
Summary

Spartan FPGAs are an exciting, new alternative for imple-
menting digital designs that, previously, would have
employed ASIC1 technology. Pre-existing ASIC intellectual
property2 can be adapted for use with Spartan devices by
following a straightforward procedure. Each step of the pro-

cedure is explained in detail. Guidelines show how an ASIC
design, in the form of an RTL-level HDL3 file, can be
revised to take full advantage of the Spartan series’ capa-
bilities, thereby achieving efficient, high-performance
implementations.

Xilinx Family

Spartan and SpartanXL

Introduction
The Xilinx Spartan Series, offers high density, rich function-
ality, and high performance at unprecedented low cost. For
many new design projects, these FPGAs are not only a via-
ble alternative to mask gate arrays, but the superior choice.
The Spartan series, consisting of the 5 V Spartan and 3.3V
SpartanXL families, provides numerous important capabili-
ties that add significant value to a design:

• Spartan devices are available in a range of densities
from 5,000 to 40,000 system gates. This range can
accommodate the majority of today’s ASIC designs.

• Spartan designs commonly run at system clock
frequencies up to 80 MHz. Carefully placed and well-
routed designs can operate at frequencies in excess of
100 MHz. This level of performance is more than
adequate for most ASIC designs. Dedicated global
clock lines keep clock signals clean and reliable from
source to destination. Continual process improvements
ensure that Spartan devices will continue to meet
advanced system performance requirements well into
the future.

• Spartan FPGAs are fully programmable, providing
flexibility unknown to ASICs. As a result, Spartan
designs can be modified quickly, at little or no cost,

• For designers accustomed to using ASICs, perhaps the
most significant of the Spartan series advantages is the
exceptionally low pricing, made possible by an
advanced fabrication process and a streamlined test
procedure. For high volume production, the price of
Spartan FPGAs is comparable to ASICs.

Given the Spartan series’ considerable benefits, sold at
prices that compare favorably to ASICs, many designers
will prefer an FPGA solution for their next generation of
products. In this context, they will want to make use of pre-
existing ASIC intellectual property for their new Spartan
designs. Such IP can readily be adapted to suit Spartan by
following the straightforward procedure presented in this
note. In this way, the design will best be able to utilize the
Spartan series’ capabilities, thereby achieving efficient,
high performance implementations. Specific information is
provided on how to resolve design issues arising from dif-
ferences in HDL practice, architecture, timing, and with
respect to FPGAs and ASICs. Finally, the use of Xilinx
LogiCORE and LogiBLOX components as replacements
for ASIC library elements is discussed.

ASIC-to-Spartan Adaptation

Adapting ASIC Designs for Use with
Spartan FPGAs

XAPP119 July 20, 1998 (Version 0.5) Application Note by Kim Goldblatt

APPLICATION NOTE
XAPP119 July 20, 1998 (Version 0.5) 1

1. For the purposes of this application note, ASIC refers to mask gate array.
2. The term intellectual property includes preexisting design material (i.e. legacy code), cores, and vendor ASIC libraries.
3. Two kinds of Hardware Description Language (HDL) are recommended for the ASIC-to-FPGA design adaptation: VHDL and Verilog.

throughout a product’s development cycle. Designs can
even be upgraded in the field.

• Compared with ASICs, Spartan FPGAs are rich in
specialized architectural features that not only simplify
the task of designing, but also make meeting functional
and performance requirements easy. Global reset,
global three-state, JTAG, distributed RAM, and dual
port operation are a few such features.

The procedure for adapting ASIC intellectual property for
use with the Spartan series can be divided into two sec-
tions. The first section, known as the “ASIC-to-Spartan
Adaptation Flow” is shown in Figure 1. The steps include:
(I) obtain an ASIC design file coded in RTL-level HDL.
Then, revise the HDL file to suit the Spartan series by (II)
resolving architectural differences, (III) replacing ASIC

code with Xilinx LogiCORE and LogiBLOX functions, (IV)
adding pipeline registers, (V) adjusting local timing and (VI)
following the appropriate HDL coding style.

