

Faster Erase Times for XC95216 and XC95108 Devices on HP 3070 Series Testers

XAPP113 July 22, 1998 (Version 1.0)

Application Note

Summary

This application note describes an enhanced procedure for utilizing the new faster bulk erase capability of the XC95216 and XC95108 devices on the HP 3070 tester.

Xilinx Family

XC9500

Introduction

The bulk erase instruction (FBULK) has been enabled in JTAG ID revision 1 or greater silicon for the XC95216 and XC95108. The revision 1 designation is delineated by a 1 in the 4 msb of the JTAG ID register. FBULK groups together sectors and erases them at the same time. The erase time of XC95108 with 6 sectors is reduced from 20 to 5 seconds, while the XC95216 with 12 sectors is reduced from 40 to 5 seconds.

The revision 1 or greater silicon can be erased with existing vector files, but will erase slower because the FBULK instruction is not utilized. The revision 0 silicon does not have the FBULK instruction enabled. Since both revision 0 and 1 silicon may be encountered in production, two sets of erase vector files must be used: the existing set and a new set that includes the FBULK instruction. This application note describes the method for generating the FBULK vector files, identifying the silicon revision (0 or 1), and applying the correct set of vector files using the HP 3070.

Generating the Bulk Erase SVF file.

Serial Vector Format (SVF) files are used when programming XC9500 devices on automatic test equipment (ATE). The JTAG Programmer allows you to create **.svf** files for use with ATE systems. To create the default (version 0) SVF file, select:

 $\texttt{Output} \rightarrow \texttt{Create SVF File...}$

The Create a New SVF File dialog box will appear.

Figure 1: Create an SVF File

Select a name and a directory to create the new file in, then click $\ensuremath{\text{ok}}$.

Then select the device you wish to generate stimulus for and choose the appropriate action from the operations menu.

Substituting with Version 1 Devices

After you generate SVF files for XC95108 or XC95216 Version 0 devices (the default), then, to take advantage of improved ISP capabilities available on Version 1 silicon devices you can generate Version 1 specific SVF files using the following techniques:

Using the Batch Tool (jtagprog)

Invoke the tool to generate SVF files:

jtagprog -svf

When specifying the part_type in the part command identify Version 1 silicon by appending "_v1" to the part name. For example, to specify a chain of Version 1 XC95216s and XC95108s:

part xc95216_v1:design216a
xc95108_v1:design108
xc95216_v1:design216b

Note: Program, Verify, Erase, Functional Test, Get Device ID and Get Signature/Usercode are allowed operations in SVF mode.

Next, specify operations as usual to generate the required SVF files. Erase design108. This will generate the file "design108.svf." Run this through the **svf2vcl** translator.

Using the JTAG Programmer

In your \$XILINX/data directory you will notice BSDL files with the following names:

xc95108.bsd xc95108_v1.bsd xc95216.bsd xc95216_v1.bsd

The BSDL files with the "_v1" in their names describe the Version 1 silicon. To get the software to use Version 1 BSDL files for all devices, you must "trick" the application by renaming files as follows:

- 1. Rename xc95108.bsd to xc95108_v0.bsd
- 2. Rename xc95216.bsd to xc95216_v0.bsd
- 3. Rename xc95108_v1.bsd to xc95108.bsd
- 4. Rename xc95216_v1.bsd to xc95216.bsd

Invoke the JTAG Programmer and set it to generate SVF files as described earlier in this section. Erase design108. This will generate the file "design108.svf." Run this through the **svf2vcl** translator. When you use the JTAG Programmer, it will default to using the xc95216.bsd and xc95108.bsd files to describe the parts. This will allow access to all Version 1 features.

When you are done programming, remember to change the file names back so that the software will work correctly in non-SVF modes:

- 1. Rename xc95108.bsd to xc95108_v1.bsd
- 2. Rename xc95216.bsd to xc95216_v1.bsd
- 3. Rename xc95108_v0.bsd to xc95108.bsd
- 4. Rename xc95216_v0.bsd to xc95216.bsd

Separating Erase and Program Files using JTAG Programmer

If you currently implement the erase of the part as a separate file, then skip ahead to the next section. If erase and program are included in a single SVF file, then you will need to generate two new SVF files. One will do the erase for a JTAG revision zero part and the other will erase the program.

