

Summary This document details the VHDL implementation of a fibre channel byte-oriented transmission
encoder and decoder in a Xilinx CoolRunner CPLD. CoolRunner CPLDs are the lowest power
CPLDs available today and can be utilized in any network design where reliable point-to-point
transceivers are required. CoolRunner CPLDs utilize the patented Fast Zero Power (FZP)
design technique to simultaneously deliver high performance and low power consumption.
These devices offer pin-to-pin delays of 5.0 ns, and less than 100 µA of standby current
(approximately 1/3 of the power consumed by other competing CPLDs at fMAX). To obtain the
complete VHDL 16b/20b encoder or decoder design code described in this document, refer to
section "VHDL Code Download" on page 25 for instructions.

Disclaimer THIRD PARTIES INCLUDING IBM MAY HAVE PATENTS ON A STANDARD BYTE ORIENTED
DC BALANCED 8B/10B PARTITIONED BLOCK TRANSMISSION CODE. BY PROVIDING
THIS REFERENCE DESIGN AS ONE POSSIBLE IMPLEMENTATION OF THIS STANDARD,
XILINX IS MAKING NO REPRESENTATION THAT THE PROVIDED IMPLEMENTATION OF
THIS STANDARD IS FREE FROM ANY CLAIMS OF INFRINGEMENT BY ANY THIRD PARTY.
XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WITH RESPECT TO THE ADEQUACY
OFTHE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OR
REPRESENTATION THAT THE IMPLEMENTATION IS FREE FROM CLAIMS OF ANY THIRD
PARTY. FURTHERMORE, XILINX IS PROVIDING THIS REFERENCE DESIGNS "AS IS" AS
A COURTESY TO YOU.

Notice This application note is not intended to provide complete documentation on 8b/10b. This
document gives a brief introduction to 8b/10b, how the encoding/decoding scheme is
generated, and how it is implemented in a 16b/20b VHDL application targeted to a CoolRunner
CPLD. For more information on 8b/10b coding rules, please refer to section "References" on
page 26.

Introduction Today binary codes are used in transmission schemes across fiber optic links. The binary on/off
mode provides a transmission scheme ideal for high-speed local area networks and computer
links. The 8b/10b data transmission scheme has become the standard for high-speed serial
links today. An 8b/10b module provides byte synchronization and the encode/decode scheme
for fibre channel communication links. The 8b/10b scheme is part of the physical network layer
and can be utilized in any gigabit Ethernet, ATM, wireless or fiber optic transmission link.

Many communication systems today transmit information in the form of packets with a defined
field structure for both communication and error control. The 8b/10b encoding scheme
translates byte-wide data of random "1s" and "0s" into a 10-bit serial data stream. The encoding
mechanism generates a balanced bit stream, in which an equal number of bit transitions occur
between a logic High and a logic Low level. The 8b/10b encoding rules create a DC balanced
code that provides optimum coding efficiency, clock recovery, error detection, and suitability for
ring or point-to-point topologies.

Application Note: CoolRunner®

XAPP336 (v1.0) July 15, 2000

Design of a 16b/20b Encoder/Decoder
Using a CoolRunner CPLD

R

XAPP336 (v1.0) July 15, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at
http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners.

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at
http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
A16b/20b transmission scheme incorporates the idea of the 8b/10b transmission code by
combining two 8b/10b modules side-by-side. With 16b/20b encoding, a 16-bit word can be
encoded and transmitted serially as shown in Figure 1.

The 8b/10b code provides many advantages for fiber optic and electromagnetic wire links.
High-gain fiber optic receivers need an AC coupling stage near the front end as well as
simplified control of transmitter level, receiver gain, equalization, and maintenance of precise
signal power. This becomes more important at high data rates to maintain constant byte rate
and reduce redundancy checks to each byte. Lower signaling rates of the 8b/10b code can be
utilized to minimize crosstalk and compensate for an increase in signal-to-noise ratio.

8b/10b
Background

The 8b/10b transmission code includes serial encoding and decoding rules, special characters,
and error detection. The characters defined by this code ensure that short run lengths and
sufficient transitions are present in the serial bit stream to make clock recovery possible at the
receiver. For this reason, the 8b/10b encoding scheme has the ability to control the
characteristics of each code word by creating a limited change of "0s" and "1s". The encoding
greatly increases the likelihood of detecting single or multiple errors during the transmission of
data.

Each 8b/10b encoding and decoding module is capable of the following main functions:

• Error detection

• Frame delimination with data transparency

• Clock recovery: good signal transition density helps to find the center of each data bit

• DC voltage balancing

• Fiber optic, wireless or ATM implementation capabilities

Structure of
8b/10b Code

The 8b/10b transmission code includes D-characters (used for data transmission) and
K-characters (used for control and protocol functions). Parity is monitored in each byte of
transmission and both D- and K-characters are based on positive or negative parity. The parity
of each code word is selected by the encoder to maintain a balanced running parity in the data
stream.

For encoding purposes, each incoming byte of data is partitioned into two subblocks as shown
in Figure 2. The five binary lines, ABCDE, are encoded into six binary lines, abcdei, which

Figure 1: 16b/20b Block Diagram

16b/20b Encoder

16b/20b Decoder

8b/10b

Protocol Device

Serial Data Out

Serial Data In

8b/10b

8b/10b 8b/10b

CoolRunner Encoder/Decoder

X336_01_060100
2 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
follow the rules of 5b/6b encoding. Similarly, the three bits, FGH, are encoded into fghj, which
follow the 3b/4b encoding rules.