The second section, called the “Synthesis-Implementation
Flow”, is shown in Figure 2. Essentially, it consists of HDL
synthesis followed by a fairly routine implementation
(including map, place and route) using the Xilinx develop-
ment software (version 1.4 or later). Continuing from the
ASIC-to-Spartan Adaptation Flow, (VII) select a suitable
Spartan device and (VIII) synthesize the revised HDL file.
Then, perform (IX) functional simulation, (X) implementa-
tion and (XI) timing simulation. If errors are encountered
during functional simulation, then revise and re-synthesize
the HDL design. If errors occur during timing simulation,
either revise and re-synthesize the HDL file or adjust the
timing constraints and re-implement the netlist created by
the last synthesis. Finally, once simulation is successful,
then (XII) create a bitstream out of the design and configure
the Spartan device with it. Each of the steps will now be
considered in more detail.

ASIC-to-Spartan Adaptation Flow

Step I

Starting with the ASIC-to-Spartan Adaptation Flow
(Figure 1), the first step consists of obtaining ASIC intellec-
tual property expressed in Register-Transfer Language.
RTL refers to the level of abstraction in HDL code at which
designs are described in terms of data storage (i.e. regis-
ters) and transformation (i.e. logic). More than 90% of
recent ASIC designs are expressed in RTL form using
either VHDL or Verilog. ASIC designs created before 1990,
prior to HDL’s surge in popularity, will generally be available
only in schematic or netlist form.

Either VHDL or Verilog is the logical choice for use with the
adaptation procedure since both these languages are not
only easy to read and modify, but are also supported by a
wide range of ASIC and programmable logic development
software. Most important of all, RTL-level HDL code is rea-
sonably portable, provided that it is generic (i.e. does not
contain references to device- or tool-specific features). This
means that synthesis software can optimize and map logic
to take good advantage of the target device’s unique capa-
bilities. As a result, the synthesis tool automatically accom-

I

Start with
ASIC

Design

Resolve
Architectural
Differences

LogiCORE
and

LogiBLOX
Substitution

Add Pipeline
Registers

Adjust
Local

Timing

Translate
to HDL

No
HDL?

Yes

II

III

IV

V

2 XAPP119 July 20, 1998 (Version 0.5)

plishes much of the work associated with adapting the
design to the Spartan series, saving significant time and
effort.

If the ASIC design is only available in schematic form, it will
be necessary to create an RTL version before going ahead
with the adaptation procedure. Some tools provide an
option to convert schematics to a “verilog” file, consisting of
gate-level code. Such a file, when synthesized for an
FPGA, would result in an inefficient, low-performance
implementation; therefore, it is unsuitable for the adaptation
procedure.

HDL
Coding
Style

VI

asicspar.epsGo to Figure 2

Figure 1: ASIC-to-Spartan Adaptation Flow

Nor does it make sense to use a netlist as a direct input to
the adaptation procedure, since library elements or archi-
tectural features specific to ASICs are difficult to identify
and remove.

Even if the netlist is generic enough that it can be synthe-
sized for a Spartan device, placement and routing would be
unable to use the device’s logic resources efficiently. This is
the same problem described earlier for gate-level “verilog”
files. In this case, just as before, an RTL-level HDL file
needs to be created.

Step II

Make any necessary corrections to the HDL code to
account for architectural differences between the Spartan
series and mask gate arrays. The HDL input file is likely to
contain instances of library components specific to the
ASIC architecture. The synthesis tool targeting a Spartan
device will be unable to recognize such instances. There-
fore, it is necessary to replace them with code that makes
use of comparable functions supported by the Spartan
series. See the section entitled “Architectural differences”
on page 5.

