
Summary This application note describes the use of partial reconfiguration in Virtex™ series FPGAs for 
the purpose of correcting Single Event Upsets to the configuration memory array induced by 
cosmic rays. It is essential for the reader to have a basic understanding of the Virtex 
SelectMAP™ interface as well as configuration and readback operations. An in-depth review of 
Xilinx Application Note XAPP138 is highly recommended.

Overview • SEUs are unavoidable and must be corrected

• Using Partial Configuration for SEU Correction

• SEU Correction Methods

• SEU Detection

• SEU Scrubbing

• Design Examples

• Application of Static and Dynamic Cross-sections

• Reference Tables

Introduction On-orbit, space based, and extra-terrestrial applications must consider the effects high energy 
charged particles (radiation) may have on electronic components. In Particular, Single Event 
Upsets (SEU) may alter the logic state of any static memory element (latch, flip-flop, or RAM 
cell). Since the user-programmed functionality of an FPGA depends on the data stored in 
millions of configuration latches within the device, an SEU in the configuration memory array 
may have adverse effects on the expected functionality.

A static upset in the configuration memory is not synonymous with a functional error. Upsets 
may have no effect on functionality. Design mitigation techniques, such as triple redundancy, 
can harden functionality against single events upsets. However, the upsets must be corrected 
so that errors do not accumulate.

The Virtex Series FPGA SelectMAP interface provides post-configuration read/write access to 
the configuration memory array. "Readback" is a post-configuration read operation of the 
configuration memory, and "Partial Reconfiguration" is a post-configuration write operation to 
the configuration memory. Readback and Partial Reconfiguration allow a system to detect and 
repair SEUs in the configuration memory without disrupting its operations or completely 
reconfiguring the FPGA.

Before continuing with this application note it is essential for the reader to have a full 
understanding of the basic configuration and readback operations, as well as the bit-stream 
format and command structure, of the Virtex Series configuration logic and SelectMAP 
interface. A careful review of Xilinx Application Note XAPP138 "Virtex FPGA Series 
Configuration and Readback" will provide this information. For further reading on the Virtex 
Series FPGAs’ configuration architecture, see Xilinx Application Note XAPP151 "Virtex 
Configuration Architecture Advanced Users’ Guide."

Application Note: FPGAs

XAPP216 (v1.0) June 1, 2000

Correcting Single-Event Upsets Through 
Virtex Partial Configuration
Author: Carl Carmichael
Co-authors: Michael Caffrey, Anthony Salazar; Los Alamos National Laboratories

R

XAPP216 (v1.0) June 1, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at 
http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners.

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at 
http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

Partial 
Reconfiguration

Configuration Memory Architecture
The configuration memory array is divided into three separate segments: The "CLB Frames", 
"BRAM0 Frames" and "BRAM1 Frames." See Figure 1. The two BRAM segments contain only 
the RAM content cells for the Block RAM elements. The BRAM segments are addressed 
separately from the CLB Array. Therefore, accessing the Block RAM content data requires a 
separate read or write operation. Read/Write operations to the BRAM segments should be 
avoided during post-configuration operations, as this may disrupt user operation.

The CLB Frames contain all configuration data for all programmable elements within the 
FPGA. This includes all Lookup Table (LUT) values, CLB, IOB, and BRAM control elements, 
and all interconnect control. Therefore, every programmable element within the FPGA can be 
addressed with a single read or write operation. All of these configuration latches can be 
accessed without any disruption to the functioning user design, as long as LUTs are not used 
as distributed RAM components.

While CLB flip-flops do have programmable features that are selected by configuration latches, 
the flip-flop registers themselves are separate from configuration latches and cannot be 
accessed through configuration. Therefore, readback and partial configuration will not effect 
the data stored in these registers.

However, when a LUT is used as either a distributed RAM element, or as a shift register 
function, the 16 configuration latches that normally only contain the static LUT values are now 
dynamic design elements in the user design. Therefore, the use of partial reconfiguration on a 
design that contains either LUT-RAM (i.e., RAM16X1S) or LUT-Shift-register (SRL16) 
components may have a disruptive effect on the user operation. For this reason the use of 
these components can not be supported for this type of operation.

