
Summary Cyclic Redundancy Check (CRC) is an error-checking code that is widely used in data
communication systems and other serial data transmission systems. CRC is based on
polynomial manipulations using modulo arithmetic. Some of the common Cyclic Redundancy
Check standards are CRC-8, CRC-12, CRC-16, CRC-32, and CRC-CCIT. This application note
discusses the implementation of an IEEE 802.3 CRC in a Virtex™ device. The reference
design provided with this application note provides Verilog point solutions for CRC-8, CRC-12,
CRC-16, and CRC-32. The Perl script (crcgen.pl) used to generate this code is also
included. The script generates Verilog source for CRC circuitry of any width (8, 12, 16, 32), any
polynomial, and any data input width.

Introduction In networking systems a significant role of the Data Link layer is to convert the potentially
unreliable physical link between two machines into an apparently very reliable link. This is
achieved by including redundant information in each transmitted frame. Depending on the
nature of the link and the data, one can include just enough redundancy to make it possible to
detect errors and then arrange for the retransmission of damaged frames. The cyclic
redundancy check or CRC is a widely used parity bit based error detection scheme in serial
data transmission applications. This code is based on polynomial arithmetic.

The bits of data to be transmitted are the coefficients of the polynomial. As an example, the bit
stream 1101011011 has 10-bits, representing a 10-term polynomial:

To compute the CRC of a message, another polynomial called the generator polynomial G(x) is
chosen. G(x) should have a degree greater than zero and less than that of the polynomial M(x).
Another requirement for G(x) is a non-zero coefficient in the x0 term. This results in several
possible options for the generator polynomial, and hence the need for standardization.

CRC-16 is one such standard that uses the generating polynomial:

CRC-16 detects all single and double errors, all errors with an odd number of bits, all burst
errors of length 16 or less, and most errors for longer bursts.

CRC-32 uses the generating polynomial:

In general, an n-bit CRC is calculated by representing the data stream as a polynomial M(x),
multiplying M(x) by xn (where n is the degree of the polynomial G(x)), and dividing the result by
a generator polynomial G(x). The resulting remainder is appended to the polynomial M(x) and
transmitted. The complete transmitted polynomial is then divided by the same generator
polynomial at the receiver end. If the result of this division has no remainder, there are no
transmission errors. Mathematically, this can be represented as:

Application Note: Virtex Series and Virtex-II Family

XAPP209 (v1.0) March 23, 2001

IEEE 802.3 Cyclic Redundancy Check
Author: Chris Borrelli

R

M x() 1 x
9⋅ 1 x

8
0 x

7⋅ 1 x
6

0 x
5⋅ 1 x

4
1 x

3⋅ 0 x
2

1 x
1⋅ 1 x

0⋅+ +⋅+ +⋅+ +⋅+ +⋅+=

M x() x
9

x
8

x
6

x
4

x
3

x
1

1++ ++++=

G x() x
16

x
15

x
2

1+ + +=

G x() x
32

x
26

x
23

x
22

x
16

+ + + x
12

x
11

x
10

x
8

x
7

x
5

x
4

x
2

x 1+ + + + + + + ++++=

CRC remainder of M x() x
n

G x()
------------×=
XAPP209 (v1.0) March 23, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

IEEE 802.3 Cyclic Redundancy Check
R

Cyclic Redundancy Check (CRC)
CRC computation involves manipulating M(x) and G(x) using modulo 2 arithmetic. Modulo
arithmetic yields the same result for addition and subtraction. Therefore it is necessary only to
consider three operations involving polynomials namely, addition, multiplication, and division.

The addition of two polynomials and yields
.

The multiplication of two polynomials and results in

Note that multiplication of a polynomial by xm results in a shifted bit pattern with zeros in the
lower m positions. For example:

Dividing by results in a quotient of

 and a remainder of as shown below.

