
XAPP109 October 21, 1998 (Version 2.0) 1

Summary

This application note summarizes the issues and design techniques specific to the Xilinx ABEL Interface, version M1.5.

Xilinx Fami ly

All

Int roduction

Products

XABEL included only in Foundation product

XABEL is included in all variations of the Foundation F1.5
product (Base or Standard, with or without HDL). When
used in Foundation, ABEL design entry is supported by the
HDL Editor, and design development is tightly integrated
into the Foundation Project Manager.

XABEL is not included in any Alliance products. A separate
XABEL Interface package is available for download which
can be used to develop ABEL modules to be included as
macros in schematic-based design (see ABEL modules for
Alliance designs below). To download XABEL go to the
Service & Support website and select xabel150.zi p.

No workstation version of XABEL software

The ABEL6 compiler from Synario is not available for any
UNIX workstations. ABEL modules to be included in
designs prepared on workstation-based schematic capture
systems should be compiled on a PC. The EDIF netlist for
each ABEL module can be transferred to the workstation
and included in the top-level design.

The older ABEL5 compiler that was available with XACT
version 5 was available in a UNIX compatible form. XNF
netlists (for FPGAs) or Plusasm equation files (for CPLDs)
produced by that interface are still readable by Xilinx M1.5
software. However, the ABEL5 software cannot be inte-
grated into the Xilinx-M1 system and cannot be used to
produce EDIF netlists.

Documented in Foundation on-line help

Because XABEL is sold only in the Foundation product, all
documentation supporting the XABEL interface is included
in the Foundation on-line help system. This documentation
includes ABEL design techniques for FPGAs and CPLDs,
and an ABEL-HDL Language Reference. The on-line help
document can be useful for preparing ABEL modules for
use in an Alliance design. The set of on-line help files nor-
mally shipped with Foundation 1.5 can be downloaded sep-

arately from the Service & Support website; the filename is
f15_help.zi p.

Capabilities

Supports all families

All XABEL designs are compiled into EDIF netlists consist-
ing of architecture-independent Xilinx Unified Library com-
ponents, which can be read and incorporated into designs
targeting any Xilinx device family.

Creates macro modules and stand-alone
designs

The XABEL Interface can optionally add pad components
to all pins declared in the ABEL design, thus generating a
top-level EDIF netlist that can be read directly by the Xilinx
implementation software. Otherwise, pad components can
be omitted to generate a netlist used to define the logic of a
macro symbol embedded in a schematic design. Only sim-
ple input and output buffers (including tristate outputs) are
supported by XABEL. So any FPGA designs requiring
clock buffers or registered input/output pads should be
based on top-level schematics containing the desired I/O
symbols.

Based on Synario ABEL 6 with hierarchy

The ABEL compiler used in the XABEL Interface (Xilinx
version 1.5) is the ABEL version 6.3 engine from Synario
Design Automation, formerly a subsidiary of Data I/O, and
now a subsidiary of Minc.

The ABEL6 compiler has several improvements over
ABEL5, including the ability to combine multiple ABEL
modules into a hierarchical design.

EDIF netlists are encrypted

The XABEL Interface uses a special version of the Synario
ABEL compiler which does not require a parallel port secu-
rity key. Because of this, the EDIF netlists produced by
XABEL are encrypted so they cannot be used to target any
non-Xilinx technologies. Xilinx cannot provide the non-
encrypted version of any EDIF netlist produced by XABEL
to any of our customers.

Hints, Tips and Tricks for using XABEL
with Xilinx M1.5 Design and
Implementation Tools

XAPP109 October 21, 1998 (Version 2.0) Application Note

APPLICATION NOTE

http://www.xilinx.com/support/troubleshoot/htm_index/sw_foundation.htm
http://www.xilinx.com/support/troubleshoot/htm_index/sw_foundation.htm

Hints, Tips and Tricks for using XABEL with Xilinx M1.5 Design and Implementation Tools

2 XAPP109 October 21, 1998 (Version 2.0)

Even though the netlist is encrypted, functional simulation
of the XABEL design is supported at 3 levels:

 1. Test vectors embedded in the ABEL source design are
automatically simulated during compilation by the built-
in ABEL simulator (BLIFSIM), producing a tabular report
file.

 2. The Foundation gate-level simulator can perform direct
functional simulation on the encrypted EDIF netlists.

 3. A simulation netlist can be generated by the Xilinx
implementation software after the top-level design is
read and translated. The simulation netlist consists of
Xilinx simulation primitives (simprims) that can only be
used for simulation modeling and not for design entry.

Installation requirements

Local hard-drive only

The ABEL compiler software does not run reliably when
installed on some networks. Therefore, XABEL should only
be installed onto the local hard disk of the PC.

Same directory as Xilinx-M1

The XABEL interface is dependent on Xilinx-M1 implemen-
tation (core) software. XABEL should therefore reside in
the same directory as the Xilinx-M1 implementation soft-
ware. This is the directory referenced by the XILINX envi-
ronment variable. This requirement applies whether
XABEL is used with Foundation software or with Alliance
software.

Workaround for installing implementation tools
on network

Because XABEL must be installed to a local hard drive, the
entire Xilinx-M1 implementation software would normally
also need to be installed on the same local hard drive if
XABEL is to be used. If you need to install Xilinx implemen-
tation software to a network drive and you want to run
XABEL on the same PC, it is possible to install each to a
different installation directory by using the MYXILINX envi-
ronment variable:

1. Install the implementation software (without XABEL) to a
network drive and let the installer set the XILINX environ-
ment variable and PATH in the registry, as usual.

2. Install the XABEL interface to the PC’s local hard-disk
drive.

If you are using the installer on the Foundation 1.5 CD,
install XABEL as follows:

 a) Select the Typical Install type.
 b) Select a Destination Folder on your local

hard-drive.
 c) In the Select Software Components window,

remove the check-marks from all software

components, highlight Implementation Tools
and click Change.

 d) Set the check-mark next to XABEL Interface
and click Continue .

 e) Proceed to the Select Registry Setting
window and turn on only the following two options:
Set/Update PATH in Registry and
Initialize XABEL Registry Settings .

If you downloaded the XABEL interface from the Xilinx
website, install as follows:

 a) Select a destination directory on your local hard-
drive.

 b) After installation, manually add the XABEL’s bin\nt
directory to the front of your PATH variable. (On
Windows-NT systems, use System Properties to
update the PATH in your environment. On Windows
95 systems, add the XABEL executable directory
to the PATH setting in your autoexec.bat file.)

3. After installation, manually create a MYXILINX environ-
ment variable and set it to the XABEL root installation direc-
tory (the destination directory you specified during
installation). On Windows-NT systems, use System Prop-
erties to set your environment. On Windows 95 systems,
set the MYXILINX variable in your autoexec.bat file.

What’s different in XABEL 1.5
In general, features of the XABEL interface, language and
flow remain the same between version 1.4 and 1.5. How-
ever, a number of significant problems have been resolved.

XABEL registry not corrupted by other ABEL
products

In version 1.4, the Windows registry entries for XABEL,
which controlled the software’s licensing mechanism, were
adversely altered if a different version of the ABEL compiler
was installed by a different (non-Xilinx) product, including
the Synario and Workview Office design systems. Similarly,
the installation of XABEL may have caused a non-Xilinx
version of ABEL to stop running.

The ABEL compiler used in version M1.5 no longer has this
problem. Different versions of the ABEL compiler installed
by different products maintain separate registry entries.
The compiler gets the proper licensing information from the
registry for the ABEL product being invoked.