The combination of a 5b/6b and 3b/4b encoder blocks limits error propagation to five bits as
well as simplifies the encoder and decoder modules. Both the 5b/6b and 3b/4b encoding rules
will be discussed in detail.

Every 10-bit encoded data group has one of three possibilities to help limit the number of
consecutive "1s" or "0s" in any 2-code words:

• Five "1s" and five "0s"

• Four "1s" and six "0s"

• Six "1s" and four "0s"

Byte Synchronization
Byte synchronization is accomplished through the use of special characters. Select special
characters allow for byte stuffing to control the number of transitions in a data stream. Special
characters are discussed in more detail in section "Special Characters" on page 5.

Running Disparity
DC balancing is achieved through the use of running disparity. This function controls the
number of ones and zeros in a single transmission. This helps balance the DC level between
the "1" and "0" voltage level. Running disparity is positive (+) if more "1s" than "0s" have been
transmitted and negative (–) when more "0s" than "1s" are transmitted. The running disparity
remains unchanged from the previous transmission if the code has an equal number of "1s"
and "0s". No distinction is made between 6b and 4b blocks, so they are used to compensate
each other. Similarly, the disparity in each 8b/10b module is used to compensate the other in a
16b/20b design. For this design, the disparity out of each 16-bit word data transmission is
translated as the running disparity when sending a packet of data. The running disparity is then
used as the input disparity when encoding the next 16-bit data word to send. Since the disparity
is monitored, the transmitted code is free of any DC component.

Figure 2: 8b/10b Encoding Block Diagram

X336_02_007100

5b Functions
(Figure 5)

3b Functions
(Figure 7)

A

B

C

D

E

F

G

H

Control

Parallel byte of data

5b/6b
Encoding

Switch
(Figure 6)

3b/4b
Encoding

Switch
(Figure 8)

A
a

b

c

d

e

i

f

g

h

j

B

C

D

E

F

G

H

6b bit Control

4b bit Control

10 binary lines
to serializer

Disparity
Control

(Figures 9 and 10)
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
Error Detection
Error detection in the 8b/10b code is done in two manners:

• Error checking using redundancy: Validates transmission of each packet, in which a higher
level OSI protocol layer would detect errors based on start and end delimiters.

• Cyclic redundancy checks (CRC): Detects errors on individual 6b or 4b subblocks based
on the rules for 8b/10b encoding.

8b/10b Code
Definition

The 8b/10b encoding is accomplished by encoding the ABCDE and FGH inputs as two units,
the 5b/6b and 3b/4b, respectively. The 10b/8b decoder module is discussed in detail later, and
provides the complementary function of the 8b/10b encoder.

5b/6b Definition
Table 1 shows a few examples of the 5b/6b encoding rules. ABCDE represents the lower five
bits of the data to send, DATA_IN[0:4] respectively. The transmitted data, abcdei, is shown with
the corresponding alternate data that is sent based on the disparity value. The running
disparity, Din, can be either positive (+), negative (–), or don’t care (x). The disparity out of the
encoded word, Dout, is shown with the transmitted data. When the alternate data is sent,
disparity out (Dout) will be complemented. Dout can be either positive (+), negative (–), or not
affected (0). For each data byte, the bit encoding shows the category each incoming data byte
falls into according to the number of zeros and ones. Based on the bit encoding the incoming
data bits, ABCDE are translated. If the bit encoding column is left blank, then the data bits do
not change and the added i bit is "0". For example, in Table 1, D.0 has bit encoding
classification L04, which represents zero "1s" and four "0s" in the ABCD bits of the data, D.0.
The result encoding is then 011000 when the previous running disparity is (+), now resulting in
a current negative (–) disparity out. If the input running disparity is (–) then the alternate data,
100111, is sent and the disparity out is (+). The disparity classification shows which functions
are used in generating the disparity out for each data byte. These functions are described in
more detail in "8b/10b Design" on page 10. Table 1 shows examples of non-special characters,
where the K control character is held at "0".

Table 1: 5b/6b Encoding

Name

Data to Send Classification

Din

Transmitted Data

Dout
Alternate

DataA B C D E K

Bit

Encoding(1) Disparity(1,2,3) a b c d e i

D.0 0 0 0 0 0 0 L04 L22’ ·L31’ ·E’ + 0 1 1 0 0 0 – 100111

D.1 1 0 0 0 0 0 L13·E' L22’ ·L31’ ·E’ + 1 0 0 0 1 0 – 011101

D.3 1 1 0 0 0 0 L22·E’ x 1 1 0 0 0 1 0

D.7 1 1 1 0 0 0 L31 ·D’ ·E’ – 1 1 1 0 0 0 0 000111

D.15 1 1 1 1 0 0 L40 L22’ ·L31’ ·E’ + 1 0 1 0 0 0 – 010111

D/K.23 1 1 1 0 1 x L22’ ·L13’ ·E – 1 1 1 0 1 0 + 000101

D.31 1 1 1 1 1 0 L40, L40·E L22’ ·L13’ ·E – 1 0 1 0 1 1 + 010100

Notes:
1. The (·) represents the AND function.
2. The (') represents negation, for example, L22’ represents the negative assertion of L22.
3. The variable E represents bit E in the Data to Send or DATA_IN[4].
4 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
3b/4b Definition
Table 2 shows examples of the coding scheme for the 3b/4b module. The 3b/4b follows the
same convention and notation as previously shown in Table 1 for the 5b/6b code. Notice under
the Name column in Table 2 that D.x.1 represents any pattern of ABCDE with the decimal 1 for
the FGH data. For the case of D/K.x.3 in Table 2, the assertion of K indicates whether the data
F through H represents data or control information. Note the FGH bits of the data to send in
Table 2, represent DATA_IN[5:7] respectively.

