
Summary Express Mode uses an 8-bit wide bus path for fast configuration of Xilinx FPGAs. This
application note provides information on how to perform Express configuration specifically for
the Spartan™-XL family. The Express mode signals and their associated timing are defined.
The steps of Express configuration are described in detail, followed by detailed instructions that
show how to implement the configuration circuit.

Introduction Express mode is a fast means for configuring the 3.3V Spartan-XL family. This mode is able to
configure an FPGA quickly, since it uses an 8-bit bus to load one byte of data for every cycle of
the configuration clock (CCLK), which is driven from an external source. In Express mode, the
FPGA acts as a “slave”. The “master” to which it responds will typically be a processor, CPLD,
or some kind of intelligent interface.

Express mode is one of four different ways to configure the 3.3V Spartan-XL family. The other
methods are Slave Serial mode, Master Serial mode, and configuration via the JTAG port.

Note that the XC4000XLA family also supports Express mode. However, the 5V Spartan family
does not.

When to Use
Express Mode

Express mode is the fastest means for configuring the Spartan-XL family and, therefore, should
be used whenever the FPGA must go from power-up to user operation in the shortest possible
time.

Express mode will configure a Spartan-XL device up to eight times faster than the slave serial,
master serial, and JTAG methods, since Express mode transfers one byte of data per cycle
compared to one bit per cycle for the other three modes.

The time it takes for the Express configuration of the largest Spartan-XL device available, the
XCS40XL, is 387,848 bits divided by eight bits per cycle or 48,481 cycles, significantly less
than the 330,696 cycles required for serial configuration. At the maximum allowable clock
frequency of 10 MHz, Express configuration takes about 5-6 ms compared to the 30-40 ms
required for serial configuration.

Express mode requires an 8-bit bus to carry the configuration data. If there is insufficient
bandwidth available (i.e., the bus needs to be free for other tasks at the time of power-up or
board initialization), then one of the other three configuration methods, all of which are serial,
would be required.

Application Note: Spartan-XL

XAPP122 (v3.0) April 20, 2001

The Express Configuration of Spartan-XL
FPGAs

R

XAPP122 (v3.0) April 20, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

The Express Configuration of Spartan-XL FPGAs
R

Express Mode
Signals

An Express mode implementation can involve as many as 17 lines on the Spartan-XL device
including: M1, D0 through D7, CCLK, PROGRAM, INIT, DONE, CS1, DOUT, HDC, and LDC
(the last three are not always used). The principal functions of the 17 lines are described in
Table 1. Refer to the Spartan and Spartan-XL Families Field Programmable Gata Array Data
Sheets for more detailed information. Note: PWRDWN pin should be High (PWRDWN has a
default internal pull-up resistor).

Steps in the
Configuration
Process

The Express mode consists of four steps:

1. Clearing Configuration Memory

2. Initialization

3. Configuration

4. Start-Up

The following sections will explain how the 17 configuration signals work together to program a
Spartan-XL device. Refer to the Spartan and Spartan-XL Families Field Programmable Gata
Array Data Sheets for more details.

Clearing Configuration Memory
On power-up, once VCC reaches the Power-On-Reset threshold, the device automatically
begins clearing the configuration memory. It is also possible to begin the clearing operation by
applying a low-level pulse to the PROGRAM input.

Table 1: Signals for Express Configuration(1)

Signal Type Direction Description

M1(2) Mode Selection Input Set Low for Express mode.

D0-D7 Data Input Write configuration data into the device.

DOUT Data Output Status output which is driven Low after the configuration header
has been received. This signal remains Low until the FPGA is
filled. This pin connects to the CS1 input of the next FPGA in a
daisy-chain, enables loading of configuration data into the next
device.

CCLK Clock Input Synchronizes configuration data on the rising edge.

PROGRAM Control Input A Low pulse on this input signals the FPGA to begin clearing the
configuration memory.