OLE no longer used by XABEL interface

On some Windows-95 systems, the XABEL version 1.4
translator (abl2edif or abl2pld) ran correctly the first
time it was invoked, but would not run again subsequently.
This was because of a problem with the OLE communica-
tions server (ntolesrv.exe) used by the ABEL compiler
prior to M1.5. This typically required you to re-boot your PC
to clear the problem.

XAPP109 October 21, 1998 (Version 2.0) 3

The ABEL compiler used in version M1.5 software no
longer depends on the OLE server.

INIT values no longer reversed for registers with
asynchronous preset

In the M1.3 and M1.4 versions of the XABEL interface,
there was a bug which causes the initial state to be
reversed for some flip-flops in CPLD designs. If your design
contained a register with an asynchronous preset (.AP)
equation, but without an asynchronous reset (.AR) equa-
tion, the register was implemented in negative-logic form
that effectively reversed its initial state, whether specified
by an INIT property or by default. That is, by default, any
register with asynchronous preset (and no reset) would
have initialized to logic one.

This problem has been fixed in M1.5. Initial states of regis-
ters are set correctly, both by default (logic zero) and by
means of the INIT property, regardless of the .AP /.AR
equations that may be specified.

One workaround to the previously existing problem was to
specify an INIT property with the opposite initial state
value than the one you wanted. For example, if you had a
register with an .AP condition and no .AR condition in your
design and you wanted that register to initialize to logic zero
(normally the default), you would have specified the follow-
ing declaration:

xilinx property 'INIT=S my_register';

If so, these reversed property declarations should be
removed (if you want to preload to logic zero) or else cor-
rected before processing your design using XABEL version
1.5.

An alternative workaround to the previously existing prob-
lem was to specify a dummy .AR equation in addition to
your existing .AP equation. For example:

my_register.AR = 0;

In this case, you do need to modify your design before run-
ning XABEL 1.5. The dummy .AR equation will not cause
any problems.

ABEL design techniques
This section discusses special precautions to take while
developing your ABEL source design.

Name of module must match filename.
The module name specified in each ABEL file must match
the name of the file. For example, if your file is named
myfile.abl, it must contain “module myfile” at the top.

If you are creating a hierarchical ABEL design, each mod-
ule of the design must be contained in a separate file and
each filename must match the contained module name.

Pin vs. internal feedback
In a top-level ABEL design, if you define an output pin and
also use the name of that output pin as the name of a signal
source in another equation, the interpretation of that signal
name reference may be ambiguous.

For example, your ABEL design may contain:

my_output pin;
equations
my_output = a & b;
y = my_output & x;

The ABEL compiler may interpret my_output in the last
equation as the internal feedback from the logic expression
a & b . Alternatively, it may implement my_output as a
bidirectional pin and interpret the reference to my_output
in the last equation as the pin input. Generally, the latter
interpretation will occur if you also define a tristate output
enable condition for my_output , as in:

my_output.oe = my_oe;

To prevent ambiguity, you should specify the .FB extension
for internal feedback (before tristate control), or the .PIN
extension for bidirectional pin input, wherever an output pin
name is used as an input name. The equation for y should
therefore be written as either:

y = my_output.FB & x;

or
y = my_output.PIN & x;

Feedback interpretation in XABEL-M1
different than in pre-M1 versions.
The interpretation of feedback is different in Xilinx-M1 than
in earlier versions of the XABEL Interface, such as in XACT
version 6 (or earlier) or in the XABEL-CPLD product (this
applies only to top-level ABEL designs for CPLD). In pre-
M1 versions, references to a feedback signal were always
interpreted as internal feedback unless the .PIN extension
was specified. In XABEL-M1 (using the EDIF interface), ref-
erences to feedbacks from outputs with tristate enable con-
ditions are interpreted as pin feedback unless the .FB
extension is specified. For example, in the following case,
the pre-M1 version of XABEL would interpret the feedback
from my_output in line 4 as internal feedback (before the
tristate control); XABEL-M1 interprets my_output in line 4
as input from a bidirectional pin (after tristate control).

my_output pin;
equations
my_output = a & b;
y = my_output & x; // line 4
my_output.oe = my_oe;

Note: The obsolete Plusasm flow provided with XABEL-M1
interprets feedback the same way as pre-M1 XABEL;
i.e., it assumes internal feedback unless “.PIN” is
specified.

Hints, Tips and Tricks for using XABEL with Xilinx M1.5 Design and Implementation Tools

4 XAPP109 October 21, 1998 (Version 2.0)

Register support

XC3000-series FPGAs do not support asynchro-
nous preset registers

The XC3000-series FPGA families (including XC3100
derivatives) do not support the use of asynchronous preset
in their logic cell registers. The implementation software will
reject any flip-flop primitives that have asynchronous preset
pins that occur in the EDIF netlist produced by XABEL. The
XABEL translator itself does not perform any family-specific
design rule checking, such as the use of asynchronous pre-
set. If you specify an .AP equation in an ABEL design and
attempt to target an XC3000-series FPGA, you will get a
fatal error during the translate step of implementation.

Asynchronous preset can be emulated, however, by invert-
ing the contents of the register. To do this, you must invert
the D-input to the register and the Q-output from the regis-
ter. Then specify an .AR equation instead of .AP to define
the asynchronous condition. When the flip-flop is reset by
the .AR equation, the resulting zero state in the flop will be
interpreted as a logic one in the context of your design,
because of the Q-output inversion.

To invert the Q-output of a flip-flop, you must not use the
inversion operator (!) directly on the register’s output vari-
able in the registered assignment equation (for example,
!my_reg := !my_input). That would be interpreted by
ABEL as an inversion that occurs on the flop’s D-input, not
its Q-output. Instead, invert all occurrences of the register’s
feedback when used as a signal source in all other equa-
tions. If the register drives an output pin, you must insert an
inverter between the register and the output pin using a
separate equation. Change your output pin declaration
from registered to combinatorial and declare a new regis-
tered node to represent the inverted register. Use a combi-
natorial equation to set the output pin equal to the inverse
of the registered node.

For example, the following would be how a registered pin
and registered node with asynchronous preset would nor-
mally appear for Xilinx families other than XC3000:

ext_reg pin istype 'reg';
int_reg node istype 'reg';
equations
ext_reg := input1;
ext_reg.AP = my_preset;
ext_reg.clk = my_clock;
int_reg := input2;
int_reg.AP = my_preset;
int_reg.clk = my_clock;
other1 = ext_reg.FB & input3;
other2 = int_reg.FB & input4;

The following shows how the above example would need to
be modified to target an XC3000-series FPGA:

ext_reg pin istype 'com';

ext_reg_not node istype 'reg';
int_reg node istype 'reg';
equations
ext_reg_not := !input1;
ext_reg_not.AR = my_preset;
ext_reg_not.clk = my_clock;
ext_reg = !ext_reg_not;
int_reg := !input2;
int_reg.AR = my_preset;
int_reg.clk = my_clock;
other1 = !ext_reg_not.FB & input3;
other2 = !int_reg.FB & input4;

For XC9500XL, the .CE equation forces the use
of the clock-enable product-term

When targeting an XC9500XL device, logic specified in a
.CE equation for a register will be implemented using the
clock enable p-term of the XC9500XL macrocell, provided
the same register does not also have both .AR and .AP
equations defined. If you use .CE equations and target an
XC9500XL device, you may find that the CE logic for some
registers may not get optimized into the same macrocell as
the flip-flop output.