The 3b/4b code has a few exceptions and requires an explanation. The encoding of D.x.P7
(primary 7) is replaced by D/K.y.A7 (alternate 7) to eliminate the run length of five continuous
"1s" or "0s" with the abcdei data when the following equation holds valid:

The special characters section identifies this exception with corresponding encoding patterns
of the ABCDE data.

Special Characters
Special characters are defined as extra signal codes needed beyond the 256 (28) characters
already established with K=0. When asserted, the input K character (K=1) recognizes that a
special character is being transmitted. Special characters are generally used for transmitting
code words such as ABORT, RESET, SHUTDOWN, IDLE, and link diagnostics. In the 8b/10b
code, 12 special characters exist as shown below in Table 3, where A-H is the data byte to
encode, and a-j is the encoded transmitted data. Note, under the Name column K.23.7
represents the decimal 23 in bits A-E and 7 in bits FGH. Also note, the data to send ABCDE
FGH is encoded DATA_IN[0:7] respectively. Also in Table 3, Din is the running parity and Dout

Table 2: 3b/4b Encoding

Name

Data to Send Classification

Din

Transmitted
Data

Dout
Alternate

DataF G H K

Bit

Encoding(1) Disparity(1,2,3) f g h j

D/K.x.0 0 0 0 x F’·G’·H’ F’ ·G’ + 0 1 0 0 – 1011

D.x.1 1 0 0 0 (F≠G)·H’ x 1 0 0 1 0

D/K.x.3 1 1 0 x F·G – 1 1 0 0 0 0011

D.x.P7 1 1 1 0 F·G, F·G·H – 1 1 1 0 + 0001

D/K.y.A7 1 1 1 x F·G·H·(S+K)(1) F·G,F·G·H – 0 1 1 1 + 1000

K.28.1 1 0 0 1 (F≠G)·H’ (F≠G)·K + 1 0 0 1 0 0110

K.28.5 1 0 1 1 (F≠G)·K + 1 0 1 0 0 0101

Notes:
1. The (·) represents the AND function.
2. The (') represents negation, for example, H’ represents the negative assertion of bit H.
3. S={c·i·(D–1= –)} OR {c’ ·i’ ·(D–1= +)} (where c and i come from the 5b/6b encoded data)

[(e=i=1) and ((Din) = (-))] or
[(e=i=0) and ((Din) = (+))] or
(K=1)
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
is the parity of the encoded data. All special characters comply with the general coding
constraints of a maximum run length of 5.

Singular Commas

Byte synchronization is accomplished through the use of the singular comma and the IDLE
sequence. The singular comma in the 8b/10b code is a sequence with one run length of 2
ending at position b, contiguous with a sequence of the inverted signal with a run length of 5.
These singular comma bit patterns are shown in bold and noted in Table 3. For example in
Table 3, singular comma K.28.5 has the encoding bit pattern 001111 1000, where the first two
bits are "0" and the next five are "1s" and the alternate data 110000 0111 is just the opposite.
These bit patterns are used to synchronize frames of data during packet transmissions.

10b/8b Decoding
Decoding for each 10b/8b module can be divided for each 6b/5b and 4b/3b decoding scheme,
even though all inputs (abcdei fghj) are used in decoding each bit (AOUT.. HOUT). The
implementation of the decoding logic is a complement to the encoding logic described later in
"8b/10b Design" on page 10, but does not depend on the disparity. The disparity classifications
for 6b/5b and 4b/3b decoding are needed only for error detection. Table 4 and Table 5 show a
few examples of the 6b/5b and 4b/3b decoding rules. In Table 4 and Table 5, Pxy indicates the
number of "1s" (x) and the number of "0s" (y) in the abcd incoming data.

Table 3: Special Characters (K = 1)

Name

Data to Send

Din

Transmitted Data

Dout Alternate DataABCDE FGH K abcdei fghj

K.28.0 00111 000 1 – 001111 0100 0 110000 1011

K.28.1(1) 00111 100 1 – 001111 1001 + 110000 0110

K.28.2 00111 010 1 – 001111 0101 + 110000 1010

K.28.3 00111 110 1 – 001111 0011 + 110000 1100

K.28.4 00111 001 1 – 001111 0010 0 110000 1101

K.28.5(1) 00111 101 1 – 001111 1010 + 110000 0101

K.28.6 00111 011 1 – 001111 0110 + 110000 1001

K.28.7(1) 00111 111 1 – 001111 1000 0 110000 0111

K.23.7 11101 111 1 – 111010 1000 0 000101 0111

K.27.7 11011 111 1 – 110110 1000 0 001001 0111

K.29.7 10111 111 1 – 101110 1000 0 010001 0111

K.30.7 01111 111 1 – 011110 1000 0 100001 0111

Notes:
1. Singular Comma

Table 4: 6b/5b Decoding Scheme

Name

Received Data Classification

Din ABCDE K Douta b c d e i Decoding Class(1,2) Disparity(1,2)

D.0 0 1 1 0 0 0 P22·b·c·(e=i) P22·e’ ·i’ + 00000 0 –

D.0 1 0 0 1 1 1 P22·b’ ·c’ ·(e=i) P22·e·i – 00000 0 +

D.2 0 1 0 0 1 0 P13·i’ P13·i’ + 01000 0 –

D.2 1 0 1 1 0 1 P31·i P31·i – 01000 0 +
6 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
D.5 1 0 1 0 0 1 x 10100 0 0