INIT Control Open-drain
Bidirectional

A transition from Low-to-High indicates that the configuration
memory is clear and ready to receive the bitstream. This signal can
be used to delay configuration.

DONE Status Open-drain Output A High output indicates that the configuration process is complete.

HDC Status Output High output throughout configuration, until the I/Os go active.

LDC Status Output Low output throughout configuration, until the I/Os go active.

CS1 Control Input A High input enables loading of configuration data for an FPGA in
a daisy-chain.

Notes:
1. Unused I/O pins before and after configuration are 3-stated with internal weak pull-up resistors (20KΩ-100KΩ). After configuration,

unused I/O pins are configured as input pins with the I/O weak pull-up resistor network remaining activated.
2. M0 is a "Don’t Care" for Express mode.
2 www.xilinx.com XAPP122 (v3.0) April 20, 2001
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

Clearing configuration memory by using the PROGRAM input makes reconfiguration possible
at any time during device operation. It is particularly useful when the controller needs to initiate
configuration at a specific point in the power-up sequence.

As long as PROGRAM is Low, the device continues to cycle through the clearing step, and
forces a logic-Low on the INIT output. After each pass through the configuration memory,
PROGRAM is sampled. If PROGRAM is High, then one last clearing pass takes place, which
concludes with a Low-to-High transition on INIT. The PROGRAM pin has a permanent internal
weak pull-up resistor. Hold PROGRAM Low for at least 300 ns, but not more than 500 µs. If it
is necessary to delay configuration for longer than 500 µs, then hold INIT Low using an open-
collector (open-drain) driver to delay entry into the configuration step.

Initialization
Since INIT is an open-drain output, it requires a pull-up resistor (recommended 4.7 KΩ) to
achieve a logic-High. Once INIT has gone High, the internal memory is completely clear. At this
point, the device identifies the selected configuration mode by sampling the level on the mode
pins, after which it activates the appropriate configuration logic. To select Express mode, the
mode select input, M1, is tied directly to ground or to ground through a pull-down resistor of
1 KΩ or less. The other mode select input, M0 is a “don’t care”; it makes no difference whether
this pin is High or Low. The device is ready to begin the configuration step.

Configuration
After INIT goes High, it is necessary for the master (i.e., controller) to wait for a period of
TIC = 5 µs before driving the CCLK input on the device. CCLK must be driven from an external
source. The clock oscillator internal to the device is not used to transfer data; it is only used
during initialization.

The configuration data, in the form of bytes, enter the device via D0-D7 pins. The first byte of
the header (just after the title declaration) needs to be the first byte received by the FPGA. The
most significant bit of each byte must line up with the D0 input on the Spartan-XL device.
Similarily, the eighth bit of each byte must line up with the D7 input (i.e., Byte 0 = [D0...D7]). One
byte is clocked on the rising edge of CCLK each cycle as shown in Figure 1. The data needs to
be set up for a period TDC before the rising edge and held for the period TCD after the rising
edge. Numbers for the set up and hold times can be found in the Spartan and Spartan-XL
Families Field Programmable Gata Array data sheet. Bytes are loaded until the configuration
memory is full, at which point DOUT goes High, marking this the beginning of the Start-Up step.

Express mode only supports non-CRC error checking. The non-CRC error checking tests for a
designated end-of-frame field for each frame. Detection of an error results in suspension of
data loading before DONE goes High, and then the pulling down of the INIT pin. The user must
detect INIT and initialize a new configuration by pulsing the PROGRAM pin Low or cycling VCC.
XAPP122 (v3.0) April 20, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

Start-Up
The Start-Up step provides a smooth transition from configuration to user operation. Three
major events occur during Start-Up: The DONE output goes High, the I/Os go active, and the
GSR (Global Set/Reset) net is released. Start-Up takes place over a period of four cycles
labeled C1, C2, C3, and C4. Options in BitGen, the bitstream generation program in Xilinx
development software, determine which event takes place in which cycle.

