
Summary The serial transfer of data between cards on a backplane is often a requirement in digital
system design. Serializing the data makes greater use of the available resources (pins). A
system processing 64 bits of data at 80 MHz can use a 64-bit data link (with control signals) to
another device or across a backplane. This same data can be transmitted over 16 lines SDR at
320 MHz (producing a 75% pin savings). Alternatively, the data can be serialized to eight
differential pairs (still 16 lines) running at 320 MHz DDR (640 Mb/s). This also produces a pin
savings of 75% with greater signal integrity and lower power.

This application note addresses circuits capable of transferring up to 16 data channels at up to
840 Mb/s each for an aggregate data transfer per link of over 13 Gb/s. The design may be used
multiple times in a Virtex™-II device. There is no limit to the number of transmitters (within
pinning constraints) that can be used if they are using the same transmission clock. The Digital
Clock Managers (DCMs) available to the designer, a maximum of 12 depending on device size,
limit the number of receivers.

Introduction Signal integrity at high speeds such as 840 Mb/s is a big issue, prompting designs using
differential signaling. Although doubling the number of pins used, this still results in 80% pin
savings. In addition, designing a system to work synchronously at high speeds is virtually
impossible. Using a clock forwarding technique, the data, clock, and possibly a framing signal
are forwarded together along the backplane. The clock frequency used is normally half the data
transmission frequency, which means that data changes on each edge of the clock, providing
so-called Double Data Rate (DDR) signaling. The advantage of this method is that the
harmonic content of the clock and data lines is the same. Another solution for data transfer is to
embed clock information in the data stream at the transmitter, and then recover the clock and
data at the receiver. This will be covered in a separate application note. All the files for both
design and implementation discussed below are available from the Xilinx web site. When
synthesizing the files, the synthesizer must retain hierarchy. And it should be remembered that
the I/O and global buffers have already been instantiated. It is usually best to turn off further
global buffer insertion in the tool.

Board Level One possible system architecture is shown in Figure 1. The master card interfaces to m slave
cards over a number of n-bit wide busses (transmit and receive). Typically, all of these links are
of identical width, although this is not a requirement for functionality. The TX and RX boxes
shown are from the receiver and transmitter modules.

Application Note: Virtex-II Family

XAPP265 (1.0) October 4, 2001

Data Serialization and Deserialization
(SerDes) in Virtex-II Devices
Author: Nick Sawyer

R

XAPP265 (1.0) October 4, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

Transmitter Module
The transmitter design is relatively straightforward, using several of the unique features of the
Virtex-II family. A basic system is defined and shown in Figure 2. The system block processes
eight bits of data at a frequency of, for example, 100 MHz (800 Mb/s). The serializer transmits
the incoming 100 MHz, 8-bit data words serially on a differential pair using DDR at a frequency
of four times the system clock, or 400 MHz (800 Mb/s). A clock is also regenerated for
forwarding as is an optional framing signal.

The basic circuit can be “tiled” for larger systems. The files associated with this application note
describe a 4-bit building block capable of serializing 32 data lines at 100 MHz to four lines plus
clock and frame at 800 Mb/s DDR. Another typical application is to serialize 128-bit internal
data to 16 lines plus one clock and one frame signal for 10+ Gb/s signaling. This is easily
achieved using four 4-bit blocks, each of which is effectively standalone by design. When tiling,
only data lines are usually added; just one clock and one frame signal (if required) are needed
for each data link.

Figure 1: System Configuration

Figure 2: One-Bit Transmitter Block Diagram

Slave
1

x265_01_090501

Tx

Master

Rx

Tx

Rx

Tx

Rx

Rx

Tx

Slave
2

Slave
M

Rx

Tx

Rx

Tx

n

n

n

n

n

n

x265_02_090401

CLKIN

D1

DDR
DCM

CLOCK OUT

8 DATA OUT

FRAME OUT

DDR

DDR

D2

D1

D2

D1

D2

Data
From

System

CLOCK

CLOCK

CLOCKx4

CLOCK

CLOCKX4

CLOCKX4

CLOCKx4

CLOCKX4

CLOCKX4

CLOCKX4

Timing
Logic

D0

D6
D4
D2

D1

D7
D5
D3

Vcc
2 www.xilinx.com XAPP265 (1.0) October 4, 2001
1-800-255-7778

http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

The local clock in Figure 1 is fed to a Digital Clock Manager (DCM) to generate two clocks,
where one is exactly four times the frequency of the other as described below. At this point it is
prudent to consider any jitter generated by the DCM. Jitter will affect the timing margin of the
interface. Three modes of use are possible.