D.15 1 0 1 0 0 0 P22·a·c·(e=i) P22·e’ ·i’ + 11110 0 –

D.15 0 1 0 1 1 1 P22·a’ ·c’ ·(e=i) P22·e·i – 11110 0 +

D.28 0 0 1 1 1 0 x 00111 0 0

K.28 0 0 1 1 1 1 c·d·e·i P22·e·i – 00111 1 +

K.28 1 1 0 0 0 0 c’ ·d’ ·e’ ·i’ P22·e’ ·i’ + 00111 1 –

Table 5: 4b/3b Decoding Scheme

Name

Received Data Classification

Din FGH K(3) Doutf g h j Decoding Class(1,2) Disparity(1,2)

D/K.x.0 0 1 0 0 f’ ·h’ ·j’ f’ ·h’ ·j’ + 000 x –

D/K.x.0 1 0 1 1 f·h·j f·h·j – 000 x +

D/K.x.1 1 0 0 1 x 100 x 0

K/28.1 0 1 1 0 c’ ·d’ ·e’ ·i’ ·(h≠j) 100 1 0

D/K.x.6 0 1 1 0 x 011 x 0

K.28.6 1 0 0 1 c’ ·d’ ·e’ ·i’ ·(h≠j) 011 1 0

D.x.7 1 1 1 0 f·g·h – 111 0 +

D.x.7 0 0 0 1 f’ ·g’ ·h’ f’ ·g’ ·h’ + 111 0 –

D/K.x.7 0 1 1 1 g·h·j g·h·j – 111 x +

D/K.x.7 1 0 0 0 g’ ·h’ ·j’ g’ ·h’ ·j’ + 111 x –

Notes:
1. The (·) represents the AND function.
2. The (') represents negation, for example, j’ represents the negative assertion of bit j.
3. K = (c=d=e=i) or (P13·e’·i·g·h·j) or (P31·e·i’·g’·h’·j’)

Table 4: 6b/5b Decoding Scheme

Name

Received Data Classification

Din ABCDE K Douta b c d e i Decoding Class(1,2) Disparity(1,2)
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
Error Detection
Error detection for 8b/10b data transmission is done in two manners. The first method of error
checking uses redundancy checks on each packet transmission. For checking the validity of
each data packet, this is the responsibility of a higher level network interface. This interface at
the OSI transport layer manages error control, connection management, and flow control. The
network interface verifies that each packet sent starts and ends with a delimiter that contains at
least one nonzero-disparity subblock (either positive or negative disparity).

The second method, cyclic redundancy checking, evaluates the validity of data received. The
following five checks are required for error checking on the transmission of each data byte.

• All 6b and 4b subblocks of a packet must have either positive, negative, or zero disparity
(difference between "1s" and "0s")

• The disparity out of nonzero disparity blocks must alternate in polarity (positive and
negative)

• All data bytes must follow the disparity rules

• The following conditions also apply to coding rules and are attributed to errors:

a=b=c=d
P13·e’ ·i’
P31·e’ ·i
f=g=h=j
e=i=f=g=h

i≠e=g=h=j
(e=i≠g=h=j)·(c=d=e)’
P31’·e·i’ ·g’ ·h’ ·j’
P13’ ·e’ ·i·g·h·j

Note: Data characters abcdei fghj apply to transmitted data
characters. P13 and P31 are the preliminary disparity
functions used when decoding.
8 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
Operational
Flows

Figure 3 shows the high-level main operational flow for encoding data within the CoolRunner
16b/20b encoder module. For Figure 3, determining the bit encoding and disparity out is
discussed in "8b/10b Design" on page 10.

Figure 4 shows the high-level main operation flow for the CoolRunner 20b/16b decoder
module. This module decodes the 20-bit incoming serial stream of data into a 16-bit parallel
word, detecting errors for each byte sent. This module is only responsible for detecting errors of

Figure 3: Encoding Flow Diagram

X336_03_071000

K Char
= 1?

Start

End

Check 3b/4b
Alternate 7 vs.

Primary 7
condition

Handle
Special

Characters

Determine Bit
Encoding

Send
encoded

data

Determine
Disparity Out

Yes

No
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
each data byte and it is the responsibility of the higher level protocol to handle the
retransmission of incorrect data packets.

8b/10b Design 5b/6b Encoding
For encoding the lower parallel bits, ABCDE, two stages are involved as described in Figure 2.
The first stage creates the bit encoding and disparity as described in Table 1 on page 4 and the
second stage encodes the data to transmit serially. Figure 5 below shows the generation of the
bit encoding functions for the 5b/6b encoder. As described in Table 1, the encoding functions
L40, L04, L13, L31, and L22, represent the number of "1s" and "0s" in the ABCD data bits.
Each input is represented by its assertion (+) or negation (–). Also note, (·) represents the AND
function.

Figure 4: Decoding Flow Diagram

X336_04_022500

Start

End

Bring in serial data
DATA_IN[0:19]

Determine Bit
Decoding

Detect Transmission
Errors

Figure 5: 5b/6b Bit Encoding Functions
X336_05_022500

&
+A
+B &

-(A·B)
-(C·D)

&

+
-A

-(A≠B)

-B

+L40

&
-(A’·B’)
-(C’·D’)

+L04

&
-(A≠B)

-(C’·D’)

&

+
-(C≠D)

+L13

-(A’·B’)

&
-(A≠B)
-(C·D)

&

+
-(C≠D)

+L31

-(A·B)

&
-(A·B)

-(C’·D’)

& +
-(C·D)

+L22
-(A’·B’)

&
-(A≠B)
-(C≠D)

&
+C
+D

&

+
-C

-(C≠D)

-D

KEY:
& = AND
+ = OR
10 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
The encoded data abcdei, is created as shown in Figure 6. The encoding scheme generation
uses the 5b/6b function outputs (i.e., L13, etc.) described in Figure 5.