The Start-Up sequence discussed in this application note uses CCLK for the purposes of
synchronization. This option is known as “CCLK_SYNC”. The customary default BitGen
settings are the most practical ones, since DONE goes High in C1 (disconnecting the
configuration data source to avoid any contention) after which the I/Os go active and the GSR
is released in C2 (ensuring stable internal conditions). The CCLK is used to measure out the
four start-up cycles. This application note assumes the default options.

In Express mode, full configuration memory is the one condition that determines when the
Configuration step is finished. DONE goes High as a result of filling the configuration memory
completely. This marks the beginning of the Start-Up step. When DONE fails to go High, this
generally indicates a problem with configuration such as the incomplete loading of
configuration data.

While a transition from Low-to-High on DONE indicates the completion of the configuration
step, the configuration process, as a whole, ends with the last cycle of the Start-Up step, C4. It
is important to provide CCLK rising edges for all four start-up cycles. This amounts to clocking
the entire configuration file, from the first byte of the header to the last start-up byte.

Like DONE, the HDC and LDC outputs provide status on the device’s progress to user
operation. HDC is High during configuration and takes on whatever I/O function is assigned to
it at the time when all I/Os go active, in the Start-up step. Similarly, LDC is Low during
configuration and takes on its respective I/O function when the I/Os go active as well.

Figure 1: Loading the Bitstream in Express Mode

Notes:
1. Byte 0, Byte 1 = Dummy Byte; Byte 2 = PREAMBLE 0x F2 (D0-D7); Byte 3, Byte 4, Byte 5 = Dummy

Length Count; Byte 6 = Field Check Code 0x D2 (D0-D7); Byte 7 = Start Frame 0x FE (D0-D7).
2. Values for the setup and hold requirements can be found in the Spartan and Spartan-XL Families

Field Programmable Gate Array data sheet.

X6710_m

BYTE
0

CCLK

FPGA Filled

INIT

TDC

TCD

TIC

D0-D7

DOUT

BYTE
1

BYTE
6

Header Received
4 www.xilinx.com XAPP122 (v3.0) April 20, 2001
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

Configuring Multiple Spartan-XL FPGAs
It is possible to configure any number of Spartan-XL devices with a composite configuration
data file. The devices are connected to form a “daisy-chain” by connecting the DOUT output of
one device to the CS1 input of the next. M1 must be tied Low for all devices so that Express
mode is used throughout the chain. The CS1 input of the first (left-most) device in the chain is
tied to VCC. The DOUT output of the last (right-most) device in the chain is left open. See
Figure 2 for an example of how the devices are connected together. D0-D7 is connected in
parallel to all the devices in the daisy chain.

The DONE output of all devices in the chain are tied together, as are the INIT outputs. Both
these outputs are open-drain; therefore, they need to be attached to VCC in order to obtain a
High logic level. A 4.7 KΩ pull-up resistor is recommended.

A device can only accept configuration data if two conditions are met: CS1 is High and the
configuration memory is not full. The High level on the first CS1 input ensures that the first
device is able to accept data. Once the header has been received (byte 0-byte 6), DOUT of the
first device goes LOW, disabling configuration of the rest of devices in the chain. When the
configuration memory of the first device is full, its DOUT goes High, enabling the next device in
the chain to receive configuration data from the parallel bus.

The line that connects the DONE outputs of all devices will not go High until all the configuration
data has been loaded. The assertion of DONE marks the beginning of the Start-Up sequence
for all other devices simultaneously.

For a daisy chain, the configuration data for the individual devices need to be combined into a
single file. For details, see Combining Files for a Daisy Chain, page 12.

If the same configuration data file is to be loaded into more than one FPGA, then the devices
can be connected with their configuration signals in parallel. See the Spartan and Spartan-XL
Families Field Programmable Gata Array data sheet for more information on daisy chain and
parallel configuration.