The XC9500XL macrocell contains only a single product-
term to implement clock enable input logic. The CPLD fitter
does not attempt to transform your CE logic into multiplexer
logic on the D-input of the flip-flop if it cannot be completely
implemented using the clock enable p-term. In general,
only non-inverted, single p-term expressions in a .CE
equation can be completely implemented using the CE p-
term of the XC9500XL macrocell. If you specify a more
complex logic function in the .CE equation and it does not
get completely implemented on the clock enable p-term,
your design may use extra macrocell resources and incur
combinational macrocell feedback delays.

If you do not want the logic specified in a .CE equation to
be implemented using the clock enable p-term in the
XC9500XL macrocell, you can simply add dummy .AR and
.AP equations for the register. When any register has .CE ,
.AR and .AP equations all specified, the logic in the .CE
equation automatically gets expanded into a multiplexer
that routes the flip-flop’s Q-feedback into its D-input; the
clock enable p-term is not used. Dummy .AR and .AP
equations can be added to a register as follows:

my_register.AR = 0;
my_register.AP = 0;

After the CE logic is decomposed onto the flop’s D-input,
the dummy .AR and .AP inputs to the register will be auto-
matically trimmed away by the CPLD fitter.

Note: When targeting an XC9500 device, any CE equations
in your design will always be decomposed onto the flip-
flop’s D-input.

XAPP109 October 21, 1998 (Version 2.0) 5

Register initial states

For FPGA use .AP and .AR equations

In designs targeting FPGA devices, the initial (power-on)
state of each flip-flop is determined by whether there is an
asynchronous set or reset condition specified. The initial
state always coincides with the specified asynchronous
condition. Registers with an asynchronous reset (.AR
equation) will initialize to logic zero. Registers with an asyn-
chronous preset (.AP equation) will initialize to logic one.
Registers with neither asynchronous reset or preset will, by
default, initialize to logic zero. If you just want to specify an
initial state, but do not want to actively reset or preset the
flip-flop, just define an .AP or .AR equation with the value
of logic zero, as in:

my_register.AP = 0;

If you are targeting an XC3000-series FPGA, you must not
use the .AP equation to specify an initial state of logic one.
Instead, invert the register as described in XC3000-series
FPGAs do not support asynchronous preset registers
above.

For CPLD use INIT property

In designs targeting CPLD devices, the initial (power-on)
state of each flip-flop is determined by the INIT attribute
specified using a Xilinx property statement. Unlike FPGA
devices, initial states in CPLDs can be set independently of
any asynchronous set or reset conditions applied to the
registers. Also, CPLD devices support both asynchronous
reset and preset on each register, so you can specify both
an .AR and .AP equation for the same registered signal.

To specify the initial state of a register in a CPLD design,
use the following declaration in the ABEL design:

xilinx property 'INIT=state
signal_list...';

where state is either R for reset (logic zero) or S for set
(logic one). For example:

xilinx property 'INIT=S my_reg1 my_reg2';

By default, all flip-flops in a CPLD design initialize to logic
zero, regardless of any .AR or .AP equations that may be
specified.

FSM initial state

For FPGA designs

For FPGA designs, 1-hot is the preferred state machine
encoding style due the abundance of registers. 1-hot FSMs
can be expressed either symbolically or explicitly. Either
way, one of the state flip-flops must initialize (power-up) to
the logic one state so that the FSM begins in a legal state.

Symbolic 1-hot FSMs

If you are defining a symbolic 1-hot FSM for an FPGA
device, always use the async_reset statement to identify
the initial state of the FSM. If you want to actively and asyn-
chronously reset the FSM to its initial state, declare both
the initial state and the asynchronous reset condition as fol-
lows:

async_reset state_name : reset_condition;

If you only want to specify the initial state, but do not wish to
actively reset the FSM, declare just the initial state as fol-
lows:

async_reset state_name : 0;

Explicit 1-hot FSMs

If you are defining a 1-hot encoded FSM explicitly using
ordinary registered signals, always define an asynchronous
preset condition (.AP equation) for the register that corre-
sponds to the initial state of your FSM. If you want to
actively and asynchronously reset the FSM to its initial
state, declare both the initial state register and the asyn-
chronous reset condition as follows:

initial_reg_name.AP = reset_condition;

Then also declare the same condition for resetting the
remaining registers of the FSM, as follows:

other_reg_name.AR = reset_condition;

If you only want to specify the initial state, but do not wish to
actively reset the FSM, declare just the initial state as fol-
lows:

initial_reg_name.AP = 0;

You do not need to specify .AR equations for the remaining
flops because they will, by default, initialize to logic zero.

If you are targeting an XC3000-series FPGA, you must not
use the .AP equation to specify an initial state of logic one.
Instead, invert the register as described in XC3000-series
FPGAs do not support asynchronous preset registers
above.

INITIALSTATE property ignored (bug)

The Xilinx property INITIALSTATE was supported in ear-
lier (pre-M1) versions of XABEL as a way to specify the ini-
tial state of 1-hot symbolic FSMs. This property is still
supported in the XABEL-M1 EDIF interface, but it currently
does not work properly for FPGA designs. In XABEL-M1,
the INITIALSTATE property translates to an INIT=S
property in the EDIF netlist, which is not supported for
FPGA designs. Please use the async_reset statement
or .AP equation extension instead, as described above.

Hints, Tips and Tricks for using XABEL with Xilinx M1.5 Design and Implementation Tools

6 XAPP109 October 21, 1998 (Version 2.0)

For CPLD designs

Binary encoded FSM

For CPLD designs, binary encoding is the preferred coding
style because of the high logic-to-register ratio in the archi-
tecture. In a binary encoded FSM, the initial state is com-
monly assigned the all-zero value. Since logic zero is the
default initial state of all flip-flops in CPLDs, there is typi-
cally no need to do anything special to define the initial
(power-up) state of the FSM.

If you want to actively and asynchronously reset the binary-
encoded FSM to its initial state, simply define .AR equa-
tions for all the state registers, assuming an all-zero initial
state value.

Symbolic 1-hot FSM

Alternatively, 1-hot encoding is also applicable to CPLD
designs and may prove to yield better performance in
cases where there are fewer states and state transition
logic is particularly complex. 1-hot FSMs can be expressed
either symbolically or explicitly. Either way, if you are defin-
ing a 1-hot FSM, one of the state flip-flops must initialize
(power-up) to the logic one state so that the FSM begins in
a legal state.

If you are defining a symbolic 1-hot FSM for a CPLD device,
use the Xilinx property INITIALSTATE to declare the initial
(power-on) state of the FSM, as follows:

xilinx property 'INITIALSTATE
state_name';

This will automatically apply the property INIT=S to the
flip-flop corresponding to the initial state in the EDIF netlist.
The remaining state flops will, by default, initialize to logic
zero on power-up.

If you want to actively and asynchronously reset the sym-
bolic 1-hot FSM to its initial state, then also declare the
asynchronous reset condition using the asynch_reset
statement as follows:

async_reset state_name : reset_condition;

This will automatically generate an asynchronous preset
condition for the initial state flop. You should continue to
also specify the Xilinx property INITIALSTATE to define
the power-on state, as described above. Simply specifying
an asynchronous preset condition does not imply a high
power-on state for registers in CPLD devices.

Explicit 1-hot FSM

If you are defining a 1-hot encoded FSM explicitly using
ordinary registered signals, use the Xilinx property INIT to
set the initial state flip-flop of the FSM to logic one at power-
on, as follows:

xilinx property 'INIT=S
initial_reg_name';

The remaining registers will, by default, initialize to logic
zero.