1. Input clock is multiplied by one and four. This solution leads to fairly substantial amounts of
jitter (see the Virtex-II data sheet), and is therefore limited to fairly low frequencies of
operation (< 400 Mb/s).

2. Input clock is multiplied by two and divided by two. There is less jitter. This solution has
been shown to work at frequencies up to 680 Mb/s.

3. Input clock is multiplied by one and divided by four. There is much less jitter. This solution
is suitable for use at frequencies up to 840 Mb/s

It is also prudent to look into how the high-speed clocks (CLKX4 and RXCLK) are distributed on
the device.

1. Use a single global buffer, and rely on the local inversion available where negative edges
are required. Obviously, this method uses less resources. It will also introduce some
distortion into the output signals, as the high-low and low-high transitions of the global
buffer have some imbalance.

2. Use two global buffers to distribute the high-speed clock and its complement (both are
available from the DCM). This method uses more resources. All synchronous elements will
be clocked only by rising edges from one of the two distributed clocks. The skew between
the two global buffers is very tightly controlled in the silicon giving better results at very high
bit rates.

Eight bits of data are registered by the clock signal (CLK). These eight bits are then multiplexed
and retimed by the CLKX4 signal (four times the frequency), and then fed to the DDR registers
located in the IOBs of the Virtex-II device. The Virtex-II data sheet contains a full description of
this functionality. The DDR output is then available at a pair of pins in LVDS signal levels. The
VCCO power supply for the I/O bank in the Virtex-II device can be either 2.5V or 3.3V for LVDS
functionality.

A transmission clock is regenerated through another DDR register whose inputs are connected
to logic High and logic Low. The frame signal is a third DDR register.To ensure the frame signal
is a DC balanced line, the output is a logic High four times every eight half-clock periods. The
timing diagram for this example is shown in Figure 3. The transmission clock is a copy of
CLOCK4, and because it is regenerated inside an IOB, as are the data and frame signals, there
is very little skew between these three signals.

The frame signal does not always have to be used because some systems have in-band
synchronization, such as 8b/10b coding, built into the data stream.

Figure 3: Timing Diagram

x265_03_091301

D7 D0 D1 D2D2 D3 D4 D5 D6Data Out

Frame Out

Clock

Clockx4

CLK Out

Word
n+1

Written

Word n LSB
Appears at
Output pin
XAPP265 (1.0) October 4, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

Four-Bit Transmission (2.5 Gb/s)
The 4-bit transmitter module (serdes_4b_8to1) is written in HDL and is, therefore, fully
synthesizable. It contains relative placement information to allow the Virtex-II device to operate
at these very high clock speeds. The macro accepts 32-bit data synchronous to a CLK signal
and goes on to use this clock and another clock signal (CLKX4) to serialize the data. The two
clock signals have to be completely synchronous to one another, so the best solution is to use
the DCM capabilities of the Virtex-II device.

For example, an incoming 400 MHz signal could be used to generate 400 MHz for use as
CLKX4 and 100 MHz for use as CLK. The output timing characteristics of the 4-bit block are
shown in Figure 3. The block has been designed to be used on the right-hand edge of the
Virtex-II device, but could also be placed on the left if necessary. The placement of the module
is defined by the rloc_origin statement applied to the module in the constraints (design.ucf) file
used when processing the design through Xilinx implementation tools. This location will
obviously vary with device size, but a typical example for the XC2V1000 device would be
"set “tx0/set” rloc_origin = “X58Y0”;” that is, at the bottom (Y = 0) right (X = 58)
of the silicon.

The macro is four CLBs high by three CLBs wide in order to have the same pitch vertically as
the block RAMS. This is useful if the designer wants to insert a FIFO into the transmission data
path. Careful consideration also has to be given to the pins chosen for the transmitter output.
Ideally, they will be immediately adjacent to the macro, but a certain amount of spread is
acceptable, plus or minus two CLBs vertically will still work at up to 840 Mb/s in a -5 device. The
macro physical implementation is shown in Figure 5. This is a useful reference for choosing the
pins to be used.

The bit ordering for both the 4-bit transmitter and receiver macros is shown in Figure 4. If a
different sequence is needed it is easily accomplished at the top level. For example, if the
requirement is to transmit data MSB first, rather than LSB first, the following sequence should
be used.

Connect txdata(31) to txmacro datain(0)

Connect txdata(30) to txmacro datain(1)

...

Connect txdata(0) to txmacro datain(31)

Figure 4: 4-bit data formatting
x265_04_091901

31 30 29 28 3 2 1 0

Parallel Data In/Out

………….