The Controller Interface
One common way to implement Express configuration uses a controller to send the
configuration data to the Spartan-XL device(s) over the data bus. Aside from the FPGA(s), this
application typically uses three resources:

1. ROM to store the configuration data file.

2. A controller for coordinating configuration.

3. A free register (e.g., in a CPLD or an I/O port) can be used as a synchronous interface
between the controller and the Spartan-XL device.
XAPP122 (v3.0) April 20, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

See Figure 2 for a schematic diagram of the controller interface.

Storing the Bitstream
A form of nonvolatile memory, such as ROM, is used to hold the configuration data. The data
may be embedded in the processor’s firmware.

As an alternative to the embedded approach, a free portion of ROM can be set aside to store
the bitstream in a table that is independent from the firmware. During board initialization, the
firmware can then instruct the processor to access the table.

Controlling Configuration
The controller supervises serial configuration by monitoring status signals, issuing control
signals, manipulating the bitstream, and providing for synchronization to a clock.

If insufficient continuous processing time is available for configuration, then the task of writing
the bitstream may be interrupted so the controller can attend to other tasks, only to be resumed
at a later point in time. In this case, the task of writing the bitstream exists as firmware
subroutine, to which an interrupt priority can be assigned.

In brief, the INIT line can be used to drive the interrupt line on the controller. A suitably low
priority level can be assigned to this interrupt to ensure that the controller spends sufficient time
servicing its primary tasks. As previously described, the processor initiates Express
configuration by toggling PROGRAM Low. Once all the devices are clear, INIT goes High,
requesting an interrupt of the controller. When the controller has no requests of higher priority
than that of the Spartan-XL device, it begins accessing configuration data from memory and
writing them to the inputs (D0-D7) byte-by-byte. While the controller will break away from
configuration to attend to any higher priority requests, as soon as these are complete, it will

Notes:
1. The M0 input on the Spartan-XL devices is a “don’t care” and can be left open.

Figure 2: Express Configuration of Spartan-XL FPGAs Using a Controller

In
 -R

eg
O

u
t-

R
eg

Spartan-XL
FPGA

DOUTCS1
M1

INIT

CCLK
PROGRAM

DONE

Spartan-XL
FPGA

DOUTCS1
M1

INIT

CCLK
PROGRAM

DONE

Storage for
Spartan-XL
configuration
file and
processor

RAM ROM

CPLD

Spartan-XL
FPGA

PROGRAM

D0-D7

CCLK

DONE

µP Data Bus

µP Address Bus

DOUTCS1
M1

System Clock

INIT

INIT

CCLK
PROGRAM

DONE VCC

Processor

4.7 KΩ

Spartan-XL board
with Processor
Interface

VCC

VCC

Dn DnDn

470

Open

4.7 KΩ
6 www.xilinx.com XAPP122 (v3.0) April 20, 2001
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

continue with configuration until the DONE signal, monitored at the interface register, goes
High.

When using interrupts, it is important to use a unique address for the Spartan-XL device (or
daisy chain). This avoids potential address conflicts when switching tasks. See the next section
for how this is accomplished.

The Interface Register
A register is used to establish a synchronous interface between the controller and the Spartan-
XL device(s). The interface register is composed of two parts: the output register and the input
register, which store the bit values of the configuration signals. In order to support the set of
signals commonly used for the Express mode (PROGRAM, D0-D7 and CCLK, INIT and
DONE), the output register must be ten-bits wide for write operations and the input register
must be two bits wide for read operation. More bits can be added for other control signals. For
example, when using the readback feature, add two bits for the READ_DATA and
READ_TRIGGER signals.

The interface register should have a unique address which ensures that the configuration data
on the processor’s bus goes only to the register and nowhere else. It also ensures that data on
the bus intended for other purposes cannot be written to the interface register.

A Practical Example
Let us look at a specific example of a processor configuring Spartan-XL FPGAs in Express
mode. Figure 2 shows a block diagram of a board with a processor. The microprocessor Data
Bus and the microprocessor Address Bus permit access to the ROM, RAM, and a CPLD with
an interface register. The program for the processor resides in the ROM. On reset or power-up,
the processor begins reading its instructions from here.