Using the batch tool (jtagprog)

1. Invoke the tool.

2. Specify the part command, this time leaving out the "_v1." For instance,

part xc95108:design108.

3. Erase design108.

4. In another window, rename design108.svf to erase_design108.svf.

5. Then, program the design.

```
program -b design108
```

Another design108.svf will be available with the programming svf statements for design108.

Using the JTAG Programmer

1. Make sure you have renamed the BSDL files so that you are using revision 0 BSDL files.

- 2. Enter SVF mode as normal.
- 3. Select design108 and erase.

Operation \rightarrow Erase

4. In another window, rename design108.svf to erase_design108.svf.

5. Program the device. Make sure that you deselect the option "erase prior to programming."

$\texttt{Operation} \rightarrow \texttt{Program}$

The program will create another design108.svf with the programming SVF statements for design108.

Running the Appropriate Erase Vectors.

You should now have two separate erase VCL files. One does a faster bulk erase; call it u1_bulk_erase. The other does the old (sector) erase; call it u1_sector_erase.

The general steps for this procedure are as follows:

1. Create a Boundary Scan ID register executable test using the HP Boundary Scan software.

2. Generate the board test as usual.

3. Modify the executable test source code for the Boundary Scan ID test.

4. Modify the BT-Basic testplan to accept and branch on data passed to it from the Boundary Scan ID test.

Step 1. Generate the Boundary Scan ID Test

Run the HP Boundary Scan software as described in the HP3070 Boundary Scan manual. Make sure you specify an appropriate location for the output VCL file (usually in the "digital" directory).

First, you should set the "Default Device" (under "Macros" in the HP Boundary Scan application) to the reference designator for this device. This will create an executable test for you. Note that you must do the "Default Device" prior to running any other macros.

Next, generate an ID register test only. This is listed under the "Macros" menu as "ID Code Test". The software will create a test which has comments in it for verifying the ID register of the device as it was defined in the BSDL file.

Save the file by doing a **File** \rightarrow **Save** in the HP Boundary Scan software application.

Step 2. Generate the Board Test

Use Test Consultant to create your board test as usual.

Step 3. Modify Boundary Scan ID Test

Modifying the Boundary Scan ID test is rather simple. You only need to add six lines (more if you add comments) and modify four existing lines (as shown in this example). Refer to the example test for the locations of additions and modifications. Modify the executable test and compile it. See appendix A for an example VCL file. Note the lines in the file following comments of "ADDED THE FOLLOWING LINE."

Step 4. Modify the Test Plan

Modify the test plan as follows:

 Add another variable to the dimension ("dim") statement for the array that the data passed from the ID test to the testplan. You should have syntax similar to this:

dim ID_Results(10) ! Dimension a
10 element numeric array.

Note that you should dimension the array for more elements than you are passing back from the ID test. In this example, we are capturing only eight vectors, thus the array size of 10.

 If you plan to test the ID code in the "Digital" subroutine, you MUST add a "global" statement for the data array. It should look like the following:

sub Digital
global ID_Results(*) ! Add this

Appendix A

```
6
             0
                  1 891056649 V909c
1111
! Hewlett-Packard Boundary-Scan Software [960906]
! VCL created from BSDL (Version 0.0) file: /users/tomt/a.bsdl
! Date: Fri Mar 27 20:44:23 1998
! IEEE Std 1149.1-1990
!! Writing code for HP-3070 family.
! Parameters for Entity XC95108:
I.
   Instruction Length
                                 8
   Boundary Register Length
!
                              324
!
   Device Inputs
                                 0
                                 0
   Device Outputs
!
!
   Device Bidirectionals
                               108 !! Warning, Disable methods need to be added.
```

global statement.

 The "test" statement for the ID test should look like this: test "digital/u1_ID_Code";
 TD Reculta(*)

```
ID_Results(*)
```

• Now add your conditional branch statements. Note that the first element of the array represents the 28th bit in the ID register (starting from 0) in this example. Also note that to access the four bits representing the Version Code, you need to access elements 0, 2, 4, and 6 of the array. Elements 1, 3, 5, and 7 are indeterminate values.