However, Block RAMs (RAMB) may be used in such an application. Since all of the 
programmable control elements for the Block RAM are contained within the CLB Frames and 
the Block_RAM content is in separate frame segments, partial reconfiguration may be used 
without disrupting user operation of the Block RAM as design elements.

Data Frames
The configuration memory segments are further divided into columns of data frames. A data 
frame is the smallest portion of configuration data which may be read from, or written to, the 
configuration memory. The CLB array contains four categories of frame columns: one center 
column (eight frames), CLB columns (48 frames/column), two BRAM-Interconnect columns (27 
frames/column), and two IOB columns (54 frames/column). The number of CLB columns and 
the size of the frames vary per device. However, the frame sizes are constant for a particular 

Figure 1:  Virtex Frame Segments

CLB
Frames

XAPP216_01_060100

B
R

A
M

0

B
R

A
M

1

 

2 www.xilinx.com XAPP216 (v1.0) June 1, 2000
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

device regardless of the column type in which it resides. The entire array may be addressed as 
one block, or alternatively any individual frame may be accessed as a unique block of data.

As shown in Figure 2, the frame columns are numbered in a "ping-pong" order which places all 
the even numbered columns to the left of the center column and all the odd numbered frames 
to the right. The frames within a column are numbered sequentially within that column away 
from the center. If all the frames were simply numbered sequentially in accordance with the 

Figure 2:  CLB Frame Columns

B
R

A
M

 In
te

rc
on

ne
ct

(2
7 

fr
am

es
)

IO
B

 C
ol

um
n

(5
4 

fr
am

es
)

C
LB

 C
ol

um
n

(4
8 

fr
am

es
)

2 IOBs

2 IOBs

C
n+

4

C
n+

2

C
n

C
n–

1

C
n+

1

C
n+

3

C
LB

 C
ol

um
n

(4
8 

fr
am

es
)

IO
B

 C
ol

um
n

(5
4 

fr
am

es
)

B
R

A
M

 In
te

rc
on

ne
ct

(2
7 

fr
am

es
)

2 IOBs

XAPP216_02_060100

2 IOBs

C
LB

 C
ol

um
n

(4
8 

fr
am

es
)

C
en

te
r 

C
ol

um
n

(8
 fr

am
es

)

C
LB

 C
ol

um
n

(4
8 

fr
am

es
)

2 IOBs

2 IOBs

2 IOBs

2 IOBs 2 GCLK
2 DLLs

2 GCLK
2 DLLs

C
2

C
0

C
1

XAPP216 (v1.0) June 1, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

order of their appearance when performing a full readback of the CLB Frames, their order 
would be as shown in Figure 3.

Partial Read/Write Operations
To write a series of data frames, the Frame Address Register (FAR) must first be set to the 
address of the first frame in the series. Then specify the number of data words to be written to 
the FDRI register followed by the data. A data-word is a 32-bit word. Therefore, the number of 
words to be written is the number of frames to be written times the number of words per frame 
(see Table 3 on page 12) plus one dummy word (typically all zeros) to follow each frame and 
plus one more frame of dummy words which also must be followed by a dummy word. If writing 
multiple frames, the first frame will be written to the address specified in the FAR and will 
automatically increment the address by one frame for each frame of data thereafter.

For each write operation the number of frame data words must also include a dummy word in 
order to complete the write operation. Data written to the FDRI register is assembled into 32-bit 
words and then loaded into a Frame register equal in size to one data frame. When the frame 
register is full the entire frame is loaded in parallel into the configuration memory latches. The 
last 32-bit word written is always stuck in the FDRI register. Therefore, a dummy word is 
needed to push the last word of the last frame of real data into the frame register in order for the 
entire last frame to be loaded into configuration memory.