In addition to whatever primary tasks it may have to perform, the processor serves as the
master for serial configuration. In this role, the processor accesses the configuration data,
formats them, writes them to the inter-face register and, otherwise, coordinates the act of
configuration. The three FPGAs serve as slaves, so the M1 pin on each is tied Low to select the
Express configuration mode. Note that once M1 is Low, M0, the other mode input becomes a
“don’t care”. M0 can be tied either High, Low, or left open.

The configuration data is stored in the ROM. They may be embedded in the processor’s
program (expressed in assembly or C language) or they may exist as an independent table.

The CPLD contains the interface register that holds the bit values of the configuration signals.
This example employs the minimum required number of signals: PROGRAM, CCLK, D0-D7,
INIT, and DONE. The interface register consists of two parts, one called Out-Reg and the other
called In-Reg. The processor writes bit values for PROGRAM, D0-D7, and CCLK into Out-Reg,
which, in turn, applies those values to the corresponding inputs of the Spartan-XL device(s).
Also, on a regular basis, In-Reg samples INIT and DONE from the device(s) and makes those
bit values available on the Data Bus for monitoring by the processor. During Express
configuration, the processor takes turns writing control words to Out-Reg one instruction cycle
and reading status bits from In-Reg the next. The 10-bit values contained in the control word
provide the logic levels that drive Out-Reg’s PROGRAM, D0-D7 and CCLK signals. The two
values in the status bits communicate to the processor the levels of In-Reg’s INIT and DONE
signals.

A sample sequence of control words and status bits is shown in Table 2. Each row in the table
shows the bit values in the interface register at a given point in time. This is just one of a number
of different possible sequences. The full sequence, from start to finish, passes through the four
steps of configuration: Memory Clear, Initialization, Configuration and Start-up. The processor
initiates memory clearing by issuing a control word with PROGRAM set Low. If INIT is not
already Low, it will go Low at this time. During this step, CCLK can be High or Low, so long as
there’s no rising transition. Dummy bytes occupy the bit positions for D0 through D7. The
processor monitors In-Reg until it detects INIT at a High level. At this point, the processor needs
to wait 5 µs, during which initialization takes place. With the beginning of the configuration step,
XAPP122 (v3.0) April 20, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

the processor begins to write control words containing “real” data bytes while, at the same time,
continues to monitor In-Reg.

Finally, the Start-up step readies the Spartan-XL device for user operation over a series of four
CCLK cycles according to the customary default settings in Bitgen (see Start-Up, page 4): In
C1, DONE goes High. In C2, the I/Os become active. In C3, the GSR net is released. In C4,
user operation begins. It is important that a rising transition on CCLK be provided for C1, C2,
C3, and C4. The data clocked during the start-up cycles are dummy bytes.

Table 2: State Sequence for the Interface Register

Configuration Step

Contents of Interface Register

Control Word in Out-Reg
Status Nibble in

In-Reg

PROGRAM CCLK D0-D7 INIT DONE

Memory Clear 1 NRT(1) X(2) 0(3) 0(4)

0 NRT X(2) 0 0(4)

 INIT goes Low (if not already Low).

1 NRT X(2) 0 0

Initialization 1 NRT X(2) 1 0

Wait for TIC = 5 µs after INIT goes High

1 0 X(2) 1 0

1 1 X(2) 1 0

Configuration(5) 1 0 B0 1 0

1 1 B0 1 0

1 0 B1 1 0

1 1 B1 1 0

1 0 B2 1 0

1 1 B2 1 0

Continue writing bytes.