An example for the testplan branching is shown below:

```
if ID_Results(0) = 1 then
        test "digital/u1_bulk_erase" !
Fast erase algorithm device
        else
        test "digital/u1_sector_erase"
! Slow erase algorithm device
        end if
```

At this point, you can test this on your board. Note that it would be relatively easy to pass the entire ID register back to the testplan if you wanted to.

However, a couple of points to note:

- This procedure assumes a single device in a scan chain. If there are multiple devices in the chain, this procedure can be used. The exception to this is when you create an ID test for the device you are interested in. Then you would need the HP Interconnect Boundary Scan software for this step.
- Performance for passing data from the testhead to BT-Basic can be slow. Limit this technique to only those cases where there is no other alternative, and in cases where throughput is a major concern.

sequential family TTL !! Warning, Defaulted family default device "u1" ! The following assignments are derived from Pin-Mapping DIE_BOND. assign PB00_00 to pins "PAD22" assign PB00_01 to pins "PAD18" assign PB00_02 to pins "PAD19" assign PB00_03 to pins "PAD26" assign PB00_04 to pins "PAD20" assign PB00_05 to pins "PAD21" assign PB00_06 to pins "PAD24" assign PB00_07 to pins "PAD23" assign PB00_08 to pins "PAD25" assign PB00_09 to pins "PAD32" assign PB00_10 to pins "PAD27" assign PB00_11 to pins "PAD29" assign PB00_12 to pins "PAD30" assign PB00_13 to pins "PAD31" assign PB00_14 to pins "PAD33" assign PB00_15 to pins "PAD36" assign PB00_16 to pins "PAD38" assign PB00_17 to pins "PAD37" assign PB01_00 to pins "PAD133" assign PB01_01 to pins "PAD129" assign PB01_02 to pins "PAD131" assign PB01_03 to pins "PAD3" assign PB01_04 to pins "PAD134" assign PB01_05 to pins "PAD2" assign PB01_06 to pins "PAD6" assign PB01_07 to pins "PAD4" assign PB01_08 to pins "PAD5" assign PB01_09 to pins "PAD9" assign PB01_10 to pins "PAD8" assign PB01_11 to pins "PAD10" assign PB01_12 to pins "PAD11" assign PB01_13 to pins "PAD12" assign PB01_14 to pins "PAD14" assign PB01_15 to pins "PAD15" assign PB01_16 to pins "PAD16" assign PB01_17 to pins "PAD13" assign PB02_00 to pins "PAD39" assign PB02_01 to pins "PAD41" assign PB02_02 to pins "PAD42" assign PB02_03 to pins "PAD48" assign PB02_04 to pins "PAD46" assign PB02_05 to pins "PAD47" assign PB02_06 to pins "PAD43" assign PB02_07 to pins "PAD49" assign PB02_08 to pins "PAD50" assign PB02_09 to pins "PAD57" assign PB02_10 to pins "PAD51" assign PB02_11 to pins "PAD53"

assign PB02_12 to pins "PAD45" assign PB02_13 to pins "PAD54" assign PB02_14 to pins "PAD55" assign PB02_15 to pins "PAD56" assign PB02_16 to pins "PAD65" assign PB02_17 to pins "PAD62" assign PB03_00 to pins "PAD105" assign PB03_01 to pins "PAD112" assign PB03_02 to pins "PAD113" assign PB03_03 to pins "PAD111" assign PB03_04 to pins "PAD116" assign PB03_05 to pins "PAD117" assign PB03_06 to pins "PAD109" assign PB03_07 to pins "PAD118" assign PB03_08 to pins "PAD120" assign PB03_09 to pins "PAD125" assign PB03_10 to pins "PAD121" assign PB03_11 to pins "PAD122" assign PB03_12 to pins "PAD128" assign PB03_13 to pins "PAD124" assign PB03_14 to pins "PAD126" assign PB03_15 to pins "PAD123" assign PB03_16 to pins "PAD127" assign PB03_17 to pins "PAD130" assign PB04_00 to pins "PAD64" assign PB04_01 to pins "PAD67" assign PB04_02 to pins "PAD70" assign PB04_03 to pins "PAD60" assign PB04_04 to pins "PAD72" assign PB04_05 to pins "PAD74" assign PB04_06 to pins "PAD66" to pins "PAD76" assign PB04_07 assign PB04_08 to pins "PAD78" assign PB04_09 to pins "PAD71" assign PB04_10 to pins "PAD80" assign PB04_11 to pins "PAD82" assign PB04_12 to pins "PAD73" assign PB04_13 to pins "PAD83" assign PB04_14 to pins "PAD86" assign PB04_15 to pins "PAD81" assign PB04_16 to pins "PAD87" assign PB04_17 to pins "PAD75" to pins "PAD77" assign PB05_00 assign PB05_01 to pins "PAD88" assign PB05_02 to pins "PAD89" assign PB05_03 to pins "PAD100" assign PB05_04 to pins "PAD91" assign PB05_05 to pins "PAD93" assign PB05_06 to pins "PAD90" assign PB05_07 to pins "PAD95" assign PB05_08 to pins "PAD97" assign PB05_09 to pins "PAD92" assign PB05_10 to pins "PAD99" assign PB05_11 to pins "PAD101" assign PB05_12 to pins "PAD96" assign PB05_13 to pins "PAD104"