If you want to actively and asynchronously reset the explic-
itly-defined 1-hot FSM to its initial state, then also declare
an asynchronous preset equation for the initial state regis-
ter, and declare asynchronous reset equations for the
remaining state bits, as follows:

initial_reg_name.AP = reset_condition;
other_reg_name.AR = reset_condition;

You should also continue to specify the Xilinx property
INIT=S for the initial state flop to define its power-on state,
as described above. Simply specifying an asynchronous
preset condition does not imply a high power-on state for
registers in CPLD devices.

Transparent latches

.LH equations use flip-flops in CPLDs

When you use the .LH equation to define a transparent
latch, a Xilinx latch primitive (LD) is used in the resulting
netlist. For example:

mylat node istype 'reg_l';
Equations
mylat := d_input;
mylat.LH = latch_enable;

For CPLD designs, the latch primitive is implemented as a
flip-flop with the grounded clock and the data input gated by
the latch-enable into the flop’s asynchronous reset and pre-
set inputs. Essentially, the above latch equations are imple-
mented in a manner equivalent to the following flip-flop
equations:

mylat node istype 'reg_d';
Equations
mylat := 0;
mylat.clk = 0;
mylat.AP = d_input & latch_enable;
mylat.AR = !d_input & latch_enable;

In CPLD devices, each macrocell flip-flop has a single p-
term available for each of its reset and preset inputs. A sim-
ple latch equation in which the data and latch-enable inputs
are primary inputs (from an input pin or a register output) is
implemented efficiently in a single macrocell. However, if
the data input is preceded by any combinatorial logic, or if
the latch-enable input is any logic function other than a sim-
ple AND-gate, then that combinatorial logic cannot be opti-
mized into the same macrocell as the flip-flop and a
macrocell feedback delay will be incurred.

Combinatorial feedback latches not imple-
mented well in CPLDs (bug)

Normally, there is an alternative way to express a transpar-
ent latch is by using a combinatorial feedback equation, as
follows:

XAPP109 October 21, 1998 (Version 2.0) 7

mylat node istype 'com, retain';
Equations
mylat = d_input & latch_enable

mylat & !latch_enable
mylat & d_input;

The retain attribute turns off Boolean minimization in the
ABEL compiler and CPLD fitter to retain the redundant
product term “mylat & d_input “ required to implement a
stable combinatorial feedback latch. Without this redundant
term, a logic one being stored into the latch may get lost
when the latch_enable input transitions from high to low
(if latch_enable goes low before !latch_enable
becomes high).

Normally, all logic in a combinatorial feedback latch equa-
tion should be implemented in the same macrocell. How-
ever, the current version of the CPLD fitter has a problem
processing the feedback loop, and often implements the
latch incorrectly using two macrocells per latch. If possible,
use .LH equations shown above to represent transparent
latches using macrocell flip-flops. Otherwise, the obsolete
Plusasm flow provided in F1.5 can successfully implement
combinatorial feedback latches without encountering the
CPLD fitter problem.

If you want to construct a combinatorial feedback latch in
your ABEL design that will implement efficiently using the
EDIF interface, you must apply the COLLAPSE property to
the intermediate nodes of the latch. First, break down each
latch equation into four separate intermediate equations,
one for each of the three product terms and one for the sum
term. Then use the special BLOCK property in ABEL to
apply COLLAPSE to each of the three p-term nodes, as fol-
lows:

mylat node istype 'com, retain';
mylat_dg, mylat_dq, mylat_qg node istype
'com';
xilinx property 'BLOCK mylat_dg COLAPSE';
xilinx property 'BLOCK mylat_dq COLAPSE';
xilinx property 'BLOCK mylat_qg COLAPSE';
Equations
mylat = mylat_dg # mylat_dq # mylat_qg;
mylat_dg = d_input & latch_enable;
mylat_qg = mylat & !latch_enable;
mylat_dq = mylat & d_input;

If you need to use several such latches in your design, you
can save work by creating ABEL macros for the declara-
tions and equations used in the latch. Then the macros can
be used in several instances for all the latches you need to
implement. An example of how to create and use such a
latch macro is provided on the Xilinx website under Service
& Support; the file is latch_9k.zip .

Cannot preserve delay buffer nodes in
ABEL
When using XABEL, it is impossible to preserve a combina-
torial delay buffer node (or inverter node). A buffer node is
any node equation of the form a=b or a=!b . Even if you
apply the istype’KEEP’ attribute to the node, the
abl2edif translator still removes the node. This is
because the EDIF netlist writer used in the Synario ABEL
compiler is unable to maintain buffer nodes.

For CPLD designs, you can work around this problem by
replacing the buffer node with a pass-through register.
First, declare the node using istype’reg’ (instead of
‘com’). Then, replace the buffer equation a=b with the fol-
lowing:

a := b;
a.ap = b;
a.ar = !b;
a.clk = 0;

This will create a flip-flop that passes through the value of b
asynchronously, similar to a transparent latch permanently
enabled. However, do not try to use a latch equation
(a.lh=1) because ABEL will automatically convert it to a
buffer node and remove it. If b is an input pin or register
feedback, this will work as is. If b is a combinatorial node,
you will also need to apply istype’keep’ to the declara-
tion for b so that its logic is not collapsed into the .ar or
.ap equations.

Large comparator/decoder logic may cause
ABEL compiler to fail (bug)
Large comparator or decoder functions may prevent compi-
lation of an ABEL design. After invoking the ABEL compiler
(abl2edif translator), you may observe that the
AHDL2BLF step completes, then the BLIFOPT step begins
but never completes. In other cases, the process runs all
the way into the BLIF2NET step, which either never com-
pletes or produces a system error after exhausting all avail-
able virtual memory. One possible cause is that the design
contains some large comparator logic (of the form Y = A ==
B) or decode logic (of the form Y = A == constant), espe-
cially if the comparator or decode logic is combined with
any other combinatorial logic in the same equation. The
suspected cause of this problem is that the ABEL compiler
is trying to process both the positive logic and negated logic
form of the expression which contains an exceedingly large
number of min-terms.

To remedy this problem, insert the following ABEL directive
at the top of your declaration section or before the problem-
atic equation:

@carry 2;

This will cause the ABEL compiler to break up the large
equation into a number of smaller intermediate nodes,
which can then be translated into EDIF more efficiently. The

http://www.xilinx.com/support/troubleshoot/htm_index/app_misc.htm
http://www.xilinx.com/support/troubleshoot/htm_index/app_misc.htm

Hints, Tips and Tricks for using XABEL with Xilinx M1.5 Design and Implementation Tools

8 XAPP109 October 21, 1998 (Version 2.0)

Xilinx Implementation software will optimize the logic
across the intermediate nodes.

Attributes for controlling design
implementation
The discussion in this section assumes you are familiar
with the capabilities of the target PLD architecture and the
general means for controlling the implementation software.
This section focuses on the techniques and issues specific
to controlling XABEL designs.

Pin assignment

Numeric pin names in ABEL “pin” declarations

You can indicate pin assignments for most packages
directly in your ABEL pin declarations. For example:

a pin 34;
b, c pin 35, 36 istype 'reg';

Pin numbers are applicable only to top-level ABEL designs
for either FPGA or CPLD devices.

BGA pin names in UCF file

ABEL only accepts numeric pin numbers. If you are using a
BGA package (which uses alphanumeric pin designations),
specify your pinout in a User Constraint file (UCF) using the
LOC property. For example:

net a LOC=A7;

Output slew (FAST, SLOW)
You can control slew rate for specific output or I/O pins with
the FAST and SLOW attributes. Use these attributes selec-
tively to control whether specific pins operate in fast slew
rate (FAST) or slew rate limited (SLOW) mode as follows:

xilinx property 'FAST | SLOW signal_list';

For Example:

xilinx property 'SLOW q1 q2 q3';

The FAST and SLOW properties are applicable only to top-
level ABEL design for either FPGA or CPLD devices.