3b/4b Encoding
The 3b/4b encoding mechanism is similar to that of 5b/6b. The 3b/4b encoding includes the
same two stages, generating the bit encoding functions and creating the encoded data (see
Figure 2). This is shown below in Figure 7 and 8 and includes generation of the S control term
as discussed in Table 2. The inputs for generating the S control term include the running
disparity functions for each 8b/10b module, PD–1S6 and ND–1S6. These control signals

Figure 6: 5b/6b Encoding Generation

X336_06_071000

&

&

&

&

&

& +

&

&

+L40
-B

+

++

+

+

+

KEY:
& = AND
+ = OR

-L40

+C

-L13
-E
-D

+L40

-L13
+E

-L22

-K
-L04

-L40

+D
-L13

-E

b

c

d

e

i

A a
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
represent the assertion and negation of the running disparity from the 5b/6b module (see
Figure 9). Figure 8 shows the generation of the encoded output data, fghj.

Disparity Control
The disparity for each 8b/10b block is diagrammed in Figure 9. The disparity controller
determines the positive and negative disparity for both the incoming data and data out of each
6b and 4b module. In this diagram, P=positive, N=negative, and S4 or S6 denote each 5b/6b or
3b/4b module respectively. For example when PD-1S6 is asserted, the disparity of the data
being encoded (D–1 or running disparity) is positive. See Table 1 on page 4 for the 5b/6b

Figure 7: 3b/4b Bit Encoding Functions

Figure 8: 3b/4b Encoding Scheme Generation

X336_07_071200

&
+F
+G

&

&

&

&

&
-F
-G

+(F·G)

+(F’·G’)

+H

+H

-H

-K +(F·G·K)

+(F·G·H’)

+(F·G·H)

+(F’·G’·H)

+S

&

-PD-1S6
-L31

-D
+E

&

-ND-1S6
-L13

+D
-E

+

+

KEY:
& = AND
+ = OR

X336_08_071200

&

&

-S
+

+

+

+

KEY:
& = AND
+ = OR

-(F·G·H)

-K

-F
f

+G
+(F’·G’·H’)

+((F≠G)·H’)

g

hH

j

12 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
encoding characteristics. Similarly, ND0S4 when asserted, denotes a negative disparity out
(Dout) for the data to be transmitted by the 3b/4b module.

6b/5b and 4b/3b Decoding
The 6b/5b and 4b/3b decoding schemes are similar to the 5b/6b and 3b/4b encoding rules
described previously. Based on the decoding class and disparity class functions for the
incoming data described in Table 4 and Table 5 on page 7, each data bit out can be
determined.

16b/20b
Encoder VHDL
Implementation

The CoolRunner CPLD implementation of the 16b/20b encoder/decoder module is done in two
separate units, encoder logic and decoder logic. Figure 10 shows the block diagram for the
VHDL implementation of the 16b/20b encoder module. An 8b/10b encoder is used for each
upper and lower byte of incoming data. The disparity out of the lower byte of data is the
incoming disparity of the upper byte and vice-versa, to balance the disparity between both
bytes of transmitted data. The main logic for each 8b/10b module is managed by MAIN
CONTROL. The encoding function, ENC_FUNC, is broken up for each 5b/6b and 3b/4b
encoding schemes. The disparity generation, DIS_GEN, determines the disparity out for each
block based on inputs ABCDE FGH, K and DIS_IN. The function S_GEN, determines the S
control signal needed for the encoding function. The signal FRAME_IN is asserted when

Figure 9: Disparity Classification

X336_09_060100

&

+

+

+

+

KEY:
& = AND
+ = OR

+L13·D·E)

+L22
+L31

+E

&
-L31

+D
+E

&
-E

+L22
+L13

+(F’·G’)

+PD-1S6

+PD-1S4

+ND0S6

+ND-1S6

+PD0S6

+ND0S4

+((F G)·K)

(F·G) +ND-1S4

+K
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
DATA_IN is stable by the protocol device, and FRAME_OUT is asserted when the encoding is
complete and ENCODED_DATA is ready to be clocked out serially.

Figure 10: Encoder Logic Block Diagram

X336_11_071000

ENC_FUNC

MAIN CONTROL

5B_6B 3B_4B

DIS_GEN S_GEN

DIS_OUT

AIN8 19

FIN13
EIN12
DIN11
CIN10
BIN9

GIN14

HIN

KIN
CLK
RST

aout
18bout
17cout
16dout
15eout
14iout
13fout
12gout
11hout
10jout

DIS_IN

15

DATA_IN[15:0]

FRAME_IN

K_CHAR
CLK

CLK

UPPER_DIS

LOWER_DIS

RESET

RESET

FRAME_OUT

ENCODED_DATA[19:0]

UPPER ENCODE

MAIN CONTROL

DIS_OUT

AIN0 9

FIN5
EIN4
DIN3
CIN2
BIN1

GIN6

HIN

KIN
CLK
RST

aout
8bout
7cout
6dout
5eout
4iout
3fout
2gout
1hout
0jout

DIS_IN

7

LOWER ENCODE

ENC_FUNC

5B_6B 3B_4B

DIS_GEN S_GEN
14 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
Encoding Main Control Logic
Figure 11 shows the main control block diagram for the 8b/10b encoder identifying all the
interfaces between the state machines and control signals used between modules.