A frame address is expressed as a major address and a minor address. The major address is 
the column number and the minor address is the frame number within that column. The value 
written to the FAR register contains a Block Type field, the major address, and the minor 
address. The Block Type should always be "00" to indicate the CLB Frames Segment. The 
Major Address is positioned in bits 17 through 24. The Minor Address is positioned in bits 9 
through 16. All other bits should be "0". Therefore, to read or write the first frame of the first 
column, the value written to the FAR would be all zeros (00000000h).

Figure 3:  Data Frame Numbering

0 1 2 3 4 5 6 7

C0

8 Frames

0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

C1

58 57 5660 59

4 3 2 1 0

C2

48 Frames48 Frames
Center CLBCLB

55

47

XAPP216_03_060100
4 www.xilinx.com XAPP216 (v1.0) June 1, 2000
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

SEU Correction 
Methods

SEU Detection and Single Frame Correction
One method of SEU correction is to use Readback to detect when an upset to the configuration 
memory has occurred. When an upset is detected only the data frame that contains the 
effected bit need be corrected. Using this method of writing only a single data frame, and only 
after an upset has occurred means that the configuration logic will be in "write mode" for the 
shortest amount of time. Most of the time the configuration logic will be in "read mode". This 
decreases the probability of an upset to the configuration logic itself from having any adverse 
effects to the configuration memory array. However, this method also requires some system 
overhead and support for the readback and detection of SEUs in the configuration memory.

Using readback for SEU detection requires a hardware implementation of algorithms for 
reading and evaluating each data frame. Additionally, memory space is needed to store 
constants and variables.

SEU Scrubbing
A simpler method to SEU correction is to omit readback and detection of SEUs and simply 
reload the entire CLB Frame segment at a chosen interval. This is called "scrubbing." 
Scrubbing requires substantially less overhead in the system, but does mean that the 
configuration logic is likely to be in "write mode" for a greater percentage of time. However, the 
cycle time for a complete scrub can be made relatively short as the SelectMAP interface is 
capable of operating at a throughput of 400 Mbits/s. Additionally, the chosen interval for scrub 
cycles should be based on the expected static upset rate for a given application or mission, and 
may be fairly infrequent. A longer cycle interval (time between scrubs) and shorter cycle time 
(scrub time) decreases the total percentage of time that the configuration logic is in "write 
mode."

SEU Detection Readback and Comparison
The more traditional method of verification of the data stored in configuration memory is to 
readback the data and perform a bit for bit comparison. This requires the use of a mask file 
(.msk) and readback file (.rbb) each of which are equal in size to the original bit-stream used to 
configure the FPGA. This method is explained in detail in Application Note XAPP138.

This method would effectively triple the amount of system memory required for configuration 
and readback operations. Therefore, this method is not generally considered to be desirable for 
space applications.

CRC Frame Checks
Another method for readback verification and SEU detection was developed by the Los Alamos 
National Laboratories Space Data Systems Group. This method records a 16-bit CRC value for 
each data frame. During readback a new CRC value is generated for each data-frame that is 
read back and compared to the expected CRC result. Since a data-frame is the smallest 
amount of configuration memory which may be read from, or written to, the device, it is not 
important to know which data bit is upset but merely which data frame the upset exists in. Then 
only the data frame effected need be rewritten to the FPGA to correct the SEU.

This method greatly reduces the amount of system memory required to perform SEU 
Detection. The algorithm for calculating a CRC sum is presented in Application Note XAPP138.

SEU Correction System Architecture
There are two different methods for implementing the CRC frame constants. For an application 
that will never require any update or changes to the FPGAs’ design after deployment, the CRC 
constants for a specific FPGA design can be pregenerated in software and stored in system 
ROM. For applications that can accept updates for the FPGAs’ bit-stream, the CRC constants 
XAPP216 (v1.0) June 1, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

should be generated by the host system and stored in RAM. If the FPGAs’ bitstream is ever 
updated then the CRC values can be refreshed.