Serialized Data In/Out

Data Line 0

Data Line 1

Data Line 3

0 4 8 12 16 20 24 28

1 5 9 13 17 21 25 29

Data Line 12 6 10 14 18 22 26 30

3 7 11 15 19 23 27 31

Rx/Tx Clock
4 www.xilinx.com XAPP265 (1.0) October 4, 2001
1-800-255-7778

http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

Sixteen-Bit Transmission (10 Gb/s)
The 16-bit transmitter module (serdes_16b_8to1) is written in HDL and is, therefore, fully
synthesizable. It is made up of four of the 4-bit macros described above and, therefore,
contains relative placement information to allow the Virtex-II device to operate at these very
high clock speeds. The macro accepts 128-bit data synchronous to a CLK signal and goes on
to use this clock and another clock signal (CLKX4) to serialize the data to sixteen output lines.

The block has been designed to be used on the right hand edge of the Virtex-II device, but
could also be placed on the left if necessary. The placement of the module is defined by
multiple rloc_origin statements. These are applied to the macro via the constraints (design.ucf)
file used when processing the design through Xilinx implementation tools. This location will
obviously vary with device size, but a typical example for the XC2V1000 device would be:

‘set “tx0/tx0/hset” rloc_origin = “X58Y0” ;’
‘set “tx0/tx1/hset” rloc_origin = “X58Y8” ;’
‘set “tx0/tx2/hset” rloc_origin = “X58Y16” ;’
‘set “tx0/tx3/hset” rloc_origin = “X58Y24” ;’

That is, at the bottom (Y = 0) right (X = 58) of the silicon. Careful consideration again has to be
given to the pins chosen for the transmitter output. Ideally, they will be immediately adjacent to
the macros, but a certain amount of spread is acceptable. Plus or minus two CLBs vertically will
still work at up to 840 Mb/s in a -5 device. A useful reference for choosing the pins to be used
is shown in the Figure 7 macro physical implementation. The four individual 4-bit macros do not
have to be immediately next to each other, but it is good to place them like this, as the pin-to-
pin skew will be minimized. It is also good to ensure that all sixteen data outputs, the clock, and
the (optional) frame signal are placed in the same I/O bank. The clock and frame outputs from
all four modules are brought up to the top level, and it is up to the designer which of these
signals are used. Obviously, only one of the output clocks and one of the frame signals needs
to be used.

The bit ordering for both the 16-bit transmitter and receiver macros is shown in figure BB. For
example, if the requirement is to transmit data MSB first, rather than LSB first, the following
sequence should be used.

Connect txdata(127) to txmacro datain(0)

Connect txdata(126) to txmacro datain(1)

...

Connect txdata(0) to txmacro datain(127)

Figure 5: 4-Bit Transmitter Macro Physical Implementation
x265_05_091801

BRAM
(not used)

3

2

1

0

RLOC_ORIGIN IOB
XAPP265 (1.0) October 4, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

Figure 6: 16-bit Data Formatting

Figure 7: 16-bit Transmitter Macro Physical Implementation

x265_06_091801

127 126 125 124 3 2 1 0

Parallel Data In/Out

………….

Serialized Data In/Out

Data Line 0

Data Line 1
.
.

Data Line 15

0 16 32 48 64 80 96 112

1 17 33 49 65 81 97 113

15 31 47 63 79 95 111 127

.

Rx/Tx Clock

BRAM
(not used)

3

2

1

0

RLOC_ORIGIN

BRAM
(not used)

3

2

1

0

RLOC_ORIGIN

BRAM
(not used)

3

2

1

0

RLOC_ORIGIN

x265_07_091801

BRAM
(not used)

3

2

1

0

RLOC_ORIGIN IOB

IOB

IOB

IOB

15

0

6 www.xilinx.com XAPP265 (1.0) October 4, 2001
1-800-255-7778

http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

PCB
The generated differential data, clock, and frame signals need to be routed very carefully on the
PCB and the trace lengths strictly controlled. Ideally, all the signals should have the same delay.
If the clock trace has a different delay, the receiver DCM can correct it; as a minimum, however,
all the data and the frame signals should be matched to within a few tens of picoseconds for the
best circuit operation. The physical characteristics of the traces and the PCB are discussed
more fully in XAPP233.

Receiver
The receiver block diagram is shown in Figure 8. Assuming a single DDR data signal arriving
with a clock and a frame signal at 800 Mb/s DDR, it will be deserialized into eight bits of data
available via a FIFO at 100 MHz+. The receiver can also be tiled for wider data widths, with only
one clock and (if required) one frame signal necessary per data link.