Figure 12 shows the main control state machine for the 8b/10b encoder module. The IDLE
state waits for the FRAME_IN signal to be asserted, assuming the protocol device has waited
for the data in to stabilize. The ASSIGN state makes signal assignments for the incoming byte
of data, DATA_IN[0:7], to variables AIN..HIN. This state also initializes each of the three state
machines within each 8b/10b encoding module, with the start_enc control signal. When the
enc_func state machine is finished it will assert enc_done and the main control logic will then
advance to DONE and asserts frame_out. This state will also present the output variables
AOUT..JOUT to ENCODED_DATA[0:9], to allow the next parallel byte to be brought in the
system while the output bits are clocked out serially.

Figure 11: Main Control Logic Block Diagram

Figure 12: Main Encode State Machine

X336_12_071000

ENC_FUNC

DIS_GEN

S_GEN

MAIN_CONTROL

AIN

BIN

CIN

DIN

EIN

FIN

GIN

HIN

KIN

CLK

FRAME_IN

RST

DIS_IN

en
c_

do
ne

start_enc

sout

s_done

init_rdy

disfunc_rdy

dis_functions

disfunc_rdy

dis_functions

AOUT

BOUT

COUT

DOUT

EOUT

IOUT

FOUT

GOUT

HOUT

JOUT

DIS_OUT

FRAME_OUT

rst=0
frame_in=0

frame_in=1

enc_done=1

enc_done=0

X336_13_022500

IDLE

ASSIGN

DONE
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
Encode Function Control Logic
Figure 13 shows the main logic for controlling each byte of incoming data, AIN..HIN, to 10
encoded serial bits through the 8b/10b encoding rules. Once the start_enc control signal is
asserted, each 5b/6b and 3b/4b encoding function is activated. The ENCODE state generates
the control signals described in Figure 5 and 7 respectively. The S_INPUT state asserts
init_rdy to the S_GEN logic that pos_l31 and pos_l13 have been assigned. The S_INPUT state
then waits for the sout control term to be generated.The ASSIGN state assigns the outputs and
once the data is encoded and ready to be sent the enc_done signal is asserted for the main
control logic to proceed to its DONE state.

Disparity Generation Control Logic

Upper Encoder Disparity

Figure 14 shows the main control logic for generating the disparity out, DIS_OUT, of the upper
encoder module. The disparity of the upper module is fed back into the lower encoder as the
disparity input. The DIS_OUT for each 16b/20b module is the running disparity out of the lower
encoder module. The disparity generation state machine is activated once the start_enc control
signal is asserted from the main control logic. The IDLE state initializes the DIS_OUT signal to
"0". The next state, DIS_FUNC, creates the needed disparity control functions described earlier
in Figure 9 and asserts the disfunc_rdy signal for the S generate state machine. The
DIS_ASGN state combines the disparity functions created in the DIS_FUNC state (both
negative and positive for each 5b/6b and 3b/4b blocks) and determines the running disparity

Figure 13: Encoding Function State Machine

rst=0
start_enc=0

start_enc=1

s_done=1

X336_14_071000

IDLE

ENCODE

ASSIGN

DONE

S_INPUTs_done=0
16 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
out of the 8b/10b module, DIS_OUT. The DIS_ASGN state asserts disout_rdy to the lower
encoder module.

Lower Encoder Disparity

The logic for generating the disparity out in the lower encoder module is identical to the upper
encoder module. The only exception being the lower encoder must wait for the assertion of
disout_rdy from the upper encoder module as shown in Figure 15.

Figure 14: Upper Disparity State Machine

Figure 15: Lower Disparity State Machine

rst=0
start_enc=0

start_enc=1

X336_15_022500

IDLE

DIS_FUNC

DONE

DIS_ASGN

rst=0
start_enc=0

start_enc=1

X336_16_060100

IDLE

disout_rdy=0

disout_rdy=1

DIS_WAIT

DIS_FUNC

DONE

DIS_ASGN
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
S Function Generation
The logic for the generation of the S control term is shown in Figure 16. This control term is
generated after the IDLE state when the encoder function (asserted init_rdy) and disparity
function (asserted disfunc_rdy) are assigned. The input functions for S are used as described
in Figure 7 on page 12 in the ASSIGN_S state. The s_done signal is then asserted to represent
the assignment of sout is complete.

20b/16b
Decoder VHDL
Implementation

Figure 17 shows the main block diagram for the VHDL implementation of the 20b/16b decoder
module. A 10b/8b decoder block is used for each upper and lower byte of incoming serial data.
Once the ENCODED_DATA is read into the module, the decoding function, DEC_FUNC,
determines the outputs AOUT..HOUT based on the serial inputs ain..jin. The error checking for
each 10b/8b decoder, ERR_CHK, asserts the ERROR flag for each 10b/8b module. The overall
error detecting module, ERROR_DETECT, recognizes the difference between special
characters and errors that occur in transmission and asserts the illegal character detect flag,
ILL_CHAR_DET. The 20b/16b decoder module also incorporates the FRAME_IN and
FRAME_OUT control as the 16b/20b encoder module. FRAME_IN is asserted by the external
controller when the ENCODED_DATA is presented to the decoder, and FRAME_OUT is
asserted by the decoder when done decoding and asserting the appropriate error flags. This

Figure 16: S Control Term State Machine

rst=0
init_rdy=0

init_rdy=1 and
disfunc_rdy=1

X336_18_022500

IDLE

ASSIGN_S

DONE
18 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
20b/16b decoder does not take any action based on the detection of an illegal character, this is
the responsibility of the higher-level protocol device.

