
Summary This application note describes a reference design for a Virtex™-E FPGA interface to a MIPS
processor. The interface connections are shown while discussing techniques for running the
design at the fastest data throughput speed available from a MIPS processor.

Design
Discussion

General
The design was synthesized using Synplify Pro 6.0.0 and implemented using Xilinx Alliance
Software Version 3.1i SP1.

Presently, the MIPS I/O clock speed is the limiting factor for I/O throughput. The maximum I/O
speed for a MIPS device (QED RM7000) is currently 125 MHz, half the speed of the internal
clock. With the release of QED RM 7000A, the maximum MIPS I/O speed will increase to
133 MHz, thereby increasing the maximum system speed to the same level. The top system
interface speed for this design could therefore be as high as 133 MHz.

This reference design assumes a direct interface between a Virtex-E BG432 –8 FPGA, and a
250 MHz QED RM7000 MIPS processor (http://www.qedinc.com). Figure 1 shows the
block/flow diagram used and the design interface connections.

Design
Hierarchy

The design utilizes an architecture similar to that of the PCI core from Xilinx. From the top level,
the design breaks into two parts: the user application and an example MIPS interface (see
Figure 2). From there, the MIPS interface design is again broken into smaller modules (see
Figure 3). Both illustrations appear on the next page.

Application Note: Virtex Series

XAPP192 (v1.0) December 15, 2000

Interfacing a Virtex-E Device
to a MIPS Processor

R

Figure 1: Virtex-E FPGA to MIPS Processor Interface

ColdReset

MIPS_Clock

TDI
TMS
TCLK

Modeln

TDO

ModeClock

Reset

M_Release
M_CLK
M_ExtRqst
M_ValidOut
TDI
TMS
TCK

M_RdRdy
M_WrRdy
M_ValidIn

M_ValidOut
ValidIn
RdRdy
WrRdy
ColdReset
Reset
ModeIn
SysClock
JTCK
JTMS
JTDI

Release
ExtRqst

ModeClock
JTDO

SysCmdP

SysAD[63:0]
[63:0]

[7:0]

[8:0]
SysCmd[8:0]

SysADC[7:0]

TDO
M_SysCmdP

M_SysAD[63:0]

M_SysADC[7:0]

M_SysCmd[8:0]
[8:0]

[7:0]

[63:0]

FPGA

FPGA

MIPS

MIPS

X192_01_091800
XAPP192 (v1.0) December 15, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.qedinc.com
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Interfacing a Virtex-E Device to a MIPS Processor
R

MIPS Interface
The MIPS interface is the top-level module for a self-contained design that allows interfacing to
the MIPS processor. The MIPS interface uses FIFOs to control the flow of data between the
user application and the MIPS processor.

MIPS Controller

The MIPS controller is where all the control signals for the MIPS interface are generated.

RD_FSM

RD_FSM is a state machine that monitors the system commands. If a read command is on the
system command bus, it generates the appropriate control signals in the proper sequence.

WR_FSM

WR_FSM is a state machine that monitors the system commands. If a write command is on the
system command bus, it generates the appropriate control signals in the proper sequence.

Figure 2: Top-Level Layout of the MIPS Interface Design

Figure 3: Interface Functional Flow Hierarchy

Read FIFOs

MIPs Interface

Write FIFOs

User App

MIPs
Ctrl

I
/
O

E
n
a
b
l
e

X192_02_091800

X192_03_091800

FPGA

UserApp

I/O Enable FIFO Cores

MIPs
Interface

MIPs
Controller

RD_FSM WR_FSM Parity9 FIFOx8a FIFOx64a
2 www.xilinx.com XAPP192 (v1.0) December 15, 2000
1-800-255-7778

http://www.xilinx.com

Interfacing a Virtex-E Device to a MIPS Processor
R

Parity9

Parity9 is a module that performs a simple parity check on data, and provides an error signal if
there is a parity error.

I/O Enable

I/O Enable is a module in the MIPS interface that is the gatekeeper of all inputs and outputs to
the MIPS interface module. This provides a central location for controlling the I/O signals and
their output enables, as well as adding latency delays.

FIFO Cores

FIFO Cores is the module that contains all of the CoreGen-generated FIFO cores that are used
in the design.

FIFOx8a

FIFOx8a is a 64 bit deep by 8 bit wide Asynchronous FIFO generated by CoreGen.

FIFOx64a

FIFOx64a is a 64 bit deep by 64 bit wide Asynchronous FIFO generated by CoreGen.

Async_FIFO

Aysnc_FIFO (not shown in hierarchy) is a module produced by CoreGen and used by both
FIFOx64a and FIFOx8a.

User_App

User_App is where the user places the design.

S_Ctrl

S_Ctrl (not shown in hierarchy) is an example module used in this design inside the User_App.

S_Interface

S-Interface (not shown in hierarchy) is an example module used in this design inside the
User_App.

State Machines RD_FSM
Figure 4 shows the Finite State Machine used in RD_FSM.

Figure 4: Read Command Finite State Machine

STALL_1 STALL_2

STALL_2

RD_1

RD_2

RD_3 RD_4

4 cycle rd 1 cycle rd

X192_04_091800
XAPP192 (v1.0) December 15, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Interfacing a Virtex-E Device to a MIPS Processor
R

WR_FSM

Figure 5 shows the Finite State Machine used in WR_FSM.

Achieving
Speed

The following techniques were used to achieve the maximum system clock speed in the design.

Delay-Locked Loops (DLL)
A DLL is used to eliminate clock delay amongst registers communicating with I/O. This gives
the user more of the clock period to utilize because there is less clock skew.

A DLL is used in the design by inferring a BUFGDLL, by using the following attribute in Synplify.