Step III

Consider using Xilinx LogiBLOX and LogicCORE modules
to replace comparable functions in the ASIC design. The
Spartan series also supports IP available from a number of
partner companies collectively known as AllianceCORE.
LogiBLOX macros save time and effort by providing pre-
designed, simple functions, such as adders and memories,
that are ready for use. The LogiCORE and AllianceCORE
modules provide more complex functions. They are spe-
cially optimized to make the best possible use of Spartan
resources, resulting in efficient logic utilization and high
performance. Using cores to replace HDL code where tim-
ing is critical helps to ensure successful operation once the
design is transferred to Spartan. Cores also conserve logic,
permitting larger designs to fit into a given Spartan device.
Refer to “LogiCORE and LogiBLOX” on page 7 for more
details.

Step IV

Introducing pipelining into the design is one of the most sig-
nificant actions the designer can take not only to preserve

Mask gate array designs can have as many as 30 layers of
logic between registers. While this arrangement can be
made to work for some ASIC devices, in general, it makes
achieving high operating frequencies rather difficult. The
fewer the layers of logic between registers, the easier it is to
attain high-performance operation. Keeping the number of
logic layers under three significantly reduces the possibility
that race conditions due to differences in the interconnect
delay between the Spartan series and ASICs can occur. As
a general rule to be applied when adapting an ASIC design
to the Spartan series, every HDL module (i.e. process)
should have registered outputs and a clock signal in the
sensitivity list.

Note that every pipeline register added to the design
increases the overall data latency (i.e. the time it takes to
clock data from the input to the output of the system) by one
clock cycle. Fortunately, in many designs this latency is not
an issue.

Step V

It may also be necessary to address timing problems that
arise in cases of unusual or nonstandard design practice.
One such example is the case where data synchronized to
one clock is re-synchronized to another clock. A complete
list is provided in “Timing Considerations” on page 6.

The present step involves a general inspection of the HDL
code for poor digital design practices, especially with
regard to synchronizing clocks. Where required, HDL code
can be revised in accordance with the sound design meth-
odology recommended in “Timing Considerations” on
page 6. Timing problems that cannot be identified prior to
synthesis will be caught at “Step XI” on page 5 and
addressed at that time.

Step VI

HDL designs intended for the Spartan series should com-
ply with the recommended coding practice for FPGAs.
Given alternative ways of coding the same logic, some HDL
statements work better for Spartan FPGAs, others for
ASICs. For example, the “if-else” statement specifies prior-
ity encoding whereas the “case” statement specifies paral-
lel behavior. Even though the resulting logical function for
both statements is identical, for an FPGA implementation,
the “case” statement can result in a faster circuit. For an
XAPP119 July 20, 1998 (Version 0.5) 3

the original ASIC design’s performance, but also to elimi-
nate the possibility of timing problems. The total delay from
register to register is the sum of the clock-to-out delay of
the first register plus the logic delay plus the setup time for
the next register. The reciprocal of the register-to-register
delay is the maximum clock frequency that can be sup-
ported between the registers. The insertion of pipeline reg-
isters between layers of logic effectively reduces the
register-to-register delay, which, in turn, raises the maxi-
mum sustainable clock frequency.

ASIC implementation, this effect is unlikely to be noticed.
Appropriate coding style for Xilinx FPGAs is discussed
extensively in the Xilinx Synthesis and Simulation Guide
(See “References” on page 7). Inspect the HDL design and
make sure that it conforms to recommended practice. This
step concludes the ASIC-to-Spartan Adaptation Flow.

Synthesis-Implementation Flow

Step VII

Continue with the Synthesis-Implementation Flow, as
shown in Figure 2. This step selects a suitable Spartan
device to serve as a target for synthesis. To get a general
idea which Spartan device has sufficient logic resources to
hold the design, count “system gates”. This measure pro-
vides a reasonably effective comparison between FPGAs
and mask gate arrays. The density of ASICs is commonly
measured using a “logic gate count”, which is the total num-
ber of two-input NAND gates (four transistors per gate) in
the design. One logic gate is equivalent to two system
gates. If the estimate for a given design is 25,000 system
gates, then a good choice for target device would be the
Spartan XCS30, which, as the part number indicates, has a
maximum of 30,000 system gates.