Figure 8: Receiver Block Diagram
x265_08_092801

RxData

IOB

DCM
and
DPS

RxClock Clock

Frame

Quarter
of a

Block RAM

Clock

QD

Clock

QD

Clock

QD

Clock

QD

Clock

Cascade Chain to Next Macro

Cascade Chain
From Previous Macro

QD

Clock

QD

Clock

QD

Clock

QD

Clock

QD

Clock

QD

Clock
(from DCM)

QD

QD

Timing Generator
FF CEs

BRAM Address
FIFO Flags
XAPP265 (1.0) October 4, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com/xapp/xapp233.pdf
http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

The received clock is fed into one of the Virtex-II DCMs to use the Digital Phase Shift (DPS)
feature. The transmitter, normally produces aligned clock and data, and the receiver needs to
sample the data in the middle of the data “eye.” This is normally achieved by making the clock
trace in the link longer by an equivalent of approximately a quarter clock period. Using the DPS
allows a “dial-in” for an appropriate amount of phase shift at device power-up. Additionally, the
circuit can also be used to remove any differences in clock and data delay that have occurred
due to PCB issues. However, all the data lines must still have the same delay (track length).

The corrected clock (derived from DCM/DPS through a global buffer) is used to clock the data
into the dedicated DDR registers in the Virtex-II IOBs. Two bits of data are captured per clock,
one from the negative edge of the clock and one from the positive. These two signals are then
reregistered (positive and negative edges) in CLB logic. The same clock is then used to de-
multiplex these two lines into eight lines of data. At this point, it is common to build a FIFO into
the system, as further processing will probably not occur at a clock rate synchronous to, or even
at the same frequency as, the received data. Therefore, the eight received bits are clocked into
a very simple FIFO using one quarter of a Virtex-II block memory. These can be configured to
be up to 32-bits wide.

The control signals available to the system are very simple, indicating that the FIFO is one-
quarter, one-half, or three-quarters full. The frame signal, if used, ensures the serially received
data is presented eight bits wide in its original format, and no further framing function is
required. Data is clocked into the FIFO every two clock cycles using the received clock and a
WE signal, thus avoiding the unnecessarily use of another global buffer.

As mentioned, each received data line in this configuration requires only one-quarter of a global
buffer. Four received lines will require one block memory, and sixteen received lines will require
four block memories, but still only one DCM/DPS and one global buffer. To make the parallel
data wider and slower, or narrower and faster, use serialization factors other than eight to suit
the system architecture.

Four-Bit Reception (2.5 Gb/s)
The 4-bit receiver module (serdes_4b_1to8) is written in HDL, and is, therefore, fully
synthesizable. It contains relative placement information to allow the Virtex-II device to operate
at these very high clock speeds. The macro accepts 4-bit DDR input data and, optionally, a
synchronization signal, synchronous to a RXCLK signal, and it goes on to use this same clock
to deserialize the data from a 4-bit DDR to 32-bit wide. The 32-bit data is then written into a
FIFO using a block memory. The output of this FIFO together with the necessary control signals
are available to the designer for passing data further into the system.

The input timing characteristics of the 4-bit block are shown in Figure 3. The block has been
designed to be used on the left-hand edge of the Virtex-II device, but could also be placed on
the right if necessary. The placement of the module is defined by the rloc_origin statement
applied to the module in the constraints (design.ucf) file used when processing the design
through Xilinx implementation tools. This location varies with device size, but a typical example
for the XC2V1000 device would be "set “rx0/hset” rloc_origin = “X0Y0” ;" that is,
at the bottom (Y = 0) left (X = 0) of the silicon.

The macro is four CLBs high by three CLBs wide to have the same pitch vertically as the block
RAMS. Careful consideration also has to be given to the pins chosen for the receiver output.
Ideally, they will be immediately adjacent to the macro, but a certain amount of spread is
acceptable, plus or minus two CLBs vertically still works at up to 840 Mb/s in a -5 device. The
macro physical implementation is shown in Figure 9, which is a useful reference for choosing
the pins to be used.
8 www.xilinx.com XAPP265 (1.0) October 4, 2001
1-800-255-7778

http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

Sixteen-Bit Reception (10 Gb/s)
The 16-bit receiver module (serdes_16b_1to8) is written in HDL and is, therefore, fully
synthesizable. It contains relative placement information to allow the Virtex-II device to operate
at these very high clock speeds. The module uses the serdes_4b_1to8 macro mentioned
above four times, and accepts 16-bit DDR input data, and optionally a synchronization signal,
synchronous to a RXCLK signal. It then uses this same clock to deserialize the data from
16 bits DDR input to 128 bits wide internally. The 128-bit wide data is then written into a FIFO
using four block memories.

