
APPLICATION NOTE
APPLICATION NOTE

Summary

The Virtex FPGA Series supports partial reconfiguration of a cross-section of data while the rest of the circuit is still in operation. This enables a
system to read and write specific bits within a LUT configured as RAM, through the configuration port. This application note demonstrates how to lock
the LUT SelectRAM to specific locations, determine the corresponding frame of data in the RBT (Rawbits) file, modify the LUT memory as desired,
and re-write this frame into the chip. This provides a microprocessor/FPGA interface through the configuration port with a minimum of IOs.

Xilinx Families:

Virtex Series

Int roduction
Advanced systems employing multiple FPGAs often use an embedded
CPU for system-level operating tasks, including FPGA configuration: the
CPU monitors operation of FPGA subsystems or provides real-time
control; Networking systems may use FPGAs on communications ports;
advanced systems designs exploit the soft FPGA logic to give field
upgradability of hardware; ports can be independently configured based
on network protocol requirements. In many systems, monitoring of real-
time operation of FPGAs is needed. In an ATM switch, for example, cells
passing through a port can be tabulated in an FPGA and read by a CPU
at minute intervals to monitor network ATM cell traffic.

The Virtex SelectMAPTM interface enables high-speed (400 MB/s)
configuration or partial configuration of the FPGA. Through a
“Semaphore” mechanism, the SelectMAP port can read and write to the
configured logic, which is the equivalent of microprocessor peripheral
status and control registers. Semaphores rely on Virtex partial-configu-
ration technology. When combined with re-configuration of FPGA logic,
they let a single Status/Control register set be visible to the CPU, even
as different designs are loaded into the FPGA.

Semaphore Methodology Overvi ew
A Virtex SelectMAP configuration port is an 8-bit bi-directional port
providing for:

• FPGA configuration
• FPGA configuration readback
• FPGA reconfiguration
• FPGA partial reconfiguration/Semaphore Write
• FPGA partial readback/Semaphore Read

Semaphores, special logic entities instantiatable in Verilog/VHDL
designs, aid communications between FPGA logic and the Virtex
SelectMAP ports. Via SelectMAP, an embedded CPU can write values
to the Semaphore (Control) and read values from the Semaphore
(Status). Semaphore units, connected to logic signals in the HDL
design, then connect via normal FPGA routing. (See Figure 1).

This application note describes a 16-bit Semaphore module that uses
RAM16X1D cells and the procedure to read and write to this module
through the configuration port. For more information, see XAPP151,
“Virtex Configuration Architecture Advanced User’s Guide”.

This concept can be used to modify or read status for a chip, but for
simplicity, the Semaphore Module is limited to a 16-bit data word in this
example. Semaphore Module data width is easily expanded.

Semaphore Module Definition
The Verilog source for instantiating a Semaphore Module into a simple
counter design is shown in Figure 3 and Figure 4, and the Semaphore
Module itself is listed in the “Appendix” on page 4. It is a column of 16
RAM16X1Ds

configured as 1x1s, providing an interface between internal logic and an
external host through the configuration port (see Table 1).

Table 1: Semaphore Module Ports

Figure 1: Semaphore Methodology

0

Status and Cont rol Semaphore Registe rs
Using Partial Reconfiguration

 XAPP 153 June 7, 1999 (Version 1.0) 0 13* Application Note by Nick Camilleri

Signal Name Type Description
wclk input Write Clock
we input Write Enable
data[15:0] input Write Data
rout[15:0] output Read Data

Frame 14

14

15

14 15

14 15
Select Map

Frame 15

DIN
G

F

D2D3D4 5D6 7D0D1 D D

0

1
1
1

1

1
1
1

Chip Interface

G F
9906030101

Control

StatusµP

R/W
Through

Configuration
I/F

Semaphore

User
Logic

FPGA

1 Bit
of

Semaphore

Write

Read
XAPP 153 June 7, 1999 (Version 1.0)) 1

Status and Control Semaphore Registers Using Partial Reconfiguration Determining Bit Locations in the RBT file
Internal logic uses the ports shown to write to and read from the
Semaphore. The external host writes by executing a partial reconfigu-
ration of one frame and changing SelectRAM bits as needed. A read is
made by doing a partial readback and examining the desired bits.

The dual-port SelectRAM write port address is fixed to 1111, and the
read port address is set to 1110. This effectively creates two individual
1x1 SelectRAMs, where each is used to send data back and forth
between the internal logic and the external host in one of two directions.
While it is not necessary to limit the address space to 1, it simplifies the
design and makes communications quicker.

An “Updated” flag can be included to let internal logic know when the
external host has reconfigured the SelectRAM cells. For example, this
flag could be set to 1 when data is written to the FPGA through the
configuration port, then reset after the data is read from the design logic.