The easiest way to obtain a gate count for a design is to use
a synthesis tool that reports logic utilization. Just select a
Spartan XCS40 and synthesize the design. Note that a sys-
tem gate range is specified for each Spartan device. The
number of gates available for a given Spartan device actu-
ally varies depending on how many of the Configurable
Logic Blocks are implemented as memory. While the maxi-
mum system gate count specified for Spartan assumes
20% of all CLBs are employed as memory, a higher per-
centage can make even more gates available. This is
because a CLB provides 28 gates for logic (including the H
LUT), but 146 gates for RAM (including flip-flops). There-
fore, the more memory a design employs, the greater the
available number of system gates for a Spartan device.

Generally speaking, the faster the Spartan device, the less
impact differences in signal path delays between the two
technologies will have on the design’s timing. If possible,
use the fastest available speed grade (presently -4). As a
result, the task of adjusting timing in the HDL code will be
easier.

Step VIII

Synthesize the design for the selected device type. It may
be necessary to make some adjustments to the HDL code
before synthesis is successful. This is especially true if the
design has never been run on the synthesis tool before.

Select Suitable
Spartan Device

No

No

VII

Proper
Function?

Synthesis

Functional
Simulation
(optional)

Implementation
(Place & Route)

Timing
Simulation

Meet Timing
Criteria?

Correct HDL

VIII

From Figure 1.

IX

X

XI Adjust
Timing

Constraints
4 XAPP119 July 20, 1998 (Version 0.5)

Make sure all required libraries are accessible. Correct
errors in the code and re-synthesize as necessary, until
synthesis is successful. In addition to verifying the fit of the
design into the Spartan device, most synthesis tools will
provide a post-map breakdown of logic utilization.

Choosing the appropriate software tools can greatly facili-
tate the ASIC-to-Spartan conversion process. Of central
importance is the Xilinx development software, which
comes in two versions, Alliance and Foundation, both of
which perform the map, place, route, simulation, bitstream
generation and device programming operations for Xilinx
FPGAs and CPLDs. Alliance is designed to be integrated

asispar1

Configure
Device

XII

Yes

Figure 2: Synthesis-Implementation Flow

with leading EDA environments. Foundation is a complete,
ready-to-use solution that includes the Foundation Express
synthesis tool as well as a timing simulation tool. Either Alli-
ance or Foundation can be used in conjunction with a vari-
ety of popular synthesis tools including: FPGA Express
(Synopsys), Synplify (Synplicity), and Leonardo Spectrum
(Exemplar). Simulation of HDL synthesis results is becom-
ing an increasingly important part of the design verification
process. The Xilinx development software can also be used
together with simulation tools available from a number of
vendors, including Verilog-XL (Cadence) and ModelsSim
(Model Technology, Inc.). Consult the Xilinx sales office
nearest you for more information on selecting the appropri-
ate software for FPGA development.

Step IX

Functional simulation, whether performed inside the Xilinx
development software or with a third party tool, is optional,
but recommended on two counts. First, it verifies that
changes to the design (i.e. library substitutions) work as
expected. Second, it identifies aspects of the design that
still require adaptation to the Spartan series (i.e. ASIC
library elements not yet replaced by Spartan library ele-
ments). Simulate and revise the HDL code as necessary,
then re- synthesize (i.e. go back to Step VII). When the
design functions satisfactorily, move on to Step X.

Following synthesis, ASICs typically require customers to
perform a SCAN test to detect stuck-at-0 and stuck-at-1
faults. This test is unnecessary for FPGAs which, unlike
ASICs, are thoroughly tested before shipping.

Step X

Using the Xilinx development software, select the target
Spartan device and implement the design. Be sure to gen-
erate a “timing-annotated netlist”, which is an EDIF file to
with timing information added for the purposes of timing
simulation. Check the implementation reports to gauge the
success of the implementation. For example, any difficulty
accessing libraries will generate an error in the translation
report. The map and PAR reports provide information on
logic utilization as well expected performance.

Step XI

Check the design’s timing. The Timing Analyzer (part of the

race conditions and how they can be avoided. Where nec-
essary, correct the HDL code, go back to “Step VIII” on
page 4 and re-synthesize the design. Continue with the
synthesize-implement-simulate loop until all timing issues
have been resolved.