11100111
1111001)10110010011011

1111001
1000000
1111001
1110010
1111001

1011110
1111001
1001111
1111001

1101101
1111001

10100

x
8

x
7

x
5

x
4

x
2

x 1+ + + + + + x
5

x
4

x
3

x
2

+ + +
x

8
x

7
x

3
x 1+ + + +

x
8

x
7

x
5

x
4

0 x
2

x 1+ + + + + + + 110110111=

0 0 x
5

x
4

x
3

x
2

0 0+ + + + + + + 000111100=

x
8

x
7

0 0 x
3

0 x 1+ + + + + + + 110001011=

x
7

x
6

x
5

x
2

1+ + + + x 1+
x

8
x

5
x

3
x

2
x 1+ + + + +

x
7

x
6

x
5

x
2

1+ + + +() x 1+() 11100101() 11()×=

x
8

x
7

x
6

0 0 x
3

0 x 0+ + + + + + + + 111001010=

0 x
7

x
6

x
5

0 0 x
2

0 1+ + + + + + + + 011100101=

x
8

0 0 x
5

0 x
3

x
2

x 1+ + + + + + + + 100101111=
--

x
5

x
11

x
10

x
8

x
4

x
3

x 1+ + + + + +() x
16

x
15

x
13

x
9

x
8

x
6

x
5

+ + + + + +=

x
13

x
11

x
10

x
7

x
4

x
3

x 1+ + + + + + + x
6

x
5

x
4

x
3

1+ + + +

x
7

x
6

x
5

x
2

x 1+ + + + + x
4

x
2

+

x
13

x
11

x
10

x
7

x
4

x
3

x 1+ + + + + + + 10110010011011=

x
6

x
5

x
4

x
3

1+ + + + 1111001=

Q x() 11100111 x
7

x
6

x
5

x
2

x 1+ + + + += =

R x() 10100 x
4

x
2

+= =
2 www.xilinx.com XAPP209 (v1.0) March 23, 2001
1-800-255-7778

http://www.xilinx.com

IEEE 802.3 Cyclic Redundancy Check
R

IEEE 802.3 CRC-32
IEEE 802.3 defines the polynomial M(x) as the destination address, source address,
length/type, and data of a frame, with the first 32-bits complemented. The remainder from the
calculation of CRC above is complemented, and the result is the IEEE 802.3 32-bit CRC,
referred to as the Frame Check Sequence (FCS) field. The FCS is appended to the end of the
Ethernet frame, and is transmitted highest order bit first (x31, x30,…, x1, x0).

Serial Input Hardware Implementation of CRC-32
The single-bit data input (serial) calculation of CRC-32 is implemented with a linear feedback
shift register (LFSR). The CRC-32 LFSR is illustrated in Figure 1 (register bits "3" through "25"
are left out of the figure to simplify the drawing).

Presetting the flip-flops to 0xFFFFFFFF is equivalent to complementing the first 32-bits of the
data stream. For the first 32 cycles, the right-most XOR gate in the figure is an inverter. The
XOR of any data with a binary "1" results in the complement of the original data.

The serial implementation is not optimal as most IEEE 802.3 transceivers communicate the
data stream to the Media Access Controller (MAC) over a 4-bit bus; therefore, a parallel
implementation is necessary.

Parallel Data Input Hardware Implementation of CRC-32
A parallel implementation operates on multiple bits of the data stream per clock cycle. An
algorithm for generating the next-state equations for parallel implementation of CRC-32 is
discussed in "A Symbol Based Algorithm for Hardware Implementation of Cyclic Redundancy
Check (CRC)"[1]. The algorithm involves looping to simulate the shifting, and concatenating
strings to build the equations after "n" shifts. The Perl script crcgen.pl uses this algorithm to
generate next-state equations for CRC-32 registers.

Included with this application note is Verilog source code for CRC-32 with 8-bit data input,
which was generated by the Perl script crcgen.pl. The Perl script also generates equations
for any CRC width, data input width, and polynomial, G(x). The Verilog code is included for
several popular implementations.

A Complete Implementation of IEEE 802.3 CRC-32
As discussed earlier, there is more to calculating CRC-32 for IEEE 802.3. The Perl script
crcgen.pl also generates control logic to handle the final complement of the CRC before it is
sent out bit reversed on an 8-bit wide bus. A simplified block diagram of the complete
implementation is illustrated in Figure 2, along with the functional truth table in Table 1. This
module can be used for both transmission and receiving of IEEE 802.3 frames.

The "32-bit CRC" register shown Figure 2 has three modes of operation: initialize, shift, and
calculate next CRC value. This register is enabled when either load_init or d_valid are
asserted.

Figure 1: Linear Feedback Shift Register Implementation of CRC-32

D Q

CRC[0]

D Q

CRC[1]

D Q

CRC[2]

D Q

CRC[26]

D Q

CRC[27]

D Q

CRC[28]

D Q

CRC[29]

D Q

CRC[30]

D Q

CRC[31] Data
Stream

X209_01_021101
XAPP209 (v1.0) March 23, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

IEEE 802.3 Cyclic Redundancy Check
R

The "8-bit CRC Out" register duplicates 8-bits of crc_reg[31:0] in order to do the final bit
reversal and complement in parallel with the calculation of the CRC. When the calc input is
asserted, the "8-bit CRC Out" register gets the bit-reversed and complemented most significant
eight bits of next_crc. On the other hand, when the calc input is de-asserted, the "8-bit CRC
Out" register gets the bit-reversed and complemented second most significant eight bits of
crc_reg - the second most significant eight bits are used here to replicate the shift operation
of the "32-bit CRC" register.