Preserving combinatorial nodes (KEEP)
If you want to preserve a combinatorial node in your ABEL
design so that it remains intact throughout design imple-
mentation, apply the attribute KEEP to the node declaration
in your ABEL design as follows:

signal_list node istype 'KEEP';

The KEEP attribute is recognized by the ABEL compiler so
that it will not collapse the node during ABEL compilation
and netlisting. The KEEP attribute is also propagated to the
EDIF netlist so that the core implementation software
(CPLD fitter or FPGA mapper) does not collapse the node
during design optimization.

The KEEP attribute is applicable to top-level ABEL designs
and modules for schematic designs.

Global buffers for CPLD (BUFG)
You can manually assign selected input pin signals in your
top-level ABEL design to global nets on a CPLD using the
BUFG attribute as follows:

xilinx property 'BUFG={CLK | OE | SR}
signal_name';

For example:

xilinx property 'BUFG=CLK my_clock';
xilinx property 'BUFG=OE my_enable';
xilinx property 'BUFG=SR my_reset';

Note: To use a global clock buffer in an FPGA design, you
must instantiate the buffer in a top-level schematic and
instantiate the ABEL module as a macro in the
schematic.

Macrocell power mode for CPLD
(PWR_MODE)
Use the PWR_MODE attribute to selectively control
whether specified logic operates in high speed or low
power mode. The default power mode for the design is con-
trolled in the Implementation Options menu of the GUI, and
is initially set to STD for new projects. Use the following
syntax:

xilinx property 'PWR_MODE={LOW|STD}
signal_list';

For example, to set the functions out0 and out1 to low
power mode (the remaining functions will use the default
power mode), use the following:

xilinx property 'PWR_MODE=LOW out0 out1';

Timespecs
For top-level ABEL designs, timespecs must be specified in
a UCF file. For ABEL modules in a schematic design,
timespecs are typically added to the schematic, but could
also be specified in a UCF file.

Either way, timespecs can reference timing groups by
names attached to elements in the design. You can attach a
timing group name (TNM) to a signal in an ABEL design or
module using the TNM property, as follows:

xilinx property 'TNM=group_name
signal_list';

XC9500 local feedback
The local feedback path will be used when it is required to
meet a timing constraint, provided the fitter can group the
required logic functions together in the same function block.
If necessary, you can control function block mapping using

XAPP109 October 21, 1998 (Version 2.0) 9

a special form of the LOC attribute. The LOC property
required to control function block placement of internal
logic is as follows:

xilinx property 'BLOCK signal_name
LOC=FBnn ';

For example, assume you want to group flip-flops REG_X
and REG_Y into the same function block so that you can
speed up the cycle time by using the local feedback path.
Also assume there is some combinatorial logic between
these flip-flops that was not fully optimized, resulting in an
additional macrocell feedback between the flip-flops and
whose output is GATE_A. You would also need to group the
combinatorial logic (GATE_A) into the same function block.
To place these functions in function block 1, the required
Xilinx LOC properties would be expressed as follows:

xilinx property 'BLOCK REG_X LOC=FB1';
xilinx property 'BLOCK REG_Y LOC=FB1';
xilinx property 'BLOCK GATE_A LOC=FB1';

Note: You may specify only one node name per BLOCK
property statement.

Mapping ABEL equations directly to CPLD
macrocells
Occasionally, the CPLD fitter may implement a particular
equation or set of equations less efficiently than originally
expressed in ABEL. When an ABEL design is compiled and
translated into an EDIF netlist, each equation is broken
down into a network of primitive gates, and intermediate
nodes are generated by the compiler to interconnect the
primitive gates. By default, the fitter does not give prefer-
ence to the partitioning of logic as expressed in the ABEL
equations. It is free to optimize combinatorial logic across
equation boundaries and use the ABEL-generated inter-
mediate nodes as macrocell outputs that feed back to other
macrocells.

If, for certain equations in your design, you prefer that the
fitter implement the equations as expressed in ABEL, you
could use the KEEP attribute on combinatorial nodes to pre-
vent the fitter from optimizing logic across equation bound-
aries. Then, if you notice that the logic for a given equations
does not get fully optimized into the same CPLD macrocell,
you could increase the Collapsing Pterm Limit in the
Implementation Options menu of the GUI to further
flatten that logic.

Processing XABEL designs
This section discusses special procedures and flows you
may need to use when processing your design using
XABEL.

Improving Performance in CPLD designs
For some CPLD designs you may notice that the logic of
some of your equations does not get fully flattened, result-

ing in poor performance and, sometimes, excessive logic
utilization. Performance problems can be observed in the
Timing Report summaries. Incomplete flattening is also
indicated in the Fitting Report under the “Resources
Used by Successfully Mapped Logic” section, by the pres-
ence of several “internal” signal names that are generated
by the XABEL translator. These internal names each repre-
sent a CPLD macrocell feedback used to implement inter-
mediate logic nodes within your equations.

To get the fitter to further flatten your design, increase the
Collapsing Pterm Limit in the Advanced Optimi-
zation tab of the XC9500 Implementation Options
menu of the GUI. First try increasing the Pterm Limit to
90 (the maximum) and rerun the fitter. For many designs,
all your equation logic will become flattened and the inter-
nal signal names will disappear from the Fitting
Report .

For some designs, especially those containing combinato-
rial node equations or complex logic functions, increasing
the Pterm Limit may cause the fitter to flatten too much
and the design will not fit. You may be able to find a Pterm
Limit less than 90 that produces satisfactory performance
while successfully fitting the device. Otherwise, you may
need to apply the KEEP attribute to some of the combinato-
rial node equations in your design to prevent these nodes
from being flattened by the fitter when you raise the Pterm
Limit . If you still have some equations in your design that
consume too many logic resources when flattened, you
may need to decompose large equations into smaller inter-
mediate equations and apply the KEEP property to your
intermediate nodes as needed.

ABEL modules for Alliance designs
The XABEL interface is only shipped in the Xilinx Founda-
tion product and is not included in the Alliance product. If
you are using the Alliance M1.5 software with a third-party
schematic capture tool and you want to include ABEL mac-
ros in your schematic design, you can add the XABEL Inter-
face to your PC to process your ABEL modules.

Your alternatives are:

 1. Install all design entry tools from the Foundation F1.5
product and use the Foundation HDL Editor GUI for
ABEL design entry and translation. Your Alliance M1.5
software can either be on the PC or workstation.

 2. Install only the XABEL Interface from the Foundation
F1.5 product and use a text editor for ABEL design entry
and use commands in a DOS window for XABEL trans-
lation. Your Alliance M1.5 software can either be on the
PC or workstation.

 3. Download the XABEL Interface from the Xilinx website
into your existing Alliance M1.5 installation and use a
text editor for ABEL design entry and use commands in
a DOS window for XABEL translation. You must have
Alliance M1.5 software on your PC.

Hints, Tips and Tricks for using XABEL with Xilinx M1.5 Design and Implementation Tools

10 XAPP109 October 21, 1998 (Version 2.0)

Using Foundation design entry tools for ABEL
module development

This section describes how to install and use the interactive
Foundation design environment to develop ABEL modules
for use in a third-party (non-Foundation) schematic design.

Installation

If you are installing both Alliance and Foundation software
onto the same PC, they can be installed in either order.