Another strategy for addressing timing problems is to adjust
the timing required in the User Constraint File (UCF). Then,
loop directly back and re-implement. (Go back to “Step X”
on page 5).

Step XII

Run the Bitstream Compiler, part of the Xilinx development
software, and configure the target Spartan device.

Architectural differences
Significant differences in architecture between the Spartan
series and mask gate arrays give rise to differences in the
way features are implemented. When adapting an ASIC
design to suit the Spartan series, it is necessary to remove
any references to ASIC-specific features and replace them
with FPGA equivalents. In some cases, this will mean sub-
stituting code in the HDL file, in other cases, it will be a mat-
ter of selecting the appropriate switch in the Xilinx
development software. Refer to the Xilinx Synthesis and
Simulation Design Guide and the Spartan data sheet for
more information. A summary of the architectural differ-
ences between Spartan and mask gate arrays follows:

Functional Building Blocks
Mask gate arrays contain a sea of a relatively undifferenti-
ated NAND gates, whereas the Spartan series employs
more highly-structured functional building blocks known as
Configurable Logic Blocks (CLBs) and Input/Output Blocks
(IOBs). Once a target Spartan device is selected, the syn-
thesis tool automatically maps generic RTL to suit an archi-
tecture based on CLBs and IOBs. Nevertheless, how
effectively CLBs and IOBs can be utilized may depend on
how the design is coded in HDL. An example of this is
shown in the next section.

Configurable Logic Blocks
The CLB has two four-input LUTs (Look-Up Tables), one
three-input LUT, and two flip-flops. The LUTs are used to
XAPP119 July 20, 1998 (Version 0.5) 5

Xilinx Development Software) performs static timing analy-
sis by comparing implementation results against the timing
constraints specified by the designer. The Xilinx software
also generates a timing-annotated netlist as input to a tim-
ing simulation tool.

Many timing issues will already have been resolved by the
addition of pipelines in “Step IV” on page 3. Nevertheless, it
is worthwhile taking this opportunity to check for any race
conditions that may have escaped detection prior to syn-
thesis. Refer to “Timing Considerations” on page 6” for a
description of questionable design practices that lead to

implement either logic functions or memory, the outputs of
which can be registered using the flip-flops. Anywhere from
100 to 784 CLBs are organized as an array within the Spar-
tan device.

As an example of the way HDL coding impacts logic utiliza-
tion and speed, consider state machine design. Among the
methods available for designing state machine logic, the
one-hot encoding, which use one flip-flop per state, is par-
ticularly well suited to the limited fan-in and abundance of
flip-flops characteristic of the Spartan series architecture.
Converting state machine designs employing other meth-

ods (i.e. Moore and Mealy) to one-hot encoding can result
in more efficient, higher performance implementations See
“Accelerate FPGA Macros with One-Hot Approach” in the
Xilinx Synthesis and Simulation Design Guide for more
details.

Input/Output Blocks
IOBs connect between the I/O pins and routing within Spar-
tan. There are anywhere from 80 to 224 IOBs arranged
around the periphery of a single Spartan device. One IOB
contains two flip-flops, which can be used to register the
input and output signals. There are a number of other IOB
options described in the Spartan data sheet. An IOB is
selected for use by adding input, output, or I/O buffers to
signals where they enter or leave the Spartan device. While
these buffers can be instantiated in the HDL code, it is more
common to select an option in the synthesis tool to add
them when synthesizing the top-level file of the design hier-
archy.

Global Nets
Spartan devices have eight dedicated global nets for clock
distribution. Low capacitance makes these lines effective
for high frequency, high fan-out clock signals. Global nets
can be selected by inserting the generic global buffers
BUFG in the paths of clock signals. The BUFG symbol can
be instantiated in HDL code. Many synthesis tools will auto-
matically assign HDL signals named CLOCK or CLK to glo-
bal nets. Make sure clock signals from the original ASIC
design use global nets in Spartan. This will uphold perfor-
mance and, at the same time, reduce the chance that race
conditions can occur. Finally, the design should not employ
more than eight clock signals.