Figure 17: Decoder Main Control Logic Block Diagram

X336_19_071000

MAIN_DECODE

DEC_FUNC

ERR_CHK

19 15ain
18 bin
17 cin
16 din
15 ein
14 iin
13 fin
12 gin
11 hin
10 jin

CLKCLK
RST

AOUT
14BOUT
13COUT
12DOUT
11EOUT
10FOUT
9GOUT
8HOUT

KOUT
ERROR

RESET

UPPER_DECODE

MAIN_DECODE

DEC_FUNC

ERR_CHK

9 7ain
8 bin
7 cin
6 din
5 ein
4 iin
3 fin
2 gin
1 hin
0 jin

CLKCLK
RST

AOUT
6BOUT
5COUT
4DOUT
3EOUT
2FOUT
1GOUT
0HOUT

KOUT
ERROR

RESET

LOWER_DECODE

DATA_OUT[15:0]

FRAME_IN FRAME_OUT

Serial
Data In

ENCODED_DATA[19:0]

ERROR_DETECT

ILL_CHAR_DET
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
Main Decode Control Logic
The block diagram for the main decode logic is shown in Figure 18. It shows the main control
interface between the decoding function, DEC_FUNC and the error checking module,
ERR_CHK.

The main decoder control logic is shown in Figure 19. The IDLE state waits for FRAME_IN to
be asserted by the higher level control that the ENCODED_DATA[19:0] is stable and ready for
the decoder module. The ASSIGN state assigns the incoming data bits,
ENCODED_DATA[19:0] to each ain through jin for each 10b/8b module. This state asserts
start_dec to start the DEC_FUNC and ERR_CHK state machines. Once these state machines
are done, i.e., dec_done and errchk_done are asserted, the state machine then transitions to
DONE. The DONE state asserts start_det, to start the ERROR_DETECT state machine as well
as assert FRAME_OUT.

Figure 18: 8b/10b Decode Block Diagram

Figure 19: Decoder Main Control Logic

X336_20_041500

MAIN_CONTROL

DEC_FUNC ERR_CHK
de

c_
do

ne

er
rc

hk
_d

on
e

start_dec

start_det

AOUT
BOUT
COUT
DOUT
EOUT
FOUT
GOUT
HOUT

KOUT
ERROR

ain
bin
cin
din
ein
iin
fin

gin
hin
jin

CLK
RST

rst=0
frame_in=0

frame_in=1

dec_done=0 or
errchk_done=0

dec_done=1 and
errchk_done=1

X336_21_060100

IDLE

ASSIGN

DONE
20 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
Decode Function Control Logic
The decoder functional control logic is shown in Figure 20. The assertion of start_dec
transitions the state machine from the IDLE state to the PREL state. The PREL state creates
the preliminary decoding signals from the inputs ain through jin. In the DECODE state, the
decode functions are used in generating AOUT.. KOUT. To generate AOUT.. HOUT and KOUT,
the 10b/8b decoding rules are implemented. The DONE state asserts the dec_done flag to the
main control logic.

Error Checking Control Logic
The error checking control logic, ERR_CHK, in each 10b/8b module, determines when an error
has occurred and when special characters are transmitted. The assertion of the ERROR flag
does not categorize errors from special characters. This is done in the ERROR_DETECT
control logic. This module detects decoding errors such as too long of run length or violating
disparity requirements. The ERROR flag is asserted in the ERROR_CHK state, and the
transition to the DONE state asserts the done_errdet flag. The state machine is shown in
Figure 21.

Figure 20: Decoder Function State Machine

Figure 21: Error Check State Machine

rst=0
start_dec=0

start_dec=1

X336_22_041500

IDLE

DECODE

DONE

PREL

rst=0
start_dec=0

start_dec=1

X336_23_041500

IDLE

ERROR_CHK

DONE

PREL
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
Error Detection Control Logic
Figure 22 shows the main block diagram for the error detection module, ERROR_DETECT of
the 20b/16b decoder. The inputs are the KOUT characters and ERROR flags from each upper
and lower 10b/8b decoder modules. This ERROR_DETECT module recognizes the differences
between special characters and actual errors in each data frame. The ILL_CHAR_DET signal
is asserted for the higher level control when indeed an error has been detected and an illegal
character has been sent.

Figure 23 shows the main control logic for the error detection module. The start_det signal
transitions the state machine from the IDLE state to DETECT, where the output function for the
ILL_CHAR_DET signal is generated. Once ILL_CHAR_DET has been determined the state
machine then transitions to the DONE state.

CoolRunner
XPLA3 CPLD
Implementation

Each 16b/20b encoder and decoder design was implemented in VHDL as described above.
Xilinx Project Navigator was used for compilation, fitting, and simulation of the design in a
CoolRunner CPLD. Xilinx Project Navigator, which includes the ModelTech simulation tool, is
available free-of-charge from the Xilinx website at
www.xilinx.com/products/software/webpowered.htm. Each design was targeted separately for
a 3.3V, 128 macrocell CoolRunner XPLA3 CPLD (XCR3128XL-10VQ100C). The 16b/20b
encoder and decoder utilization is shown in Table 6 and Table 7. This utilization was achieved

Figure 22: Error Detect Block Diagram

Figure 23: Error Detection State Machine

X336_24_0041400

ERROR_DETECT

DATA_OUT[15:0]

KOUT_U

KOUT_L

ERROR_U

ERROR_L

start_det

ILL_CHAR_DET

rst=0
start_det=0

start_det=1

X336_25_022500

IDLE

DETECT

DONE
22 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

www.xilinx.com/products/software/webpowered.htm
http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
using certain fitting parameters, actual results may vary. As shown, there is area remaining in
the CPLD for the implementation of other logic in the system.