 1. Mount the Foundation F1.5 Design Environment CD and
run the installer (setup.exe).

 2. Follow the instructions on the screen. When asked for
the type of Install, choose Typical Install .

 3. If you are running Xilinx Alliance implementation soft-
ware on the same PC, make sure the installer’s destina-
tion folder is set to the directory where Alliance software
is (or will be) installed.

 4. On the Select Software Components screen,
deselect all components except Design Entry
Tools .

 5. Highlight Implementation Tools and click on the
Change button.

 6. In the Select Sub-components menu, select only
XABEL Interface (you do not need to install Program
Executables if you plan to implement your design using
Xilinx Alliance implementation software installed sepa-
rately).

 7. In the next menu, select the design entry libraries for the
device families you plan to target.

 8. In the Select Registry Settings menu, make
sure the Initialize XABEL Registry Settings
box is checked. Other settings do not matter.

Design flow

The following procedure outlines the basic flow for creating
a project in Foundation and compiling one or more ABEL
macros to incorporate into a third-party schematic. For
complete documentation of the Foundation Design Entry
tools and the XABEL Interface, refer to the on-line help in
the Foundation Project Manager (Help → Foundation
Help Contents).

 1. Invoke the Foundation Project Manager.

 2. Create a new project by selecting File → New
Project .

 3. Choose the appropriate design directory and family.

 4. Invoke the HDL Editor by clicking on the HDL Editor
button in the Project Manager.

 5. Select Use HDL Design Wizard or Create Empty
to enter a new ABEL design. Otherwise, select Exist-
ing File and browse to find an existing .ABL file. The

Design Wizard creates a template ABEL design based
on the macro pin names you enter. The HDL Editor color
codes ABEL keywords and provides syntax checking
capability.

 6. Since the ABEL file will be a module in a top-level sche-
matic, be sure that the Macro compile switch is selected
in the Synthesis → Options dialog.

 7. To synthesize the ABEL code, select Synthesis →
Synthesize . An EDIF (.EDN) netlist file will be created
for the module and placed in the project directory.

Using the XABEL Interface in command-line
mode

This section describes how to install and use the XABEL
interface in DOS command-line mode. You can install the
XABEL interface either from the Foundation F1.5 CDs or by
downloading it from the Xilinx website.

Installation from Foundation CDs

If you are installing both Alliance and XABEL Interface soft-
ware onto the same PC, they can be installed in either
order.

 1. Mount the Foundation F1.5 Design Environment CD and
run the installer (setup.exe).

 2. Follow the instructions on the screen. When asked for
the type of install, choose Typical Install .

 3. If you are running Xilinx Alliance implementation soft-
ware on the same PC, make sure the installer’s destina-
tion folder is set to the directory where Alliance software
is (or will be) installed.

 4. On the Select Software Components screen,
deselect all components.

 5. Highlight Implementation Tools and click on the
Change button.

 6. In the Select Sub-components menu, select only
XABEL Interface .

 7. In the Select Registry Settings menu, make
sure the Initialize XABEL Registry Settings
box is checked. Other settings do not matter.

Downloading from the web

You must install Alliance M1.5 on your PC to use the
XABEL Interface provided on the web. This is because the
XABEL Interface relies on software libraries included in Xil-
inx-M1.

You should install both Alliance M1.5 implementation (core)
software and the XABEL Interface onto a local hard disk
drive on your PC. This is because the XABEL Interface
does not run reliably if installed on some networks.

 1. The XABEL Interface is located at Service & Sup-
port . The filename is xabel150.zip (or the highest

http://www.xilinx.com/support/troubleshoot/htm_index/sw_foundation.htm
http://www.xilinx.com/support/troubleshoot/htm_index/sw_foundation.htm

XAPP109 October 21, 1998 (Version 2.0) 11

numbered revision of xabel15*.zip). Download the
ZIP file to any location.

 2. Unzip the file using PKZip or equivalent. The ZIP file
contains an installer package that you can extract to any
location on your PC.

 3. Read the installation and usage instructions contained
in the text file read_abl.txt .

 4. Run the installer, setup.exe . Follow the directions on
the screen. You must set the Destination Directory to the
same directory where Alliance M1.5 implementation
software is (or will be) installed.

For detailed documentation on using XABEL, including
CPLD and FPGA design techniques and an ABEL lan-
guage reference guide, you can also download the Founda-
tion on-line help files from the Service & Support website;
the filename is f15_help.zip .

Design flow

When using the XABEL Interface alone (without the Foun-
dation Design Entry Tools), ABEL design entry is per-
formed using a conventional text editor. ABEL designs are
then compiled using a single line command entered in a
DOS window as follows:

 1. Open a DOS window.

 2. Change directory (CD) to the directory containing your
ABEL source file.

 3. Execute the abl2edif command as follows:

 abl2edif -s level module_name

where level is top for top-level ABEL design, or mod
(default) for module to use in a schematic. The
abl2edif program generates the following output files:

abl2edif.log : log file of program execution

module_name .edn : output EDIF netlist

module_name .err : error log from program execution

module_name .smx : simulation output file (if the
design contains test vectors)

module_name .tmv : test vector file for XC9500/XL
functional test (if the design contains test vectors)

Instantiating ABEL macros in a schematic

Viewlogic Workview Office

Once you have created the EDIF file in the Foundation
environment, you must instantiate that EDIF in your View-
logic schematic.

Create a new symbol for the ABEL module complete with
input and output pins. Make sure that all the input and out-
put ports match the symbol by name. Use square brackets
for bus notation: BUS[3:0] . If a symbol created by SYM-

GEN already exists, simply remove the DEF=XABEL and
FILE= module_name .abl properties before continuing.

Two more properties must be added to complete the sym-
bol. Right-click in the symbol window (but outside the sym-
bol box itself) and select Properties . Under the Block
tab, change the Symbol Type to Module . This will prevent
the EDIF netlister from looking for an underlying schematic.
Then, under the Attributes tab, add an attribute with a
Name of FILE and a Value of module_name .edn . If
the EDIF file is not located in the project directory, then the
full path to the .EDN file must be specified.

If the ABEL code is modified in such a way that the input or
output ports are modified, then the symbol will have to be
manually updated to match the new ABEL module.

Because the ABEL module does not have a gate-level rep-
resentation within the Viewlogic realm, the design will have
to be compiled through NGDBUILD in order to process the
ABEL portions before performing a functional simulation.

There is a push-button solution available for these steps.
Solution #1985 in the Xilinx Answers Database contains
the files and setup instructions for this flow. No changes to
the timing simulation flow are required. This procedure
applies to Powerview users as well, although some of the
commands listed above will differ slightly for the worksta-
tion version of ViewDraw.

Mentor Graphics Design Architect

Once you have created the EDIF file in the Foundation
environment, you must instantiate that EDIF in your Mentor
Graphics schematic. Note that, since this EDIF file comes
from a Windows 95/NT environment, you should run a
DOS-to-UNIX file-conversion utility (such as dos2unix) on
this EDIF file to avoid possible file-format problems.

Create a new symbol for the ABEL module complete with
input and output pins. Make sure that all the input and out-
put ports match the symbol by name. Use parentheses for
bus notation: BUS(3:0) . If a symbol created by SYMGEN
already exists, simply remove the DEF=XABEL and
FILE= module_name .abl properties before continuing.

One more property must be added to complete the symbol.
With the symbol for the ABEL module loaded into the sym-
bol editor, select Right Mouse Button → Properties
(logical) → Add Single Property . For Property
Name, enter FILE . For Property Value , enter
module_name .edn , where module_name is the name of
the ABEL module represented by this symbol. If the EDIF
file is not located in the project directory, then the full path
to the .EDN file must be specified.