Global Set/Reset and Three State Control
The Global Set/Reset feature (GSR) is a dedicated net that
provides asynchronous reset (or set) to all registers in a
Spartan device. The Global Three-State Control (GTS) is a
dedicated net that puts all FPGA outputs into a high imped-
ance state. The low capacitance of these global nets
ensures that registers will be reset (or outputs will go into a
high impedance state) simultaneously. Both GSR and GTS
are instantiated in HDL code using the same STARTBUF
(or STARTUP) component. When adapting a design to the

Resistors on I/Os
Either pull-up or pull-down resistors can be connected to
the I/O pins using a programmable option in the synthesis
software. For example, Synopsys FPGA Express uses the
set_pad_type command.

Memory
Spartan supports distributed RAM, which means that the
two four-input LUTs of any CLB can be used to implement
a variety of memory types, including synchronous RAM,
ROM, Dual Ports, and FIFOs. This approach is quite differ-
ent from the majority of mask gate arrays for which RAM is
synthesized from generic NAND gates. When adapting
ASIC code for Spartan, it important to replace all gate-level
memory functions with either LogiBLOX or LogiCOREs. In
this way, an efficient implementation of memory in Spartan
is assured.

JTAG
JTAG is implemented in ASICs using intellectual property
that builds the required circuits out of the logic available.
For Spartan, JTAG circuits are actually built into the silicon.
JTAG is selected for operation simply by applying the
appropriate signals to dedicated pins on the Spartan
device. When preparing an ASIC design for use with Spar-
tan, JTAG implementation files are no longer necessary
and should be removed.

Timing Considerations
The importance of sound digital design methodology can-
not be over-emphasized. Synchronous designs can be
transferred from ASICs to Spartan more reliably than asyn-
chronous designs. Provided that the clock cycle can absorb
any variation in interconnect delay when a design is trans-
ferred from an ASIC to a Spartan device, then no race con-
ditions can occur. In this regard, asynchronous designs are
more likely to experience timing problems.

Following is a brief summary of the timing anomalies that
can occur when deficient ASIC designs are transferred to
FPGAs. Using good digital design techniques can prevent
such problems.

Wherever logic lies between clocked registers, verify that
6 XAPP119 July 20, 1998 (Version 0.5)

Spartan series, be sure to remove any ASIC-specific code
associated with global reset, set and three-state opera-
tions. Replace them with STARTBUF.

Spartan also supports the synchronous reset of registers
using general purpose routing. If the fan-out of the reset
signal is relatively low, a synchronous reset (or set) may
provide faster, more reliable timing. However, for a reset
(set) of the entire Spartan device, the GSR net is the best
choice. Using GSR, a reset signal with a high fan-out is bet-
ter protected from changes in interconnect delay that can
occur when moving from an ASIC to Spartan.

the access time of the source register plus the delay
through the logic plus the setup time to the destination reg-
ister is less than the clock period.

Skew associated with gated clock signals in Spartan may
differ from that in an ASIC. As a result, race conditions may
occur. Avoid inserting logic in the path of clock signals. For
the same reason, do not use logic signals for the purpose
of synchronization. Keep clock skew to a minimum by using
the Spartan series dedicated global clock lines for timing
signals. This becomes particularly important when clock
fan-out is high.

Synchronizing registers on the trailing as well as the rising
edge of the clock is not a good idea. This practice effec-
tively reduces the time between synchronized events to half
the clock period, which may not be sufficient to accommo-
date variability in the interconnect delay.

Avoid using logical signals to drive reset (and set) lines.
This makes a simultaneous reset (set) of all registers diffi-
cult to achieve. Use the GSR net that Spartan provides.
Similarly, the GTS net, not generic routing, should be used
for global three-state.

Exercise caution when using more than one clock. The
minimum skew necessary between two clocks so that data
can be re-synchronized from one to the other may change
when going from an ASIC to Spartan.

