

XC1700 and XC18V00 Design Migration Considerations

Author: Chris Borrelli

Summary

Designing a board with Xilinx PROMs is advantageous because migration between XC1700 and XC18V00 series devices is simple. This application note discusses two migration paths: XC1700 designs upgrading to XC18V00, and XC18V00 designs migrating to XC1700 for production-stable cost reductions. The topics discussed are pin-out compatibility, power and ground connections, and boundary-scan chain integrity.

Introduction

The XC1700 series of OTP (one-time programmable) configuration SPROMs is a popular choice for FPGA configuration. The XC18V00 series of PROMs accommodates the serial download method of the XC1700 series along with Express and SelectMAP mode parallel-load innovations. The XC18V00 devices also offer full IEEE Std 1149.1 boundary-scan (JTAG) support allowing in-system PROM programming and board level testing via the TAP port. In design environments where in-system reprogrammability is a desired feature, the XC18V00 series of PROMs is the best solution.

Upgrading from the XC1700 family to the XC18V00 family is beneficial to system designers using the newer configuration modes, boundary-scan testing, or PROM re-programmability. The system designer may also choose to replace a XC18V00 family device with a XC1700 device for production-stable cost reductions.

Pinout Compatibility

The XC1700 pinout is a subset of the XC18V00 pinout for specific packages (Table 1). The footprint of a XC1700 device is not compatible with the XC18V00 in a PLCC 20-pin package. All other available packages are compatible: VQFP 44-pin, PLCC 44-pin, and SOIC 20-pin.

Table 1 shows all XC18V00 specific pins (D7 to D1, VCCO, TCK, TMS, TDI, TDO, $\overline{\text{CF}}$) corresponding to no-connect pins on XC1700 devices. These additional signals can be safely connected to the no-connect pins on a design using the XC1700.

The RESET polarity on the XC18V00 is active low and is not programmable. This will not be an issue when used with Xilinx FPGAs because the RESET signal on Xilinx FPGAs is always active Low.

Table 1	1:	Pinout	Comparison	of XC1700	and XC18V00
---------	----	--------	------------	-----------	-------------

	XC1700 Pinout			XC18V00 Pinout		
Pin	VQ44	PC44	SO20	VQ44	PC44	SO20
1			DATA			D0/DATA
2		DATA			D0/DATA	D2
3		GND	CLK	TDI	GND	CLK
4					D2	TDI
5		CLK		TMS	CLK	TMS
6				GND		TCK
7				TCK		D4, CF ¹

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners.

Table 1: Pinout Comparison of XC1700 and XC18V00

	XC1700 Pinout			XC18V00 Pinout		
Pin	VQ44	PC44	SO20	VQ44	PC44	SO20
8			OE/RESET	VCCO		OE/RESET
9				D4	TDI	D6
10			CE	CF		CE
11			GND		TMS	GND
12					GND	D7
13	OE/RESET		CEO	OE/RESET	TCK	CEO
14				D6	VCCO	D5
15	CE			CE	D4	D3
16				VCCO	CF	D1
17				VCC		TDO
18	GND		VPP	GND		VCC
19		OE/RESET		D7	OE/RESET	VCCO
20			VCC		D6	VCC
21	CEO	CE		CEO	CE	
22					VCCO	
23					VCC	
24		GND			GND	
25				D5	D7	
26				VCCO		
27		CEO		D3	CEO	
28				GND		
29				D1		
30						
31				TDO	D5	
32					VCCO	
33					D3	
34					GND	
35	VPP			VCC	D1	
36				VCCO		
37					TDO	
38	VCC			VCC		
39						
40	DATA			D0/DATA		
41	GND	VPP		GND	VCC	
42				D2	VCCO	
43	CLK			CLK		
44		VCC			VCC	

Notes:

1. On 18V01 and 18V12, programmable for serial mode only.

Power and Ground Connections

There are additional power and ground pins on XC18V00 devices that correspond to no-connects on the XC1700. These pins (additional V_{CC} , V_{CCO}) can be safely connected to the no-connect pins on a XC1700 device.

The V_{PP} pins on the XC1700 device correspond to the V_{CC} pins on the XC18V00. The V_{PP} pin is the programming voltage pin for the XC1700 series and is connected to V_{CC} for normal operation.

Designing for Boundary-Scan Integrity

The XC18V00 is designed for use in a boundary-scan chain with other JTAG-compliant devices. If PROM reprogrammability is only required for development and is not necessary in volume production, the boundary-scan chain can be designed for eventual production cost savings by migrating to an OTP XC1700.

In the design example shown in Figure 1, there are three Xilinx devices: an FPGA, a CPLD, and a PROM. From one JTAG header on the board, both the PROM and the CPLD can be connected for in-system programming. Boundary-scan testing can also be performed from this header.

Jumper J2 is necessary in the design example to maintain the continuity of the boundary-scan chain when migrating between XC18V00 and XC1700 devices. The jumper (J2) is connected between the TDI and TDO pins of the PROM footprint. This jumper is left open when the XC18V00 is used and closed when the XC1700 is installed to preserve the boundary-scan chain.

If the designer plans to use the XC18V00 but does not need to use the JTAG capabilities of the PROM, the TCK pin on the PROM can be connected to ground to prevent entering JTAG mode. The TDI, TDO, and TMS have internal 50K pull-ups, and can be left unconnected.

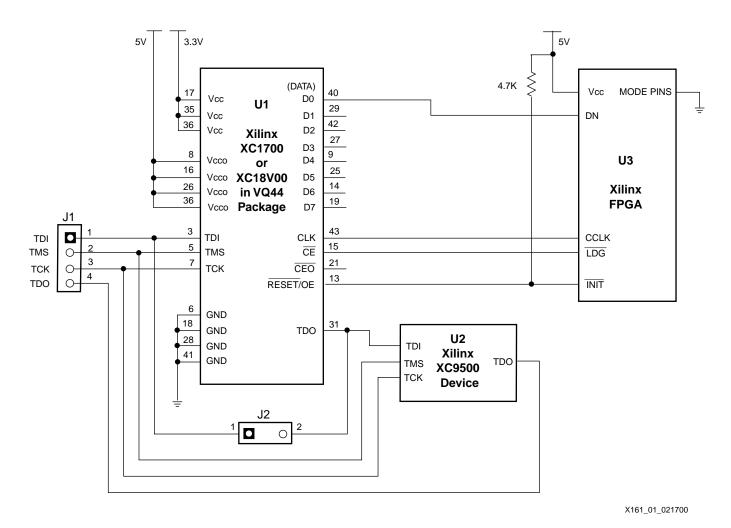


Figure 1: Migration Design Example Using Master Serial Download Configuration

Revision History

The following table shows the revision history for this document.

Date	Version	Revision	
9/28/99	1.0	Initial Xilinx release.	
2/17/00	1.1	Changed XC1800 to XC18V00 and updated format.	