/* synthesis xc_clockbuftype = "BUFGDLL" */

For more detailed information, refer to XAPP 132, Using the Virtex Delay-Locked Loop. For
more information on Synplify, refer to http://www.synplicity.com.

Registering I/Os
Registered I/Os are registers placed on the edge of the die as close to the I/O pad as possible.
These registers are inside the IOB (Input/Output Block). By using I/O registers, one guarantees
the shortest path between an I/O and a register.

To use the registered I/O with a device based on the Virtex architecture (Virtex, Spartan®-II, or
Virtex-E), all of the flip-flops in the same IOB must use the same clock and reset signals. No
logic is permitted between the flip flop and the I/O pad, because there is no logic in the IOB and
all logic must be implemented via a Configuration Logic Block (CLB) outside of the IOB. To pull
the registers into the IOBs, use the map option:

-pr [i | o | b]

where i = input, o = output, and b = both.

For more information regarding map options, refer to Development System Reference Guide at
http://toolbox.xilinx.com/docsan/3_1i.

SelectI/O™ Resource
The SelectI/O resource allows one to specify the use of different I/O standards with Virtex-
based families. For this design, to achieve the desired I/O throughput, the HSTL IV standard
was used. HSTL IV matches the voltage requirements of the QED RM7000 MIPS processor
and is also able to be run at system speeds exceeding 133 MHz, the top speed of
QED RM7000A, which is not yet in production.

Figure 5: Write Finite State Machine

WR_1

W_IDLE

WR_2

WR_3 WR_4

4 cycle wr 1 cycle wr

X192_05_091800
4 www.xilinx.com XAPP192 (v1.0) December 15, 2000
1-800-255-7778

http://www.xilinx.com/xapp/xapp132.pdf
http://www.synplicity.com
http://toolbox.xilinx.com/docsan/3_1i
http://www.xilinx.com

Interfacing a Virtex-E Device to a MIPS Processor
R

For this design, the following Synplify attributes were used on the top level to infer HSTL IV I/O:

/* synthesis xc_padtype = "IBUF_HSTL_IV" */
/* synthesis xc_padtype = "IOBUF_HSTL_IV" */
/* synthesis xc_padtype = "OBUF_HSTL_IV" */

For more information on how to infer I/O standards in Synplify, refer to Synplify's help menu or
to http://www.synplicity.com.

For more information on using the SelectI/O resource refer to XAPP133, Using the Virtex
SelectI/O Resource.

Area Constraints and Pin Constraints
To aid the placer in achieving optimal speed, it helps to place area and pin constraints on your
design. It also helps to make it more modular in nature and easier to integrate into a system.

For example all of the block RAM used for the asynchronous FIFOs is locked to the leftmost
column. Area constrain the rest of the design to a location on the edge of the die, as close to the
block RAM as possible.

In this case, locking the pins to locations close to the block RAM was not necessary, as the area
constraint on the logic and the timing constraints pulled the pins around the block RAM and
area constraint.

If pin constraints are required, lock the data/address lines to the horizontal side and the control
and clock lines to the vertical side of the die, close to the block RAM. This utilizes the
architecture of the FPGA. The CLBs have horizontal direct connects to the adjacent CLB, which
is good for data paths and data manipulation. The FPGA also has long lines that run vertically
along the columns of the device. These long lines are well suited for control signals to the data
paths.

Synthesis Settings
In Synplify Pro 6.0.0, the frequency was set to 133 MHz to inform the tool to synthesize for
speed. The implementation device was set for a Virtex-E design to allow the tool to use and
instantiate architecture-specific features, like block RAM.

Files Synthesized
Listed below are the design files. Figure 6 is a screen capture of Synplify showing the file
ordering that was used.

• top.v

• user_app.v

• s_ctrl.v

• s_interface.v

• mips_interface.v

• mips_ctrl.v

• rd_fsm.v

• wr_fsm.v

• parity9.v

• i_o_enable.v

• fifo_cores.v

• fifox64a.v

• fifox8a.v

• asynch_fifo.v
XAPP192 (v1.0) December 15, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com/xapp/xapp133.pdf
http://www.xilinx.com
http://www.synplicity.com

Interfacing a Virtex-E Device to a MIPS Processor
R

Implementation
Options

The two implementation options used to achieve system speeds of 133 MHz or greater on
Virtex-E devices are:

Map -pr b (pack both input and output registers into the IOB)

Par -ol 5 (overall Effort Level = 5)

Design Notes 1. The reference design XAPP192.zip is provided "as-is."

2. This interface is designed to demonstrate a high-speed interaction between the MIPS
processor and an XCV400E -8 BG432. It does not cover command return latency. To
compensate for read command latency, incorporate the I/O enable registers as part of the
Read FIFO.

3. This design is a one-to-one connection, so it does not cover the NULL system command.

Revision
History

The following table shows the revision history for this document.

Figure 6: Example Ordering of Files in Synplify
X192_06_100200

Date Version Revision

12/15/00 1.0 Initial Xilinx release.
6 www.xilinx.com XAPP192 (v1.0) December 15, 2000
1-800-255-7778

ftp://ftp.xilinx.com/pub/applications/xapp/xapp192.zip
http://www.xilinx.com

	Summary
	Design Discussion
	General

	Design Hierarchy
	MIPS Interface
	MIPS Controller
	RD_FSM
	WR_FSM
	Parity9
	I/O Enable
	FIFO Cores
	FIFOx8a
	FIFOx64a
	Async_FIFO
	User_App
	S_Ctrl
	S_Interface

	State Machines
	RD_FSM
	WR_FSM

	Achieving Speed
	Delay-Locked Loops (DLL)
	Registering I/Os
	SelectI/O™ Resource
	Area Constraints and Pin Constraints
	Synthesis Settings
	Files Synthesized

	Implementation Options
	Design Notes
	Revision History