The output of the FIFO together with the necessary control signals are available to the designer
for passing data further into the system. The input timing characteristics of the 16-bit block are
as shown for the 4-bit block. The block has been designed to be used on the left-hand edge of
the Virtex-II device, but could also be placed on the right if necessary. The placement of the
individual modules is defined by the rloc_origin statement applied to each module in the
constraints (design.ucf) file used when processing the design through Xilinx implementation
tools. These locations vary with device size and pinout chosen, but a typical example for the
XC2V1000 device would be:

‘set “rx0/hset” rloc_origin = “X0Y0” ;’
‘set “rx1/hset” rloc_origin = “X0Y8” ;’
‘set “rx2/hset” rloc_origin = “X0Y16” ;’
‘set “rx3/hset” rloc_origin = “X0Y24” ;’

Each 4-bit macro is four CLBs high by three CLBs wide to have the same pitch vertically as the
block RAMS. The four macros necessary for 16-bit use can be placed immediately adjacent to
each other vertically, or they can be separated as shown in Figure 10. Careful consideration
also has to be given to the pins chosen for the receiver input. Ideally, they will be immediately
adjacent to the macro, but a certain amount of spread is acceptable, plus or minus two CLBs
vertically still works at up to 840 Mb/s in a -5 device.

Figure 9

Figure 9: 4-Bit Receiver Macro Physical Implementation
x265_09_091801

BRAM

3

2

1

0

RLOC_ORIGINIOBs
XAPP265 (1.0) October 4, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

DCM operation
As mentioned, the receiver clock is derived from the forwarded clock via a DCM which has a
constant or variable phase shift programmed into it. The method for doing this is to add
attributes for the phase shift mode (clkout_phase_shift) and for the value of phase shift
(phase_shift) to the DCM instantiation as shown in top16.vhd. The goal of the phase shift is to
place the middle of the data "eye" into the middle of the setup window of the input flip-flops. The
value for this phase offset is calculated as follows.

Assuming that the clock and data arrive at the receiver device at the same time, the required
time shift is one quarter of the incoming clock period plus the mid-point between the pin-to-pin
setup time and the pin-to-pin hold time for IOB flip-flops given in the Virtex-II data sheet. Note
that it is not necessary to add the correction factor for LVDS as both the clock and data are the
same standard, and so will be equally delayed in the IOB. The required phase shift value will
then be the total time shift calculated divided by the clock period and multiplied by 256.

For example, if we are using 622 Mb/s signalling (311 MHz clock), the period will be 3.215 ns,
and a quarter period will be 0.803 ns. If the pin-to-pin setup is 1.5 ns, and the pin-to-pin

Figure 10: 16-Bit Receiver Macro Physical Implementation
x265_10_091801

15

0

BRAM

3

2

1

0

RLOC_ORIGINIOBs

BRAM

3

2

1

0

RLOC_ORIGINIOBs

BRAM

3

2

1

0

RLOC_ORIGINIOBs

BRAM

3

2

1

0

RLOC_ORIGINIOBs
10 www.xilinx.com XAPP265 (1.0) October 4, 2001
1-800-255-7778

http://www.xilinx.com

Data Serialization and Deserialization (SerDes) in Virtex-II Devices
R

hold is –0.9 ns, then the mid-point is 1.2 ns. By adding 0.803 and 1.200 the resultant is
2.003 ns. Dividing by the clock period gives 0.623, and multiplying by 256 produces a value of
160. Thus, for correct operation of the circuit, the DCM will need a value of 160 applied to it.

Reference
Design

The VHDL code for the implementations discuss in this application note are available on the
Xilinx FTP site at:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp265.zip

The readme.txt file includes further implementation details.

Conclusion The Virtex-II device in a -5 speed grade can be shown to be capable of 16-bit LVDS data
transmission and reception with or without a framing signal, at up to 840 Mb/s using DDR
techniques.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

10/04/01 1.0 Initial Xilinx release.
XAPP265 (1.0) October 4, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp265.zip

	Summary
	Introduction
	Board Level
	Transmitter Module
	Four-Bit Transmission (2.5 Gb/s)
	Sixteen-Bit Transmission (10 Gb/s)
	PCB
	Receiver
	Four-Bit Reception (2.5 Gb/s)
	Sixteen-Bit Reception (10�Gb/s)
	DCM operation

	Reference Design
	Conclusion
	Revision History