Figure 4 shows a basic overview of one possible implementation of this system. The basic sub-
blocks represent either logic or algorithms to interface with the Virtex SelectMAP Port, interface 
with the memory components, calculate and compare CRC values, and some sort of finite state 
machine to control the operations. The design details are left for the user to implement; 
however, an example design will be published by Los Alamos National Labs and posted as an 
addendum to this application note.

The mapping of the memory components should be done uniquely for each system. One 
possible method would be to store the CRC values in addresses such that the address number 
itself corresponds to the Frame number that the CRC value represents. This could reduce the 
number of processing steps, or decode logic, to access a specific CRC frame constant.

Single Frame Correction
The process for configuration, readback and CRC calculation are omitted because these are 
explained in XAPP138. Whenever a data frame produces a CRC value that differs from its 
corresponding CRC frame constant stored in memory, the frame number should be stored for 
use after the readback cycle is complete. Although it is very unlikely to have more than one 
frame containing an SEU within one readback cycle, the CRC mismatch could potentially be 
produced by an SEU elsewhere in the system and not actually in the readback data. Therefore, 
the system should be designed to record multiple frame numbers for the correction cycle.

Figure 4:  Simple Configuration and SEU Correction Design

Memory Virtex

Configuration Controller

Configuration
Controller

DATA
ADDRESS

OE
CE

Memory
Interface

SelectMAP
Interface

CRC
Comparator

CRC
Calculator

XAPP216_04_060100

FSM

SelectMAP
DATA{7:0]
WRITE
CS
BUSY
DONE
PROG
INIT
CCLK
6 www.xilinx.com XAPP216 (v1.0) June 1, 2000
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

If the readback cycle did produce some CRC mismatches then the data for the stored frame 
numbers must be accessed from memory and reloaded into the FPGA. The procedure for a 
single frame write cycle follows:

1. Abort

An Abort command is issued by holding the CS Low and the WR High for at least three 
clock cycles. This will reset the SelectMAP and configuration logic so that the interface may 
be re-synchronized. This alleviates tracking the number of clock cycles between readback 
and write cycles and clears any errors caused by an SEU in the configuration logic itself.

2. Synchronize

Before a new process can commence the SelectMAP interface must be resynchronized by 
reloading the Synchronization Word.

3. Issue WCFG Command to CMD Register

Enable write access to the configuration memory array by loading the WCFG command 
into the CMD register.

4. Load FAR

Specify the frame address in the FAR with a major and minor address location. See "Frame 
Address Register" on page 8.

5. Access FDRI Register

Use a Type 1 packet header to issue a write command to the FDRI register specifying the 
frame data length in 32-bit words plus one 32-bit dummy word.

6. Load Frame Data

Load the data frame into the FPGA followed by one dummy frame. Each frame must be 
followed by a dummy word; However, the bitstream includes these dummy words at the 
end of each data frame.

7. Reset CRC

Issue a RCRC command to the CMD register to clear the CRC register.

8. Abort

Although a second Abort command may be superfluous, a resetting of the SelectMAP 
interface and subsequent resynchronization for any new process increases the likelihood 
that the process will be successful.

The data fields for the previous commands, except for the frame data, is shown in Table 1. The 
Abort command does not have any associated data.
Table  1:  Instruction Set for Single Frame Write Operation

Command Data (32 Bits)

Synchronize AA 99 55 66

Write to CMD 30 00 80 01

WCFG 00 00 00 01

Write FAR 30 00 20 01

Frame Address 0? ?? ?? 00

Write FDRI XQVR300 30 00 40 2A

XQVR600 30 00 40 3C

XQVR1000 30 00 40 4E

Frame Data

Write CMD 30 00 80 01

RCRC 00 00 00 07
XAPP216 (v1.0) June 1, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

Frame Address Register
The simplest method for determining the frame address for the frame which needs to be 
reloaded is to count the frames during readback, starting with zero but not counting the dummy 
frame (see XAPP138), and then calculate the address based on that frame number.

The algorithm for calculating the frame address from the frame number needs to be conditional 
on which column type the frame comes from because different column types have a different 
number of frames and because of their organization (refer back to "Data Frames" on page 2).

