAGProgrammer module has a special fea-
ture that is appropriate to use with the Tagalyzer, which per-
mits low level delivery of a prescribed number of clocks and
delivery of TDI and capture of TDO.

The debugger (see Figure 5) provides you with a method to
apply boundary-scan test access port stimulus. This fea-
ture allows you to set TDI and TMS, then pulse TCK a
specified number times. You can monitor TDO, TDI and
TMS using the Tagalyzer to see if the boundary scan chain
is operating correctly. The debugger also displays the cur-
rent TAP state and allows you to reset the chain to Run Test
Idle.

To access the debugger:

File ‡ Debug Chain
XAPP 103 January 23, 1998 (Version 1.0) 3

The Tagalyzer - A JTAG Boundary Scan Debug Tool
Device 1 Device 2 Device 3 Device 4
TDI

TMS

TCK

TDO

TAGALYZER

Device 1 Device 2 Device 3 Device 4
TDI

TMS

TCK

Attach TDI to

desired point

TDO (observation point)

Attach to any TDI point (above)
as needed.

Figure 4: Possible Tagalyzer Attachments
4 XAPP 103 January 23, 1998 (Version 1.0)

Figure 5: M1 JTAG Downloader Debug GUI

The features of this dialog box operate as follows:

1. The first selection box allows you to set a logic state for
TDI. This state will not be set until you click on the Apply
button.

2. The second selection box allows you to set a logic state
for TMS. This state will not be set until you click on the
Apply button.

3. The third selection box allows you to set a number of
pulses to apply to TCK. These pulses will not be sent
until you click on the Apply button. If you want to see the
pulses again, click the Apply button as often as you
want.

4. The TAP State window displays the current state of the
controller.

5. The Return to RTI (Run Test Idle) button executes a Test
Logic Reset, then returns to Run Test Idle.

Conclusion
The Tagalyzer is an easy to use, very inexpensive but pow-
erful diagnostic tool. It can be used to debug JTAG chains
of any length and virtually any manufacturer's parts. It is
easily constructed using Xilinx XC9536 customer demo
board and Xilinx M1.4 Design Software.
XAPP 103 January 23, 1998 (Version 1.0) 5

The Tagalyzer - A JTAG Boundary Scan Debug Tool
Appendix A Tagalyzer VHDL Source Code
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

use WORK.tag_defs.ALL;

use WORK.ALL;

entity tagalize is

port

(

my_tdi:instd_logic;

my_tck:instd_logic;

my_tms:instd_logic;

my_tdo:instd_logic;

Instruction:buffer std_logic_vector (7 downto 0);

Data:buffer std_logic_vector (2 downto 0);

tdo_output:buffer std_logic_vector (2 downto 0);

TLR:outstd_logic;

RTI:outstd_logic;

SDR:outstd_logic;

CDR:outstd_logic;

SHDR:outstd_logic;

E1DR:outstd_logic;

PDR:outstd_logic;

E2DR:outstd_logic;

UDR:outstd_logic;

SIR:outstd_logic;

CIR:outstd_logic;

SHIR:outstd_logic;

E1IR:outstd_logic;

PIR:outstd_logic;

E2IR:outstd_logic;

UIR:outstd_logic

);

end tagalize;

architecture behavior of tagalize is

signal jtag_state:std_logic_vector (15 downto 0);

begin

TLR <= jtag_state(0);

RTI <= jtag_state(1);

SDR <= jtag_state(2);

SIR <= jtag_state(3);

CDR <= jtag_state(4);

CIR <= jtag_state(5);

SHDR <= jtag_state(6);

SHIR <= jtag_state(7);

E1DR <= jtag_state(8);

E1IR <= jtag_state(9);

PDR <= jtag_state(10);

PIR <= jtag_state(11);

E2DR <= jtag_state(12);

E2IR <= jtag_state(13);

UDR <= jtag_state(14);

UIR <= jtag_state(15);

process

begin

wait until (my_tck'event and my_tck = '1');

case jtag_state is

when test_logic_reset =>

if my_tms = '1' then jtag_state <= test_logic_reset;

else jtag_state <= run_test_idle;

end if;

when run_test_idle =>

if my_tms = '1' then jtag_state <= sel_dr_scan;

else jtag_state <= run_test_idle;

end if;

when sel_dr_scan =>

if my_tms = '1' then jtag_state <= sel_ir_scan;

else jtag_state <= capture_dr;

end if;
6 XAPP 103 January 23, 1998 (Version 1.0)

when sel_ir_scan =>

if my_tms = '1' then jtag_state <= test_logic_reset;

else jtag_state <= capture_ir;

end if;

when capture_dr =>

if my_tms = '1' then jtag_state <= exit1_dr;

else jtag_state <= shift_dr;

end if;

when capture_ir =>

if my_tms = '1' then jtag_state <= exit1_ir;

else jtag_state <= shift_ir;

end if;

when shift_dr =>

if my_tms = '1' then jtag_state <= exit1_dr;

else jtag_state <= shift_dr;

end if;

when shift_ir =>

if my_tms = '1' then jtag_state <= exit1_ir;

else jtag_state <= shift_ir;

end if;

when exit1_dr =>

if my_tms = '1' then jtag_state <= update_dr;

else jtag_state <= pause_dr;

end if;

when exit1_ir =>

if my_tms = '1' then jtag_state <= update_ir;

else jtag_state <= pause_ir;

end if;

when pause_dr =>

if my_tms = '1' then jtag_state <= exit2_dr;

else jtag_state <= pause_dr;

end if;

when pause_ir =>

if my_tms = '1' then jtag_state <= exit2_ir;

else jtag_state <= pause_ir;

end if;

when exit2_dr =>

if my_tms = '1' then jtag_state <= update_dr;

else jtag_state <= shift_dr;

end if;

when exit2_ir =>

if my_tms = '1' then jtag_state <= update_ir;

else jtag_state <= shift_ir;

end if;

when update_dr =>

if my_tms = '1' then jtag_state <= sel_dr_scan;

else jtag_state <= run_test_idle;

end if;

when update_ir =>

if my_tms = '1' then jtag_state <= sel_dr_scan;

else jtag_state <= run_test_idle;

end if;

when others =>

jtag_state <= test_logic_reset;

end case;

end process;

process

begin

wait until (my_tck'event and my_tck = '1');

if jtag_state = shift_dr then

Data (1 downto 0) <= Data (2 downto 1);

Data (2) <= my_tdi;

tdo_output (1 downto 0) <= tdo_output (2 downto 1);

tdo_output (2) <= my_tdo;

end if;
XAPP 103 January 23, 1998 (Version 1.0) 7

The Tagalyzer - A JTAG Boundary Scan Debug Tool
if jtag_state = shift_ir then

Instruction (6 downto 0) <= Instruction (7 downto 1);

Instruction (7) <= not my_tdi;

tdo_output (1 downto 0) <= tdo_output (2 downto 1);

tdo_output (2) <= my_tdo;

end if;

end process;

end behavior;
8 XAPP 103 January 23, 1998 (Version 1.0)

	Introduction
	JTAG Review and Other Resources
	The Tagalyzer Structure
	Software Support
	Conclusion
	Appendix A Tagalyzer VHDL Source Code