The "8-bit CRC Out" register always contains the bit-reversed and complimented most
significant bits of the "32-bit CRC" register. The final IEEE 802.3 FCS can be read from the
"8-bit CRC Out" register by asserting d_valid four times after the de-assertion of calc. An
example waveform is shown in Figure 3 and Figure 4.

Figure 2: Block Diagram of CRC-32 Implementation

Table 1: CRC-32 Implementation Truth Table

{load_init, calc, d_valid} crc_reg[31:0] crc[7:0]

0 0 0 no change no change

0 0 1 { crc_reg[23:0], 8’hFF } crc_reg[16:23]

0 1 0 no change no change

0 1 1 next_crc[31:0] next_crc[24:31]

1 0 0 32’hFFFFFFFF no change

1 0 1 32’hFFFFFFFF crc_reg[16:23]

1 1 0 32’hFFFFFFFF no change

1 1 1 32’hFFFFFFFF next_crc[24:31]

D
crc[7:0]

En
Q

8-bit CRC Out

D
crc_reg[31:0]

En
Q

32-bit CRC

00

0

1

01

10
11

Combinational
next_crc

Generation

8

32

crc_reg[16:23]

next_crc[24:31]

{crc_reg[23:0], 8'hFF}

next_crc[31:0]

32'hFFFFFFFF

load_init

d[7:0]

calc

d_valid

X209_02_031901
4 www.xilinx.com XAPP209 (v1.0) March 23, 2001
1-800-255-7778

http://www.xilinx.com

IEEE 802.3 Cyclic Redundancy Check
R

Figure 3: Example Use of "CRC Out" Register During Transmit

Figure 4: Example CRC-32 Waveform From the Beginning of the Frame

clk

calc

d_valid

crc_reg[31:0] 99d2cb6d d51fa691 19f8b182 f8b182ff b182ffff 82ffffff ffffffff

66 54 67 e0 72 be 00crc[7:0]

00d[7:0] xx

load_init

reset

x209_03_031901

clk

calc

d_valid

crc_reg[31:0] ffffffff 0ed0a90e 01d09534 1fabff31 41dcc1af 99524f1e

00 8f 7f 07 7d 66crc[7:0]

fed[7:0]

load_init

reset

fa ce de df af aa ca ce fe

x209_04_031901
XAPP209 (v1.0) March 23, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

IEEE 802.3 Cyclic Redundancy Check
R

A 32-bit compare block can be added for checking the CRC of received frames. First, the data
stream and CRC of the received frame are sent through the circuit in Figure 2. Then the value
left in the CRC-32 registers can be compared with a constant, commonly referred to as the
residue. In this implementation, the value of the residue is 0xC704DD7B when no CRC errors
are detected.

Reference
Design

crcgen.pl

The usage of the crcgen.pl Perl script is quite simple. The command-line options are shown
below.

Usage: crcgen.pl [-crcwidth <width:8,12,16,32>] [-inputwidth <width:1…32>]
[-poly <polynomial>][-crcint <init:preset, reset>], [-h] <outfile>

Where:

-crcwidth = Width of CRC

Default: 32

-inputwidth = Number of bits of the input data stream to operate
on per clock cycle. This number should be an even multiple of the
value given in the crcwidth option above.

Default: 8

-poly = Generating polynomial. This should be entered in binary form as Xn… X0.
For example: the polynomial should be entered as
11000000000000101. The MSB of the binary value is on the left.

Default: 100000100110000010001110110110111
(IEEE 802.3 CRC-32)

-crcint = Initial state of the crc_reg register.

Default: preset

-h = Displays usage summary.

<outfile> = Output filename.

Default: crc_$crcwidth_$inputwidth.v

Perl Script Details
The Perl script is divided into several sections. These sections are described below and are
labeled as they appear in the script.

Command-line Parsing

This section parses the command-line arguments. The details of this are beyond the scope of
this application note. For more information regarding this, please visit http://www.perl.org.