By instantiating this module at the top-level of a Verilog design, the
individual SelectRAM cells will have instantiation names of semaphore/
rambit15, semaphore/rambit14, semaphore/rambit00. Physical
placement of these SelectRAMs can then be locked within a constraints
file (see Table 2). Alternatively, constraints could be entered in the
source HDL, and embedded within the EDIF file. Constraints shown in
Table 2 lock the 16-bit Semaphore module into CLB Column 5, Slice 0,
spanning from Row 9 to Row 16. The bus order was chosen from MSB
to LSB, which is the most convenient.

Determining Bit Locations in the RBT file
Once the design is compiled, placed and routed, the next step is to
determine the bit locations within the RBT file that correspond to the
SelectRAM bits. Please reference XAPP151, “Virtex Configuration
Architecture Advanced User’s Guide” for detailed information.

A Semaphore module can be placed anywhere in the device, when no
other LUT SelectRAMs or Shift Register LUTs are placed in the same
CLB slice column. Otherwise the RAM/SRL contents would be
overwritten. Multiple Semaphores can be placed within the same
design, provided that they are not in the same CLB slice column.

The example (Figure 2) uses a XCV100 device. Frame size for an
XCV100 is fourteen 32-bit words. The first 396 bits are memory cells,
the next 20 are padding bits. The last 32 bits are a “dummy word” at the
end of the frame.

The Major Address (internal CLB column reference address) is 22,
which corresponds to CLB column 5, and the Minor Address is 47, which
corresponds to the frame that contains LUT bit 15 (the fixed write
address of the LUT SelectRAM).

Table 2: Sample Constraints (.UCF): Semaphore Module

After this frame is located in the RBT file, LUT bits need to be
determined within the frame. The bit position for address 1111 of
rambit15 locked to Row 5 is 92 (with the bit index starting from 0). Every
other bit is located 18 cells away, i.e. rambit14 is at bit 110, rambit13 is at
bit 128, et cetera. LUT data bits are stored in their inverted sense. A bit

value of 1 as seen by the internal logic is read and written as a 0 in the
configuration memory.

Once the correct bits are modified, a partial reconfiguration RBT file
needs to be created that can be downloaded to the chip after the original
design is loaded.

Figure 2: Sample .RBT File After Modification

Programming Semaphore Script
A PERL script called RECONP assists in programming the Semaphore
Module. RECONP reads in an RBT file for the full user design (by
running BITGEN with the -b option on <design>.ncd), queries the user
for information about the final placement location of the Top-Left corner
of the Semaphore (in the example from Table 2, this would be R5C5.S0)
and the value to be written to the Semaphore, and proceeds to write out
two Rawbits files. The first, <design>.rbt (see example in Figure 2), is
used when the external host wants to write to the Semaphore, and the
second (<design>.rbr) is used for doing a partial readback of information
contained in the Semaphore.

Write function of RECONP has been tested in hardware.

References

Data files for this application note are available at: ftp://ftp.xilinx.com/
pub/applications/xapp/xapp153.zip.

Sample Constraints for Semaphore Module
INST semaphore/rambit15
INST semaphore/rambit14
INST semaphore/rambit13
INST semaphore/rambit12
INST semaphore/rambit11
INST semaphore/rambit10
INST semaphore/rambit09
INST semaphore/rambit08
INST semaphore/rambit07
INST semaphore/rambit06
INST semaphore/rambit05
INST semaphore/rambit04
INST semaphore/rambit03
INST semaphore/rambit02
INST semaphore/rambit01
INST semaphore/rambit00

LOC = R5C5.S0;
LOC = R6C5.S0;
LOC = R7C5.S0;
LOC = R8C5.S0;
LOC = R9C5.S0;
LOC = R10C5.S0;
LOC = R11C5.S0;
LOC = R12C5.S0;
LOC = R13C5.S0;
LOC = R14C5.S0;
LOC = R15C5.S0;
LOC = R16C5.S0;
LOC = R17C5.S0;
LOC = R18C5.S0;
LOC = R19C5.S0;
LOC = R20C5.S0;

Xilinx ASCII Bitstream
Created by reconp V1.00
Design name: Sema4
Architecture: virtex
Part: xcv100pq240
Date: Tue May 4 11:37:47 PST 1999
Bits: 1280
11111111111111111111111111111111 (dummy word #1)
11111111111111111111111111111111 (dummy word #2)
10101010100110010101010101100110 (synchronization word)
00110000000000001000000000000001 (write to CMD register)
00000000000000000000000000000001 (register value for WCFG)
00110000000000000010000000000001 (write to FAR r egister)
0000000000101100 0101111000000000 (value for Major Address)
00110000000000000100000000000000 (write to FDRI register)
01010000000000000000000000011100 (value for FDRI wordcount)
...
...(Frame data)
...
11111111111111111111111111111111 (dummy frame,14 words total)
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
111111111 11111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
00110000000000001000000000000001 (write to CMD register)
00000000000000000000000000000000 (value for "NOP")
11111111111111111111111111111111 (dummy word #3)