assign PB05_14	4 to pins	"PAD106"			
assign PB05_15	5 to pins	"PAD110"			
assign PB05_10	5 to pins	"PAD107"			
assign PB05_17	7 to pins	"PAD98"			
assign TCK	to pins	"PAD63"			
assign TDI	to pins	"PAD59"			
assign TDO	to pins	"PAD114"			
assign TMS	to pins	"PAD61"			
assign VCCINT	_1 to pins	*			
assign VCCINT_	_2 to pins	*			
assign VCCINT	_3 to pins	*			
assign VCCINT	_VPP to pin	ns *			
assign VCCIO_1	l to pins	*			
assign VCCIO_2	2 to pins	*			
assign VCCIO_3	3 to pins	*			
assign VCCIO_4	4 to pins	*			
assign VCCIO_	5 to pins	*			
assign VCCIO_6	5 to pins	*			
assign VSSINT	_1 to pins	*			
assign VSSINT	_2 to pins	*			
assign VSSINT	_3 to pins	*			
assign VSSINT	_4 to pins	*			
assign VSSIO_1	l to pins	*			
assign VSSIO_2	2 to pins	*			
assign VSSIO_3	3 to pins	*			
assign VSSIO_4	4 to pins	*			
assign VSSIO_5	5 to pins	*			
assign VSSIO_6	5 to pins	*			
assign VSSIO_	7 to pins	*			
assign VSSIO_8	3 to pins	*			
assign VSSIO_9	9 to pins	*			
power	VCCINT_1,	VCCINT_2,	VCCINT_3,	VCCINT_VPP	, VCCIO_1
power	VCCIO_2,	VCCIO_3,	VCCIO_4,	VCCIO_5,	VCCIO_6
power	VSSINT_1,	VSSINT_2,	VSSINT_3,	VSSINT_4,	VSSIO_1
power	VSSIO_2,	VSSIO_3,	VSSIO_4,	VSSIO_5,	VSSIO_6
power	VSSIO_7,	VSSIO_8,	VSSIO_9		
inputs	TCK,	TDI,	TMS		
outputs	TDO				
bidirectional	PB00_00,	PB00_01,	PB00_02,	PB00_03,	PB00_04
bidirectional	PB00_05,	PB00_06,	PB00_07,	PB00_08,	PB00_09
bidirectional	PB00_10,	PB00_11,	PB00_12,	PB00_13,	PB00_14
bidirectional	PB00_15,	PB00_16,	PB00_17,	PB01_00,	PB01_01
bidirectional	PB01_02,	PB01_03,	PB01_04,	PB01_05,	PB01_06
bidirectional	PB01_07,	PB01_08,	PB01_09,	PB01_10,	PB01_11
bidirectional	PB01_12,	PB01_13,	PB01_14,	PB01_15,	PB01_16
bidirectional	PB01_17,	PB02_00,	PB02_01,	PB02_02,	PB02_03
bidirectional	PB02_04,	PB02_05,	PB02_06,	PB02_07,	PB02_08
bidirectional	PB02_09,	PB02_10,	PB02_11,	PB02_12,	PB02_13
bidirectional	PB02_14,	PB02_15,	PB02_16,	PB02_17,	PB03_00
bidirectional	PB03_01,	PB03_02,	PB03_03,	PB03_04,	PB03_05
bidirectional	PB03_06,	PB03_07,	PB03_08,	PB03_09,	PB03_10
bidirectional	PB03_11,	PB03_12,	PB03_13,	PB03_14,	PB03_15
bidirectional	PB03_16,	PB03_17,	PB04_00,	PB04_01,	PB04_02
bidirectional	PB04_03,	PB04_04,	PB04_05,	PB04_06,	PB04_07
bidirectional	PB04_08,	PB04_09,	PB04_10,	PB04_11,	PB04_12