Following is a description of the variables used in the subsequent equations and conditions.

N = Frame Number

Cols = The number of CLB columns in the device

Maj = Major Address portion of the FAR

Min = Minor Address portion of the FAR

DIV = Integer Division operation

MOD = Modulus remainder operation

The following algorithm is used to determine the Major and MInor Frame Address from a 
specific frame number and will be followed by an example exercise. It should be obvious that 
these conditions and equations would be greatly simplified if they were rewritten for a single 
device size, removing the number of columns as a variable. All variables are represented as 
decimal values and subsequently will need to be converted to hexidecimal before obtaining the 
actual FAR code.

Begin

IF (0 < N < 7) Then {Frame is in Center Column}

Maj = 0;

Min = N;

ElsIF (8 < N < [Cols x 48 + 7]) Then {Frame is in CLB Columns}

Maj = (N-8)DIV(48) + 1;

Min = (N-8)MOD(48);

ElsIF ([Cols x 48 + 8] < N < [Cols x 48 + 115]) Then {Frame is in 
IOB Columns}

Maj = (N-Colsx48-8)DIV(54) + Cols + 1;

Min = (N-Colsx48-8)MOD(54);

ElsIF ([Colsx48+116] < N < [Colsx48+169]) Then {Frame is in BRAM 
Interconnect}

Maj = (N-Colsx48-116)DIV(27) + Cols + 3;

Min = (N-Colsx48-116)MOD(27);

End IF;

End;

Example

In this example the target device is an XQVR300. Therefore, the Cols=48. If the frame that 
needs to be corrected is the 2373rd valid data frame that was read back (not counting the 
dummy frame), then counting from zero, the frame number is N=2372.

Colsx48 = 48x48 = 2304 and N-2304 = 2372 - 2304 = 68;

N satisfies the third condition: 2312 < N < 2419; Therefore,

Maj = (N-Colsx48-8)DIV(54) + Cols + 1 = (60)DIV(54) + 49 = 50;
8 www.xilinx.com XAPP216 (v1.0) June 1, 2000
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

And

Min = (N-Colsx48-8)MOD(54) = (60)MOD(54) = 6;

Converting these to 8-bit Binay values gives the following major and 
minor addresses:

Major: 00110010; Minor: 00000110;

Inserting the Major Address into bits 17 through 24, the Minor 
Address into bits 9 through 16, and placing zeros in all other 
positions gives an FAR value of:

FAR(31:0) =0000 0000 0110 0100 0000 1100 0000 0000b = 00 64 0C 00h;

SEU Scrubbing Scrub Data and Flow
Scrubbing is a much simpler approach to SEU correction because it does not require any 
readback or data verification operations, nor does it require any data generation when 
reloading the data frames.

In short, the process is to reload the bit-stream starting at the beginning, but stopping at the end 
of the first write to the FDRI register. In a standard bit-stream the first write to the FDRI register 
includes all the configuration data for the CLB Frames segment of the memory map. The rest 
of the bit-stream contains the BRAM segments, a CRC check, and the start-up sequence, all of 
which are not applicable to partial reconfiguration. No adjustments to the data or headers are 
needed.

A scrub cycle should be preceded and followed by an Abort operation. However, the Abort 
operation preceding the scrub cycles may be omitted if one Abort cycle is inserted after the 
completion of the initial configuration of the FPGA. The bitstream already contains the 
synchronization word at the beginning. The only support circuitry necessary is a counter to 
generate memory addresses (if necessary), and decode logic to toggle the control signals of 
the memory and SelectMAP interface at specific count values. This is the mechanism that 
controls how much of the bitstream is loaded. An example of this is shown in Figure 5. This 
example does not account for the initial configuration of the FPGA. However, the necessary 
additions to perform an initial configuration before the first scrub is fairly straight forward and 
left to the reader. For additional reading, XAPP137 provides a design example of using an 
interface logic device to configure a Virtex FPGA from a parallel memory source. If the FPGA 
is to be configured from a Serial PROM, then adding a serial-parallel converter to the interface 
would allow the serial prom to act as the data source for both configuration and scrubbing. 
XAPP216 (v1.0) June 1, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

Since Scrubbing reloads the majority of the bitstream from the beginning, randomly accessible 
memory is not required.