9905240302
2 XAPP 153 June 7, 1999 (Version 1.0))

ftp://ftp.xilinx.com/pub/applications/xapp/xapp153.zip

Programming Semaphore Script Status and Control Semaphore Registers Using Partial Reconfiguration
Figure 3: Verilog Source Example: Instantiated Semaphore Module

Figure 4: Block Diagram of Instantiated Semaphore Module

module sema4 (clk, we, sout);
input clk, we;
output [15:0] sout
reg [15:0] count;
wire [15:0] semout;
wire reset, clk_enable, increment;
assign reset = semout[0];
assign clk_enable = semout[1];
assign increment = semout[2];

always @(posedge clk)
 if (reset) count <= 'h0;
 else if (clk_enable)
 begin
	 if (increment) count <= count +1;
	 else count <= count -1;
 end

semaphore semaphore (.wclk(clk), .we(we), .data(count), .rout(semout));
assign sout = semout;
endmodule

9905240201

Counter Semaphore

other

count[15:0]

reset

clk_enable

increment

9905240401
XAPP 153 June 7, 1999 (Version 1.0)) 3

Status and Control Semaphore Registers Using Partial Reconfiguration Appendix
Appendix

Code Example 1 Verilog Source for Semaphore module

module semaphore (wclk, we, data, rout);

input wclk, we;

input [15:0] data;

output [15:0] rout;

wire logic0 = 0;

wire logic1 = 1;

RAM16X1D rambit15 (.WCLK(wclk), .WE(we), .D(data[15]), .DPO(rout[15]), .A3(logic1),
.A2(logic1), .A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), DPRA1(logic1),
.DPRA0(logic0));

RAM16X1D rambit14 (.WCLK(wclk), .WE(we), .D(data[14]), .DPO(rout[14]), .A3(logic1),
.A2(logic1), .A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1),
.DPRA0(logic0));

RAM16X1D rambit13 (.WCLK(wclk), .WE(we), .D(data[13]), .DPO(rout[13]), .A3(logic1),
.A2(logic1), .A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1),
.DPRA0(logic0));

RAM16X1D rambit14 (.WCLK(wclk), .WE(we), .D(data[14]), .DPO(rout[14]), .A3(logic1),
.A2(logic1), .A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1),
.DPRA0(logic0));

RAM16X1D rambit13 (.WCLK(wclk), .WE(we), .D(data[13]), .DPO(rout[13]), .A3(logic1),
.A2(logic1), .A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1),
.DPRA0(logic0));

RAM16X1D rambit12 (.WCLK(wclk), .WE(we), .D(data[12]), .DPO(rout[12]), .A3(logic1),
.A2(logic1), .A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1),
.DPRA0(logic0));

RAM16X1D rambit11 (.WCLK(wclk), .WE(we), .D(data[11]), .DPO(rout[11]), .A3(logic1),
.A2(logic1), .A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1),
.DPRA0(logic0));

RAM16X1D rambit10 (.WCLK(wclk), .WE(we), .D(data[10]), .DPO(rout[10]), .A3(logic1),
.A2(logic1), .A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1),
.DPRA0(logic0));

RAM16X1D rambit09 (.WCLK(wclk), .WE(we), .D(data[9]), .DPO(rout[9]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit08 (.WCLK(wclk), .WE(we), .D(data[8]), .DPO(rout[8]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit07 (.WCLK(wclk), .WE(we), .D(data[7]), .DPO(rout[7]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit06 (.WCLK(wclk), .WE(we), .D(data[6]), .DPO(rout[6]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit05 (.WCLK(wclk), .WE(we), .D(data[5]), .DPO(rout[5]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit04 (.WCLK(wclk), .WE(we), .D(data[4]), .DPO(rout[4]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit03 (.WCLK(wclk), .WE(we), .D(data[3]), .DPO(rout[3]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit02 (.WCLK(wclk), .WE(we), .D(data[2]), .DPO(rout[2]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit01 (.WCLK(wclk), .WE(we), .D(data[1]), .DPO(rout[1]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

RAM16X1D rambit00 (.WCLK(wclk), .WE(we), .D(data[0]), .DPO(rout[0]), .A3(logic1), .A2(logic1),
.A1(logic1), .A0(logic1), .DPRA3(logic1), .DPRA2(logic1), .DPRA1(logic1), .DPRA0(logic0));

endmodule
4 XAPP 153 June 7, 1999 (Version 1.0))

	Introduction
	Semaphore Methodology Overview
	Semaphore Module Definition
	Determining Bit Locations in the RBT file
	Programming Semaphore Script
	Appendix
	Code Example 1 Verilog Source for Semaphore module