Avoid adding delay to signal paths by inserting gates, buff-
ers or other logic. The associated propagation delays
depend on the physical properties of the silicon and can
vary significantly once a design is transferred from ASICs
to FPGAs. Note that non-inverting buffers inserted within
logic (not connected to I/Os) are trimmed by the Xilinx
development software.

Avoid pulse generators, one-shots, glitch detectors, oscilla-
tors, and ripple-counters, since these functions also rely on
the physical properties of the silicon to generate timing.

Avoid metastability by ensuring that the design meets all
setup and hold time requirements. Setup and hold time
requirements may be longer for FPGAs than for ASICs. A
signal presented in sufficient time to meet the smaller ASIC
setup or hold time may not be stable within the FPGA’s
setup-to- hold window.

LogiCORE and LogiBLOX
Xilinx offers two forms of IP for use with Spartan, LogiBLOX
and LogiCORE, both of which can be instantiated as com-
ponents in an HDL design. LogiBLOX components are pro-
vided as part of the Xilinx development software. They are
parameterizable functions of relatively low complexity, such
as adder/subtractors, counters, decoders, multiplexers,
registers, and memories. LogiCORE components are cre-
ated using the Xilinx CORE Generator, which is distributed
in the form of a complementary CD-ROM. They consist of
relatively complex, parameterizable functions, such as cor-

LogiBLOX and LogiCORE components can be used to add
or replace HDL code as part of the ASIC-to-Spartan adap-
tation process. Ready-to-use LogiBLOX components save
time and effort creating original HDL code. For example,
pipeline registers can be added using a simple component
instantiation (see “Step IV” on page 3). They are also a
convenient way to instantiate memory.

LogiCORE components have the additional advantage of
being specially optimized for high performance. Their use
ensures efficient logic utilization, high performance and
reliable timing. When transferring an ASIC design to Spar-
tan, LogiCORE components can be used where timing is
critical. They help keep timing skew down to tolerable lev-
els, thereby preventing race conditions from occurring.

When synthesizable HDL (or a schematic) is lacking, as is
often the case for ASIC vendor libraries, replacement with a
comparable LogiCORE or logiBLOX component is recom-
mended. If a good match is not available, then it may be
necessary to create an HDL component file that describes
the function in RTL.

Proprietary ASIC library components may come with
behavioral HDL files intended for simulation purposes. Syn-
thesis of this code for the purpose of configuring a Spartan
device is not recommended. Even if possible, such synthe-
sis leads to inefficient logic utilization and poor timing.

References
The Spartan Series Datasheet, www.xilinx.com

Xilinx: The Programmable Logic Data Book

Xilinx Synthesis and Simulation Design Guide

Xilinx CORE Solutions Data Book

“FPGA Design Considerations for HardWire Designs”,
www.xilinx.com

“The Ten Commandments of Excellent Design”, Peter
Chambers, Electronic Design, April 1, 1997, pp. 33-40

“The Ten Commandments of Excellent Design: VHDL
Code Examples”, Peter Chambers, Electronic Design, April
14, 1997, pp. 123-126

Memec Design Services in Mesa, Arizona: This Xilinx-cer-
tified design center provides a variety of useful technical
XAPP119 July 20, 1998 (Version 0.5) 7

relators, filters, transforms, adder/subtractors, multipliers,
and memories.

services, including the conversion of ASIC designs to
FPGAs.

	Summary
	Introduction
	ASIC-to-Spartan Adaptation
	ASIC-to-Spartan Adaptation Flow
	Step I
	Step II
	Step III
	Step IV
	Step V
	Step VI

	Synthesis-Implementation Flow
	Step VII
	Step VIII
	Step IX
	Step X
	Step XI
	Step XII

	Architectural differences
	Functional Building Blocks
	Configurable Logic Blocks
	Input/Output Blocks
	Global Nets
	Global Set/Reset and Three State Control
	Resistors on I/Os
	Memory
	JTAG

	Timing Considerations
	LogiCORE and LogiBLOX
	References