bidirectional PB04_13, PB04_14, PB04_15, PB04_16, PB04_17 bidirectional PB05_00, PB05_01, PB05_02, PB05_03, PB05_04 bidirectional PB05_05, PB05_06, PB05_07, PB05_08, PB05_09 bidirectional PB05_10, PB05_11, PB05_12, PB05_13, PB05_14 bidirectional PB05_15, PB05_16, PB05_17 ! vector cycle 500n receive delay 400n

pcf	order	default	Parallel	is	TCK,	TMS,	TDI,	TDO		
pcf	order	default	Parallel	is	PB00_00,	PB00_01,	PB00_02,	PB00_03,	PB00_04	
pcf	order	default	Parallel	is	PB00_05,	PB00_06,	PB00_07,	PB00_08,	PB00_09	
pcf	order	default	Parallel	is	PB00_10,	PB00_11,	PB00_12,	PB00_13,	PB00_14	
pcf	order	default	Parallel	is	PB00_15,	PB00_16,	PB00_17,	PB01_00,	PB01_01	
pcf	order	default	Parallel	is	PB01_02,	PB01_03,	PB01_04,	PB01_05,	PB01_06	
pcf	order	default	Parallel	is	PB01_07,	PB01_08,	PB01_09,	PB01_10,	PB01_11	
pcf	order	default	Parallel	is	PB01_12,	PB01_13,	PB01_14,	PB01_15,	PB01_16	
pcf	order	default	Parallel	is	PB01_17,	PB02_00,	PB02_01,	PB02_02,	PB02_03	
pcf	order	default	Parallel	is	PB02_04,	PB02_05,	PB02_06,	PB02_07,	PB02_08	
pcf	order	default	Parallel	is	PB02_09,	PB02_10,	PB02_11,	PB02_12,	PB02_13	
pcf	order	default	Parallel	is	PB02_14,	PB02_15,	PB02_16,	PB02_17,	PB03_00	
pcf	order	default	Parallel	is	PB03_01,	PB03_02,	PB03_03,	PB03_04,	PB03_05	
pcf	order	default	Parallel	is	PB03_06,	PB03_07,	PB03_08,	PB03_09,	PB03_10	
pcf	order	default	Parallel	is	PB03_11,	PB03_12,	PB03_13,	PB03_14,	PB03_15	
pcf	order	default	Parallel	is	PB03_16,	PB03_17,	PB04_00,	PB04_01,	PB04_02	
pcf	order	default	Parallel	is	PB04_03,	PB04_04,	PB04_05,	PB04_06,	PB04_07	
pcf	order	default	Parallel	is	PB04_08,	PB04_09,	PB04_10,	PB04_11,	PB04_12	
pcf	order	default	Parallel	is	PB04_13,	PB04_14,	PB04_15,	PB04_16,	PB04_17	
pcf	order	default	Parallel	is	PB05_00,	PB05_01,	PB05_02,	PB05_03,	PB05_04	
pcf	order	default	Parallel	is	PB05_05,	PB05_06,	PB05_07,	PB05_08,	PB05_09	
pcf	order	default	Parallel	is	PB05_10,	PB05_11,	PB05_12,	PB05_13,	PB05_14	
pcf	order	default	Parallel	is	PB05_15,	PB05_16,	PB05_17			
!										
pcf	order	Scan is	TCK,		TMS,	TDI,	TDO			
!Co]	lumn-to	o-signal	Map, sigr	als	1 to 75					
!TTT	TTPPPPI	PPPPPPPP	PPPPPPPPP	PPPI	PPPPPPPPPP	PPPPPPPPPP	PPPPPPPPPP	PPPPPPPPPP	PPPPPP!	
! CMI	DDBBBBB	BBBBBBBB	BBBBBBBBBB	BBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	3BBBBB!	
!KSI	1000000	000000000	00000000000	0000	0000000000000000	00000000000000	00000000000000	000000000000000000000000000000000000000	00000!	
!	00000	000000000	0000001111	.1111	11111111111	12222222222	2222222223	333333333333	333333!	
!									!	
!	00000	0000011	1111110000	0000	00011111111	10000000000	01111111100	000000001	111111!	
!	01234	45678901	2345670123	8456	7890123456	70123456789	90123456703	12345678903	123456!	
!									!	
!										
Column-to-signal Map, signals 76 to 112										

```
!7012345678901234567012345678901234567!
1
                    T
11
unit "IDCode_Test" ! Vector 1
pcf
use pcf order Parallel
use pcf order Scan
"117X"
"01ZX"
"11ZX"
"01ZX"
"11ZX"
"01ZX"
"11ZX"
"01ZX"
"11ZX"
"01ZX"
"11ZX"! Test-Logic-Reset
! Current instruction IDCODE (11111110), target register IDCODE[32].
"00ZX"
"10ZX"! Run-Test/Idle
use pcf order Parallel
use pcf order Scan
"11ZX"! Select-DR-Scan
use pcf order Parallel
use pcf order Scan
"10ZX"! Capture-DR
use pcf order Parallel
! Shift-DR
! Target IDCODE[32] = 00011001010100000110000010010011
! ID Code is 000110010100000110000010010011
end pcf
message "1149.1 Device ID failed bit 0."
pcf
use pcf order Parallel
! 0
use pcf order Scan
"101X"
end pcf
message "1149.1 Device ID failed Manufacturer"
message "Code."
pcf
use pcf order Scan
"000H"! 1
```

```
! Vector 25
"000L"! 2
"100X"
"000L"! 3
"100X"
"000H"! 4
"100X"
"000L"! 5
"100X"
"000L"! 6
"100X"
"000H"! 7
"100X"
"000L"! 8
"100X"
"000L"! 9
"100X"
"000L"! 10
"100X"
"000L"! 11
"100X"
end pcf
message "1149.1 Device ID failed Part Number."
pcf
use pcf order Scan
"000L"! 12
"100X"
"000H"! 13
"100X"
"000H"! 14
! Vector 50
"100X"
"000L"! 15
"100X"
"000L"! 16
"100X"
"000L"! 17
"100X"
"000L"! 18
"100X"
"000L"! 19
"100X"
"000H"! 20
"100X"
"000L"! 21
"100X"
"000H"! 22
"100X"
"000L"! 23
"100X"
"000H"! 24
"100X"
"000L"! 25
"100X"
"000L"! 26
```