Check Validity of Parameters

This section checks that any parameters passed on the command-line are valid. There are two
restrictions on the values of command-line options crcwidth, inputwidth, and poly:

• The poly value must be a string of "1s" and "0s" of length (crcwidth + 1).

• The crcwidth value must be evenly divisible by the inputwidth value.

Generate XOR Equations

This section of the script generates the XOR equations based on the algorithm discussed in
"A Symbol Based Algorithm for Hardware Implementation of Cyclic Redundancy Check

x
16

x
15

x
2

1+ + +
6 www.xilinx.com XAPP209 (v1.0) March 23, 2001
1-800-255-7778

http://www.xilinx.com
http://www.perl.org

IEEE 802.3 Cyclic Redundancy Check
R

(CRC)"[1]. It involves looping to simulate the shifting operations and concatenating strings
representing the CRC registers and data input.

Optimize XOR equations

This section of the script optimizes the XOR equations generated above. It looks for an even
number of occurrences of a particular variable in each equation and eliminates them. For
example, "A XOR A XOR B" would be reduced to "B" because the even number of the variable
A causes it to be optimized out of the equation.

Generate Verilog source for Module Statement and I/O Definitions

This section of the script simply generates Verilog source code for the module statement. It also
uses the values parsed from the command-line options to define the input/output widths of the
registers.

Generate Internal Strings for Later Verilog Source Output

This section of the script calculates the most significant n-bits and the second most significant
n-bits given the command-line options -crcwidth and -inputwidth.

Table 2 lists the five character strings that are defined in this section of the script.

Generate Verilog Source for Registers and Control Logic

This section outputs the Verilog source for the crc_reg and crc registers, as well as the
control logic shown in Figure 2. The Perl strings in the previous section are used here to permit
parameterization of register widths.

Generate Verilog Source From Optimized XOR Equations

The optimized XOR equations are printed in this section. This logic is represented as
"Combinational next_crc Generation" in Figure 2 above.

Generate Verilog Source for Endmodule Statement

This section simply outputs the endmodule Verilog statement.

Design Files The reference design is available on the Xilinx web site: xapp209.zip

Table 2: Script Character Strings

$crc_out1 String representing the input to the crc register when the
calc input is asserted.

$crc_out2 String representing the input to the crc register when the
calc input is de-asserted.

$crc_reg_init String representing the initial state of the crc_reg register.

$crc_init String representing the initial state of the crc register.

$crc_reg_shift_index String representing the upper bus index of the crc_reg
operating in shift mode (calc == 0).
XAPP209 (v1.0) March 23, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp209.zip

IEEE 802.3 Cyclic Redundancy Check
R

Performance
and Utilization

Performance and Utilization of IEEE 802.3 CRC-32 Implementation
The CRC-32 implementation described here was synthesized using XST and targeted to the
Virtex-II architecture. The performance and utilization are summarized in Table 3.

Conclusion The Ethernet CRC specified by IEEE 802.3 requires complementing and bit-reversed
transmission of the generated CRC. This application note demonstrates an effective
implementation of the Ethernet CRC in Virtex series devices.

References
[1] Rajesh Nair, Gerry Ryan and Farivar Farzaneh, A Symbol Based Algorithm for Hardware
Implementation of Cyclic Redundancy Check (CRC), Bay Networks.

[2] Krishna Rallapalli, Cyclic Checks for Error Detection

Revision
History

The following table shows the revision history for this document.

Table 3: Utilization and Performance Summary

Design Device Speed Grade Utilization Performance

CRC-32, 8-bit input XC2V40-FG256 -4 65 slices 212 MHz

Date Version Revision

03/23/01 1.0 Initial Xilinx Release
8 www.xilinx.com XAPP209 (v1.0) March 23, 2001
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Cyclic Redundancy Check (CRC)
	IEEE 802.3 CRC-32
	Serial Input Hardware Implementation of CRC-32
	Parallel Data Input Hardware Implementation of CRC-32
	A Complete Implementation of IEEE 802.3 CRC-32

	Reference Design
	crcgen.pl
	Perl Script Details
	Command-line Parsing
	Check Validity of Parameters
	Generate XOR Equations
	Optimize XOR equations
	Generate Verilog source for Module Statement and I/O Definitions
	Generate Internal Strings for Later Verilog Source Output
	Generate Verilog Source for Registers and Control Logic
	Generate Verilog Source From Optimized XOR Equations
	Generate Verilog Source for Endmodule Statement

	Design Files
	Performance and Utilization
	Performance and Utilization of IEEE 802.3 CRC-32 Implementation

	Conclusion
	References

	Revision History