If the ABEL code is modified in such a way that the input or
output ports are modified, then the symbol will have to be
manually updated to match the new ABEL module.

Because the ABEL module does not have a gate-level rep-
resentation within the Mentor realm, the design will have to

http://www.xilinx.com/support/troubleshoot/htm_index/sw_foundation.htm
http://www.xilinx.com/support/troubleshoot/1985.htm

Hints, Tips and Tricks for using XABEL with Xilinx M1.5 Design and Implementation Tools

12 XAPP109 October 21, 1998 (Version 2.0)

be compiled through NGDBUILD and PLD_EDIF2SIM in
order to process the ABEL modules and generate a suit-
able simulation model for PLD_QuickSim .
PLD_QuickSim must then be run on the output netlist from
PLD_EDIF2SIM . To annotate simulation values to the orig-
inal schematic, you may enable cross-probing in
PLD_QuickSim . Chapter 6, Mixed Designs with Sche-
matic on Top in the Mentor Graphics Interface/Tutorial
Guide, describes this process in the Functional Simulation
After Synthesis section.

No changes to the timing simulation flow are required.

Optimization of XABEL logic

FPGA designs

Prior to Xilinx-M1, all logic from ABEL modules had to be
optimized for FPGA architectures by the XABEL Interface
itself before writing the XNF netlist. In M1, the XABEL Inter-
face does not perform any of the Xilinx-specific optimiza-
tion. The EDIF netlist produced by XABEL is architecturally
generic. FPGA-specific optimization is performed by the
OPTX program, which is part of the mapping step of the
implementation software. OPTX optimizes logic on a mod-
ule-by-module basis. ABEL modules are identified by the
OPTIMIZE property which XABEL automatically writes to
the root level of each ABEL module netlist. When the top-
level schematic design is submitted to the implementation
software for mapping, each of the ABEL netlists are, in turn,
read in. The OPTIMIZE property remains associate with
each ABEL module and OPTX performs logic optimization
on each of the modules tagged with the OPTIMIZE prop-
erty.

OPTX optimization is normally desirable for all ABEL mod-
ules. If you prefer to disable OPTX optimization on an ABEL
module, you can turn off the OPTIMIZE property by speci-
fying the following in your ABEL source declarations:

xilinx property 'OPTIMIZE=OFF';

CPLD designs

All logic in CPLD designs, including XABEL-generated
logic, is always optimized by the CPLD fitter. The OPTI-
MIZE property which XABEL automatically writes into the
EDIF netlist is ignored by the CPLD fitter. The only way to
control logic optimization in a CPLD design is by using the
KEEP, RETAIN and COLLAPSE properties (these are
described elsewhere). You can also adjust the settings of
the CPLD implementation options in the GUI, as described
in the Foundation on-line help document.

XC9500 JEDEC test vectors
In addition to programming information, the JEDEC down-
load files produced by the CPLD fitter software for XC9500
and XC9500XL devices can also contain functional test
vectors. These test vectors can be used by the Xilinx JTAG
download system as well as third-party programming

equipment to functionally test CPLD devices after program-
ming.

The CPLD fitter can automatically translate simulation test
vectors embedded in ABEL designs and write them into the
JEDEC file. If your ABEL design contains a Test_vector
section, then in addition to performing simulation, the
XABEL translator produces a test vector interface (.TMV)
file.

How to use .TMV file

When you are ready to implement your ABEL design, open
the XC9500 Implementation Options template in the
GUI. Select the Programming tab and browse for the
.TMV file produced by the XABEL Interface. The test vec-
tors from the .TMV file will automatically be written into the
programming JEDEC file.

Note: Only test vectors from a top-level (stand-alone) ABEL
design can be used for device functional testing.

Use upper case signal names (bug)

Due to a bug in the F1.5 CPLD fitter, only signal names that
are all upper-case will get their test vector information
translated into the JEDEC file. Any signal name containing
lower-case letters will result in X being written in the corre-
sponding column of the test vector section of the JEDEC
file. Therefore, if you plan to perform a device function test,
use all upper-case names for all pin signals in your ABEL
design.

When to use Plusasm (CPLD only)
In pre-M1 versions of the XABEL Interface, all CPLD
designs were translated into the Plusasm equation lan-
guage which was the file format read by the CPLD fitter. In
Xilinx-M1, the primary design file format is the EDIF netlist.
Plusasm is still supported by M1.5 software for back-com-
patibility of interfaces that still depend on Plusasm equation
files. However, EDIF should be used for all new designs if at
all possible.

PLUSASM LANGUAGE WILL NO LONGER BE
ACCEPTED FOR DESIGN ENTRY IN LATER RELEASES
OF XILINX DESIGN IMPLEMENTATION SOFTWARE.

One of the characteristics of Plusasm is that each equation
in the Plusasm file (.PLD) is automatically forced to be fully
optimized and mapped into a single CPLD macrocell. While
this could be beneficial if the equations are optimally
designed to suit the CPLD architecture, it could otherwise
prevent the fitter from finding a successful or more efficient
implementation. In contrast, when an ABEL design is trans-
lated to EDIF, the combinatorial logic in each ABEL equa-
tion is decomposed into a network of individual AND/OR
gates. The fitter no longer recognizes equation boundaries
and is free to optimize the logic as well as it can.

XAPP109 October 21, 1998 (Version 2.0) 13

Existing design with unconverted Plusasm prop-
erties

To constrain a design when using the Plusasm flow, it was
necessary to embed Plusasm language declarations in the
ABEL source design. These Plusasm declarations were
not in the form of conventional properties and cannot be
supported, as is, via the EDIF interface. In Xilinx-M1, a new
set of properties are provided that are compatible with
EDIF as well as other forms of Xilinx design entry including
schematics and HDLs.

If you have an existing XABEL CPLD design that required
XEPLD PROPERTY or PLUSASM PROPERTY state-
ments, you must either remove or replace these properties
with the supported EDIF-compatible properties, or you
must use the Plusasm flow (see Converting Plusasm prop-
erties into M1 attributes, next column). If your existing
design does not contain Plusasm based properties, you
should be able to use the new EDIF-based flow without
design modification. If you are developing a new XABEL
CPLD design, DO NOT USE Plusasm based properties. If
you use the Plusasm flow, you cannot use any of the XIL-
INX PROPERTY statements supported by Xilinx-M1 soft-
ware.

Pinlocking designs in XABEL-M1 using pre-M1
pinouts

If you have a guide file (.gyd) containing a pinout that you
want to use to pinlock a design iteration using the XABEL-
M1 Interface, and the guide file was created using a pre-M1
version of XABEL, you may have difficulty with case-sensi-
tivity of pin names. In pre-M1 XABEL, which used the Plus-
asm flow, all signal names were automatically converted to
upper case. The resulting guide files therefore contained
only upper case pin names. In XABEL-M1, which uses the
EDIF flow, the case of the signal names in your ABEL file is
preserved throughout design implementation. When trying
to pinlock using an old guide file, if the name of a pin in the
guide file does not exactly match the name read in from the
EDIF netlist, the pinout information will be ignored.

To workaround this problem, either edit the old guide file to
restore the case of each of your pin names to match the
names in your ABEL design, or modify your ABEL design to
use all upper-case names for external pins.

EDIF flow bugs with no workaround

You may find that you may not be able to work around some
of the known problems in the current version of XABEL
when using the EDIF flow. If none of the workarounds sug-
gested in this application note solve the problem, the Plus-
asm flow can sometimes provide an alternative solution.