1 0 Bn 1 0

1 1 Bn 1 0

When the configuration memory is full, then the Start-Up step
begins.
8 www.xilinx.com XAPP122 (v3.0) April 20, 2001
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

Before the processor can send the configuration data file to the Spartan-XL devices, it is
necessary to format them into control words. The processor can accomplish this real-time by
reading a byte of configuration data from ROM and positioning it within the control word so that
it lines up with D0-D7 bits of the interface register. The processor also needs to provide the
appropriate logic levels for the PROGRAM and CCLK bit positions in the control word.

The bit values for all ten signals need to be chosen in compliance with the protocol summarized
in Steps in the Configuration Process, page 2 as well as the timing requirements described
in the Spartan and Spartan-XL Families Field Programmable Gata Array Data Sheets. For
example, note in Table 2 that during the configuration step, each data byte is repeated for two
consecutive writes to Out-Reg CCLK is Low for the first occurrence, High for the second. This
ensures that the setup times for D0-D7 with respect to CCLK are met. Note that the hold time
for D0-D7 with respect to CCLK is "0" for the Spartan-XL family. Thus, it is unnecessary to
continue holding the byte for a third control word.

It is important that the order of the control words, as written to the Out-Reg, preserve the byte
order of the original configuration file. The first byte of the header (just after the title declaration)
needs to be the first byte received by the FPGA. The first bit of each byte must line up with the
D0 input on the Spartan-XL device. Similarly, the eighth bit of each byte must line up with the
D7 input (i.e., Byte 0 = [D0..D7]).

Start-Up(6) 1 0 X(2) 1 0

1 1 (C1) X(2) 1 0

DONE goes High.

1 0 X(2) 1 1

1 1 (C2) X(2) 1 1

I/Os become active.

1 0 X(2) 1 1

1 1 (C3) X(2) 1 1

GSR is released.

1 0 X(2) 1 1

1 1 (C4) X(2) 1 1

Begin User Operation

Notes:
1. NRT means No Rising Transition.
2. X is a “don’t care” byte.
3. The level shown is for configuration after power up. For configuration during operation, prior to

driving PROGRAM Low, INIT may be an active I/O, in which case, it will be at a High or a Low.
Driving PROGRAM Low will also drive INIT Low.

4. The level shown is for configuration after power up. For configuration in mid-operation, prior to
driving PROGRAM Low, DONE will be High.

5. Bi represents the sequence of configuration data bytes i = 1 through n, where B1 is the first byte of
the header and Bn is the last byte for extending write cycles.

6. This example shows the Start-up events ordered according to the default settings in Bitgen when
CCLK is used to synchronize the Start-Up sequence.

Table 2: State Sequence for the Interface Register (Continued)

Configuration Step

Contents of Interface Register

Control Word in Out-Reg
Status Nibble in

In-Reg

PROGRAM CCLK D0-D7 INIT DONE
XAPP122 (v3.0) April 20, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

Figure 2 shows three Spartan-XL devices connected in a daisy chain, though any number of
Xilinx FPGAs can easily be accommodated in such a loop. See Configuring Multiple
Spartan-XL FPGAs, page 5 for an explanation of how the daisy chain signals work.

The
Configuration
Data File

Express mode requires a special bitstream file that is not compatible with any of the other
configuration modes. This file is created by specifying the following BitGen options in the Xilinx
development software. Note that presently, the software only supports this option using
command line entry. The following command produces a configuration file for Express mode:

bitgen -g ExpressMode:Enable -g CRC:Disable -b filename

The “bitgen” command runs a program that produces configuration files. A -g option followed by
“ExpressMode:Enable” instructs BitGen to produce an Express configuration file.

Since Express mode does not support error detection using CRC, it is necessary to disable this
feature with the text: “-g CRC:Disable”.

The data contained in the Express configuration file can be represented in a number of different
forms, including the rawbits file (.RBT), the hex file (.HEX), the bit (.BIT) file. Table 3
summarizes the distinguishing characteristics of these files. The default format for the
command line shown is the binary (.BIT) file. Other options can be added to the command line
to produce additional files in other formats. For example, the -b option specifies a rawbits file.
The “filename” is the name of the .ncd file (i.e., the file that describes the mapped, placed and
routed design).