"100X"

"100X" ! Vector 75 "000H"! 27 "100X" end pcf message "1149.1 Device ID failed Version Code." capture ! Define start of data capture block pcf use pcf order Scan "000X"! 28 ###### LINE MODIFIED: "TDO" from H to X "100X" "000X"! 29 ###### LINE MODIFIED: "TDO" from L to X "100X" "000X"! 30 ####### LINE MODIFIED: "TDO" from L to X "100X" "010X"! 31 ####### LINE MODIFIED: "TDO" from L to X "110X"! Exit1-DR end pcf end capture ! End of data capture block message "" pcf use pcf order Parallel use pcf order Scan "11ZX"! Update-DR "01ZX" "11ZX"! Select-DR-Scan "017X" "11ZX"! Select-IR-Scan use pcf order Parallel use pcf order Scan "11ZX"! Test-Logic-Reset ! Current instruction IDCODE (11111110), target register IDCODE[32]. "01ZX" "11ZX"! Test-Logic-Reset "ZZZX" ! Turn-off the drivers. end pcf fetch Result(*) ! Pass the data back to the testplan end unit ! IDCode_Test Vector 94 ! Vectors with TDI High: 2, (1.0e-06 sec) ! Vectors with TDI Low: 62, (3.1e-05 sec) ! Total time for test: (4.7e-05 sec)