The example shown in Figure 5 demonstrates the use of a parallel (8-bit wide) memory device. 
This allows the data signals to be connected directly from the memory to the Virtex SelectMAP 
data pins. If the memory’s data ports are of any other configuration then the data should be 
reorganized into 8-bit words within the control chip.

For this example a simple counter is a sufficient state machine to control the scrubbing 
operations. The LSB outputs of the counter (number depends on the size of the memory) may 
be used as the address for the memory module. The example uses an 18-bit counter because 
this is the minimum value for a V300 bit-stream. A V600 or V1000 would require a larger 
counter. Additionally, the system clock may be too fast for the configuration interface (50 MHz 
max). In which case the address lines could be shifted to higher order bits of the count value 
leaving the lower order bits to serve as a clock divider.

There are four signals that need to be decoded from the Counter: MOE (Memory Output 
Enable), MCE (Memory Chip Enable), VCS (Virtex Chip Select), and VWR (Virtex Write). The 
complexity of these decoders and their associated values depends on how many Memory 
chips and FPGAs are being designed into the system. Since this is an entirely application 
specific variable we will simplify this example further by assuming a single memory chip and a 
single FPGA.

If the system had several memory chips, each memory would require its own MCE decoder. 
However, for one memory the MCE may be eliminated altogether and tied to the MOE decoder. 
The MOE must disable the memory’s output during an Abort sequence. However, the VCS and 
VWR may not be combined, even for a single FPGA implementation, because the Abort 
sequence requires separate control of these signals.

Table 2 shows the state transitions for a complete scrubbing operation, including a trailing 
Abort sequence, and the associated clock cycles for each state. One clock cycle represents 

Figure 5:  Scrubbing Control Circuit

Controller

Counter

Host

Memory Virtex

Q[17:0]

Decode MOE

Decode MCE

Decode VCS

Decode VWR

DATA DATA

CS

CE

OE

Address

WRITE

CCLK

XAPP216_05_060100

CE
10 www.xilinx.com XAPP216 (v1.0) June 1, 2000
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

one byte of data transferred. If the Counter is to be used as a Configuration Clock (CCLK) 
divider as well, then the number of clock transitions would need to be multiplied by the Divisor.

Note: The clock cycles specified for the load operation are based on the bitstream format generated 
by the bitgen utility version 2.1i. If using any other version then these numbers should be manually 
verified in the bitstream.

The system also needs some sort of mechanism to control how often a scrub cycle takes place. 
In Figure 5 this is shown simply as a connection from the Host System to the CE input of the 
counter. Consideration is also needed for a reset control to the counter. If the desired time 
between scrub cycles is constant, then this could be automated by using another counter to 
control the CE of the scrub counter and another decoder to control a synchronous reset of the 
counters. Choosing how long to wait between scrub cycles (Scrub Rate) should be determined 
primarily from the expected upset rate for the specific application, orbit or mission.

Scrub Rates
A Scrub Rate describes how often a scrub cycle should occur. It may be denoted by either a 
unit of time between scrubs, or a percentage (scrub cycle time divided by the time between 
scrubs). The scrub rate should be determined by the expected upset rate of the device for the 
given application.

Upset rates are calculated from the Static Bit Cross Section (see Data Sheet) of the device and 
the charged particle flux the application or mission is expected to endure. For other 
technologies, the upset rate is an indication of how often the system will have to tolerate a 
functional bit error. But this is not precisely the case for an FPGA.

The static cross-section for a given device is derived by determining the cross-section per bit 
(obtained through experimentation and measurement) multiplied by the number of bits in the 
device. The static cross-section for a Virtex Series FPGA may be orders of magnitude higher 
than what the experienced space applications designer might be used to. This is because of 
the high density of configuration latches. But this upset rate does not carry the same meaning 
as it does for other technologies.