Note: For bitgen command line options, type bitgen -help spartanxl at the command line or
refer to the "Development System Reference Guide," Chapter 16.

The Anatomy of a Configuration File
A distinct benefit of the rawbits format is that the binary data can be easily viewed using a
common text editor. Figure 3 shows the internal organization of an Express configuration file in
the rawbits format. The same internal organization applies to Bit and Hex files as well, except
that the latter does not have a title declaration. At the top of the file is a title declaration, which
provides information about the configuration data such as:

• Configuration data file format

• Version of Xilinx development system in use

• The name of the design

• The target device

• The date the file was created

• The number of bits of actual configuration data

Table 3: Configuration Data Files

File
Format

File

Extensi
on

Title
Declarati

on Description

Rawbits .RBT Yes Bitstream is coded in ASCII, one byte for each configuration
data bit

Hex .HEX No Each group of four consecutive configuration data bits is
represented as one Hex digit (i.e., 0 through F) which, in turn,
is coded as one ASCII byte

Binary .BIT Yes Bitstream is coded in binary, one configuration bit after the
next
10 www.xilinx.com XAPP122 (v3.0) April 20, 2001
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

The title declaration is never loaded into the FPGA, only the header and the data frames that
follow enter the device during configuration.

Following the title declaration, the actual bitstream begins with a header, which consists the
following parts:

• Two dummy bytes, all ones

• A preamble code of 11110010 (shown in bold) (D0-D7)

• A dummy length count consisting of 24 bits

• A field check code of 11010010 (shown in bold) (D0-D7)

Following the header is the first data frame, which, like all data frames, begins with the start
field 11111111 (shown in bold). Each data frame ends with the eight-bit constant field check
code (11010010, shown in bold), followed by five bytes of extended write cycles. (The second
of these is a repeat of the field check code, the other four consist of all ones.) Unlike the
configuration file for the other modes, there is no post-amble code to terminate the
configuration file for Express mode. The file ends with six or more dummy bytes, all ones. The
first and second of these six are fill bytes. The third, fourth, fifth and sixth bytes correspond to
the Start-Up cycles C1, C2, C3, and C4 (See Table 2). If D0-D7 are outputs during user
operation, be sure to avoid any possible contention by disabling the configuration source before
the I/Os go active (i.e., before C2), by setting DONE active: C1 (default) in the bitgen opttion.

The Rawbits File
Before the rawbits configuration data can be written to the device, it is necessary to first strip off
the title declaration, then, convert the header and data frames from ASCII to binary. Then the
binary version is segmented into bytes, starting with the first eight bits of the header and ending
with the last eight bits for extending write cycles. An on-board controller can accomplish this
processing.

Figure 3: Spartan-XL Express Configuration File

Xilinx ASCII Bitstream
Created by Bitstream M1.5.25
Design name: s30xl.ncd
Architecture:Spartan-XL
Part: s40xlPQ208
Date: Wed Nov 11 11:37:02 1998
Bits: 387848
1111111111111111111100100000010111101011000000011101001011111110
1110011111111111011111111111111111001100111111111101100110111111
1111001110111111011101111111111101101111111111111100110011111111
1101100110111111111100111011111101110111111111110110111011111111
1100110011111111110110011011111111110011101111110111011111111111
1110111011111111110011001111111111011001101111111101001011111111
11010010111111111111111111111111
.
.
.
1111111111100111111111110111111111111111110011011111111111011001
1011111111110011101111110111011111111110011011111111111111001100
1111111111011001101111111111001110111111011101111111111101101110
1111111111001100111111111101100110111111111100111011111101110111
1111111111101110111111111100110011111111110110011011111111010010
111111111101001011
11
XAPP122 (v3.0) April 20, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

The Express Configuration of Spartan-XL FPGAs
R

As mentioned earlier, the rawbits file can be displayed using a text editor, though this advantage
is offset by high storage requirements. A rawbits file requires eight times the space of its binary
version and can be created by BitGen.