Persistent fitter problems or poor results

In some cases, the current version of the CPLD fitter may
not be able to achieve the same quality of results as

obtained when using an earlier version of XABEL based on
the Plusasm flow. This typically occurs when the distribu-
tion of logic among the equations in the ABEL design is
particularly well matched to the CPLD architecture. This
might also occur if the earlier design was constrained using
Plusasm properties in a way that cannot be reproduced
using the EDIF flow.

If none of the optimization suggestions described in this
application note allow you to obtain satisfactory perfor-
mance, the Plusasm flow can sometimes provide an alter-
native solution.

Using the Plusasm design flow
The XABEL Interface, whether installed from the Founda-
tion F1.5 CD or by downloading from the Xilinx website,
provides an alternative design flow for CPLD designs using
Plusasm equation files instead of EDIF netlists.

Using the Foundation Design Entry tools

If you are using Foundation F1.5 to develop a top-level
ABEL design for CPLD, the Plusasm flow is enabled
through the Foundation Project Manager. The Foundation
tools can only use the Plusasm flow if you are developing a
top-level ABEL design. If you are developing ABEL mod-
ules for use in schematic-based designs and you need to
use the Plusasm flow, you must compile your ABEL mod-
ules using the command-line interface described later.

To enable the Plusasm flow in the Foundation GUI:

 1. In the Foundation Project Manager, select File →
Preferences → Configuration .

 2. In the Configuration window, click on View INI
File .

 3. In the Report Browser window that appears, find the
lines containing

[EXTENSIONS]
;XABELNETLIST=PLUSASM

 4. Delete the semicolon (;) in front of XABELNETLIST to
enable the feature.

 5. Save the file (File → Save) and close the Report
Browser .

 6. Click OK in the Configuration window to close it.

 7. Exit the Foundation Project Manager (File → Exit)
and restart it to read the new configuration.

 8. Create a project in which to develop your ABEL design.

 9. Invoke the HDL Editor and use the Synthesis → Syn-
thesize command as you would normally. Be sure the
Chip compile switch is selected in the Synthesize →
Options menu to produce a top-level Plusasm design.

After the Plusasm flow is enabled, the Foundation software
creates Plusasm equation files (.PLD) for all top-level
ABEL CPLD designs. When you invoke the Implementa-

Hints, Tips and Tricks for using XABEL with Xilinx M1.5 Design and Implementation Tools

14 XAPP109 October 21, 1998 (Version 2.0)

tion step from the Foundation Project Manager, it will
automatically read the Plusasm (.PLD) file for design
implementation instead of looking for an EDIF netlist.
FPGA designs and all ABEL macros to be used in sche-
matic designs will continue to use EDIF netlists for design
implementation.

Note: After it creates the Plusasm equations file (runs the
ABL2PLD translator), the Foundation system
continues to run the ABL2EDIF translator to produce
an EDIF netlist. The EDIF file is used only for
functional simulation, which is optional; it is not used
for design implementation.

Note: If you have already compiled the ABEL design using
the EDIF flow, you should create a new project before
re-compiling using the Plusasm flow. Otherwise, the
Xilinx Design Manager may continue to read the
existing .EDN file instead of the new .PLD file.

Using DOS command-line

If you are using the XABEL Interface installed from the
Foundation CD or downloaded from the Xilinx website,
ABEL designs are translated to Plusasm using a single line
command as follows:

 1. Open a DOS window.

 2. Change directory (CD) to the directory containing your
ABEL source file.

 3. Execute the abl2pld command as follows:

abl2pld -s level module_name

where level is top for top-level ABEL design, or mod
(default) for module to use in a schematic. The
abl2pld program generates the following output files:

abl2pld.log : log file of program execution

module_name .pld : output Plusasm equation file

module_name .err : error log from program execution

module_name .smx : simulation output file (if the
design contains test vectors)

module_name .tmv : test vector file for XC9500/XL
functional test (if the design contains test vectors)

 4. If you are using the Xilinx Design Manager GUI, create a
project and specify (Browse) the .PLD file as the Input
Design.

Converting Plusasm properties into M1 attributes
This is a summary of the Plusasm properties that were supported in the pre-M1 XABEL Interface and the equivalent Xilinx
properties compatible with the XABEL-M1 EDIF-based interface:

Old Plusasm Properties New XABEL-M1 Properties
plusasm property 'FASTCLOCK signal_list'; xilinx property 'BUFG=CLK signal_list';

plusasm property 'FOEPIN signal_list'; xilinx property 'BUFG=OE signal_list';

plusasm property 'PARTITION FBnn
signal_name...';

xilinx property 'BLOCK signal_name
LOC=FBnn';

plusasm property 'LOGIC_OPT OFF
signal_list';

signal_list {NODE | PIN} istype 'KEEP';

plusasm property 'MINIMIZE OFF
signal_list';

signal_list {NODE | PIN} istype 'RETAIN';

plusasm property 'PWR {LOW | STD}
signal_list';

xilinx property 'PWR_MODE={LOW | STD}
signal_list';

plusasm property 'FAST ON signal_list'; xilinx property 'FAST signal_list';

plusasm property 'FAST OFF signal_list'; xilinx property 'SLOW signal_list';

	Introduction
	Products
	XABEL included only in Foundation product
	No workstation version of XABEL software
	Documented in Foundation on-line help

	Capabilities
	Supports all families
	Creates macro modules and stand-alone designs
	Based on Synario ABEL 6 with hierarchy
	EDIF netlists are encrypted

	Installation requirements
	Local hard-drive only
	Same directory as Xilinx-M1
	Workaround for installing implementation tools on network

	What’s different in XABEL 1.5
	XABEL registry not corrupted by other ABEL products
	OLE no longer used by XABEL interface
	INIT values no longer reversed for registers with asynchronous preset

	ABEL design techniques
	Name of module must match filename
	Pin vs. internal feedback
	Feedback interpretation in XABEL-M1 different than in pre-M1 versions
	Register support
	XC3000-series FPGAs do not support asynchronous preset registers
	For XC9500XL, the .CE equation forces the use of the clock-enable product-term

	Register initial states
	For FPGA use .AP and .AR equations
	For CPLD use INIT property

	FSM initial state
	For FPGA designs
	For CPLD designs

	Transparent latches
	.LH equations use flip-flops in CPLDs
	Combinatorial feedback latches not

	Cannot preserve delay buffer nodes in ABEL
	Large comparator/decoder logic may cause ABEL compiler to fail (bug)

	Attributes for controlling design implementation
	Pin assignment
	Output slew (FAST, SLOW)
	Preserving combinatorial nodes (KEEP)
	Global buffers for CPLD (BUFG)
	Macrocell power mode for CPLD
	Timespecs
	XC9500 local feedback
	Mapping ABEL equations directly to CPLD macrocells

	Processing XABEL designs
	Improving Performance in CPLD designs
	ABEL modules for Alliance designs
	Using Foundation design entry tools for ABEL module development
	Installation
	Design flow

	Using the XABEL Interface in command-line mode
	Installation from Foundation CDs
	Downloading from the web
	Design flow

	Instantiating ABEL macros in a schematic
	Viewlogic Workview Office
	Mentor Graphics Design Architect

	Optimization of XABEL logic
	FPGA designs
	CPLD designs

	XC9500 JEDEC test vectors
	How to use .TMV file

	When to use Plusasm (CPLD only)
	Existing design with unconverted Plusasm properties
	Pinlocking designs in XABEL-M1 using pre-M1pinouts
	EDIF flow bugs with no workaround
	Persistent fitter problems or poor results

	Using the Plusasm design flow
	Using the Foundation Design Entry tools
	Using DOS command-line

	Converting Plusasm properties into M1 attributes