For example, lets compare a 6,000 flip-flop ASIC to a 6,000 flip-flop Virtex Series FPGA. If the 
ASIC and the FPGA have similar process geometries, then the static cross-section per bit will 
be similar for both devices. However, the device cross-section is the bit cross-section multiplied 
by the number of bits in the device. For a 6000 flip-flop ASIC the number of bits is 6000, but the 
a Virtex FPGA this number is 6000 plus 1.7 Million (approximately).

However, for an ASIC, a bit upset is considered to be a definite functional bit error. This would 
be an incorrect assumption for an FPGA. An upset in the configuration memory may or may not 
have any effect on the functional integrity of the user’s design in the FPGA.

Design techniques may be applied to strengthen the functional integrity of the user design and 
protect it from the effect of any Single Event Upset. This process is called "SEU Mitigation." 
These design techniques are described in Xilinx Application Note XAPP186: "Space 
Application Design Techniques for the Virtex QPRO™ Radiation Hardened Series FPGA."

Where systems that include ASIC technology use a static upset rate to determine how often a 
functional bit failure may be expected, systems that use Virtex Series FPGAs should define a 
"Dynamic Upset Rate" for this purpose. The application of a dynamic upset rate is discussed in 

Table  2:  Scrubbing State Transitions

States Clock Cycles

Type MOE MCE VCS VWR XQVR300 XQVR600 XQVR1000

Load L L L L 207,972 435,312 745,596

Abort H H L H 4

Disable H H H H 1
XAPP216 (v1.0) June 1, 2000 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com


Correcting Single-Event Upsets Through Virtex Partial Configuration
R

the previously mentioned application note and is not covered in this paper. However, the 
necessary assumption is that the scrub rate should be set such that any SEU on the 
configuration memory will be fixed before the next will occur. Additionally, the life span of an 
SEU, time between the occurrence of the upset and it’s subsequent correction, should be 
minimized. It is entirely up to the designer to choose the scrub rate. However, a good "rule of 
thumb" is to place the scrub rate at one order of magnitude from the upset rate. In other words, 
the system should scrub, on average, ten times between upsets.

For example, if we were to assume a bit upset rate of once per hour and a configuration clock 
frequency of 10 MHz, then the scrub rate should be once every six minutes. Thus, the scrub 
time, for a V1000 is 80 ms. Therefore, the scrub rate as a percentage would be 0.2%. 
Meanwhile, the FPGA will be capable of carrying out it’s operations and functioning normally. 
It’s ability to do so is a function of the design methodologies and mitigation strategies employed 
in the system.

Reference 
Tables 

Revision 
History

The following table shows the revision history for this document. 

Table  3:  Device Statistics and Static Elements

Devices XQVR300 XQVR600 XQVR1000

CLB Array Size (RowxCol) 32 x 48 48 x 72 64 x 96

CLB Flip Flops 6,144 13,824 24,576

Select Block RAM (bits) 65,536 98,304 131,072

Frames 2474 3626 4778

Words (32-bit) per Frame (Including 
one dummy word)

21 30 39

Configuration Latches 1,583,360 3,364,928 5,810,048

Date Version Revision

06/01/00 1.0 Initial Xilinx release.
12 www.xilinx.com XAPP216 (v1.0) June 1, 2000
1-800-255-7778

http://www.xilinx.com

	Summary
	Overview
	Introduction
	Partial Reconfiguration
	Configuration Memory Architecture
	Data Frames
	Partial Read/Write Operations

	SEU Correction Methods
	SEU Detection and Single Frame Correction
	SEU Scrubbing

	SEU Detection
	Readback and Comparison
	CRC Frame Checks

	SEU Correction
	System Architecture
	Single Frame Correction
	Frame Address Register
	Example


	SEU Scrubbing
	Scrub Data and Flow
	Scrub Rates

	Reference Tables
	Revision History