The Hex File
The hex file is created by the Xilinx PROM File Formatter. It has an advantage over the rawbits
file in that, with each ASCII character representing four bits of binary data (one hex digit), it
requires one fourth of the storage space for the rawbits version. On the other hand, the hex file
requires more processing to convert it into the binary that is used to configure the device.
Before loading the file into a Spartan-XL device, it is necessary to first convert ASCII to hex
(i.e., each ASCII byte becomes a single hex digit), and then from hex to binary (i.e., each hex
digit becomes a nibble of binary). The Hex file does not have a text title declaration, so nothing
needs to be stripped away from the file. It is important to note that Xilinx tools produce byte
swapped data by default when creating a hex file.

The Binary File
A binary format has two benefits over the other two file types. First, it is the most compact of all,
taking up half the storage space of a hex file and one eighth the space of a rawbits file. As a
result, the format is ideal for storage on board. Second, once in binary form, the header and
data frames require no further translation and can be written directly to the device.

Because of the difficulty in identifying and removing the title declaration, the binary (.bit) file
created by BitGen is not recommended for direct use. Instead, one should use BitGen to create
a bit file, which, in turn, is converted to hex by the PROM File Formatter. The header can then
be removed.

Combining Files for a Daisy Chain
The integrated bitstream used for configuring a Spartan-XL daisy chain is not a simple
concatenation of the configuration files for the individual devices. The PROM File Formatter
must be used to join the files. This program will combine the binary (.bit) files from each device
into a single HEX file. PROM File Formatter takes the binary files for the different devices, strips
off the title declarations and the headers, merges the data frames, and, finally, adds a new
header at the top.

Verifying Configuration
The successful loading of the bitstream into the device can be verified by reading back the
configuration data in serial. This is accomplished by instantiating a readback symbol into the
Spartan-XL design. However, readback of Spartan-XL Express mode bitstreams result in data
that does not match the original Express bitstream. Therefore, you will have to develop your
own verification algorithms. Refer to the Spartan and Spartan-XL Families Field Programmable
Gata Array data sheet for directions on how to use the Readback feature. See also
Configuration Problem Solver at www.support.xilinx.com.

Bibliography/
References

The Xilinx Spartan and Spartan-XL Families Field Programmable Gata Array data sheet
(www.support.xilinx.com/partinfo/ds060.pdf)

The Xilinx Programmable Logic Data Book
(www.support.xilinx.com/partinfo/databook.htm)

XAPP088: I/O characteristics of the Spartan-XL FPGAs
(www.support.xilinx.com/xapp/xapp088.pdf)
12 www.xilinx.com XAPP122 (v3.0) April 20, 2001
1-800-255-7778

http://www.support.xilinx.com
http://www.xilinx.com
http://www.support.xilinx.com/partinfo/ds060.pdf
www.support.xilinx.com/partinfo/databook.htm
http://www.support.xilinx.com/xapp/xapp088.pdf

The Express Configuration of Spartan-XL FPGAs
R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

11/13/98 1.0 Initial Xilinx release.

12/22/00 2.0 Updated format, introduction, setup-board considerations,
generating bitstream, programming the device, added power-up
configuration sequence.

04/20/01 3.0 Updated application note for Spartan devices.
XAPP122 (v3.0) April 20, 2001 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	When to Use Express Mode
	Express Mode Signals
	Steps in the Configuration Process
	Clearing Configuration Memory
	Initialization
	Configuration
	Start-Up
	Configuring Multiple Spartan-XL FPGAs
	Storing the Bitstream
	Controlling Configuration
	The Interface Register
	A Practical Example

	The Configuration Data File
	The Anatomy of a Configuration File
	The Rawbits File
	The Hex File
	The Binary File
	Combining Files for a Daisy Chain
	Verifying Configuration

	Bibliography/ References
	Revision History