Design Verification
The encoder and decoder VHDL design verification has been done through simulation using
ModelSim XE in Project Navigator. The design has been verified both functionally and with the
timing model generated when fitting in a CoolRunner CPLD. A test bench was used as shown
in Figure 24, which keeps the data pipeline full when sending to the encoder module and
checking data coming from the decoder module. The test bench drove the control, data, and
timing needed for each encoder and decoder module. The control in this design is simply a
model for understanding the handshaking when using a 16b/20b transmission scheme.
Implementation in an actual system may require modification of the control signals used in the
source code and test benches provided.

Table 6: 16b/20b Encoder XPLA3 128-Macrocell Utilization

Resource Available Used Utilization

Logic Blocks 8 5 62.50%

Macrocells 128 66 51.56%

Product Terms 384 194 50.52%

Foldback Nands 64 13 20.31%

I/O Pins 80 42 52.50%

Table 7: 20b/16b Decoder XPLA3 128-Macrocell Utilization

Resource Available Used Utilization

Logic Blocks 8 7 87.5%

Macrocells 128 63 49.2%

Product Terms 384 292 76.0%

Foldback Nands 64 8 12.5%

I/O Pins 80 41 51.25%

Figure 24: Encoder and Decoder Testing

(Transmits: 16-bit data)
(Receives: 16-bit data)

Function: Check valid data

16b/20b Encoder 20b/16b Decoder

Test Bench

16-bit data received16-bit data to send

20-bit Data Transmission

(Input: 16-bit data)
(Output: 20-bit encoded data

serial stream)

(Input: 20-bit encoded data
serial stream)

(Output: 16-bit decoded data)

X336_26_060100
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
ModelSim Implementation
Note:

Please refer to XAPP338: Using Xilinx WebPack and ModelTech ModelSim Xilinx Edition as a guide
to using ModelSim with Project Navigator. The ModelSim Quick Start demo provides a good first step
for getting familiar with ModelSim.

The test environment provided in this design instantiates both the encoder and decoder module
and monitors the transfer of data to/from each module. Figure 25 shows the output generated
by each module in the transmission of the data pattern 00000000 01100011 (referenced as
UPPERA..H and LOWERA..H). The ENCODED_DATA[19:0] in this example is then transmitted
serially as the pattern 1001110100 1011010011. Note the disparity into the encoder (based on
the transmission of the previous data) when sending is negative (dis_in=1) and the running
disparity out is positive (dis_out=0). The test bench provided with this design then waits a
latency time to check the data out of the decoder. Note the data is referenced reversed within
each lower and upper byte, with the MSB and LSB switched. See Figure 10 on page 14 and
Figure 17 on page 19 for the data direction.

Figure 25: ModelSim Test Bench Simulation
24 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com/apps/xapp.htm#338
http://www.xilinx.com

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLD R
VHDL Code
Download

VHDL source code and test benches are available for this design. THE DESIGN IS PROVIDED
TO YOU “AS IS”. XILINX MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS,
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND XILINX SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
OR FITNESS FOR A PARTICULAR PURPOSE. This design has not been verified on hardware
(as opposed to simulations), and it should be used only as an example design, not as a fully
functional core. XILINX does not warrant the performance, functionality, or operation of this
Design will meet your requirements, or that the operation of the Design will be uninterrupted or
error free, or that defects in the Design will be corrected. Furthermore, XILINX does not warrant
or make any representations regarding use or the results of the use of the Design in terms of
correctness, accuracy, reliability or otherwise.

XAPP336 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Conclusion This document has detailed the design of two modules for 8b/10b communication protocol. The
16b/20b encoder design enables 16-bit data transmission serially over any fibre channel using
the 8b/10b encoding rules. The 20b/16b decoder module decodes a 20-bit serially encoded
stream of data into a 16-bit data word. Both of these designs demonstrate the ability to use
CoolRunner CPLDs for communication protocols when low-power, high-performance, and
reliable network devices are required. CoolRunner CPLDs are ideal for applications that are
portable, handheld, or power-sensitive. CoolRunner CPLDs provide the lowest power
consumption available today as well as high system reliability. More information about
CoolRunner CPLDs can be found at http://www.xilinx.com/products/xpla3.htm

Glossary The glossary, defined in Table 8 is intended to identify terms used in 8b/10b transmission.

Table 8: Glossary

ATM Asynchronous Transmission Mode

D Character Data character.

Decoding Class Predetermined classification for transmitted data. The decoding
class is determined based on the characters of the transmitted
data. This is done by essentially counting the number of "1s" and
"0s" in each data byte that was sent.

Disparity Running parity is determined upon sending each byte of data in
8b/10b transmission. Logical value is positive (+) when more "1s"
than "0s" are sent. Logical value is negative (–) when more "0s"
than "1s" are transmitted. If the parity is neither positive or negative,
hence an equal number of "1s" and "0s" transmitted, the logical
parity value is zero (0). These values are shown for disparity in
(Din) and disparity out (Dout) in Table 1 on page 4. Positive
disparity translates to a "0" running disparity in the code. A negative
disparity translates to a "1" running disparity in the code. When the
parity is neither positive or negative, the running disparity remains
unchanged.

Encoding Class Predetermined classification for transmitting data. The encoding
class is determined based on the characters of the data to be sent.
This is done by essentially counting the number of "1s" and "0s" in
each data byte to send.

K Character Input parameter to control transmission of special characters.
When K is asserted or equal to "1", a special character is encoded
and transmitted. When K is equal to "0", data characters are
transmitted. For more information on control characters, see
"Special Characters" on page 5.
XAPP336 (v1.0) July 15, 2000 www.xilinx.com 25
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/products/xaw/coolvhdlq.htm
http://www.xilinx.com/products/xpla3.htm

Design of a 16b/20b Encoder/Decoder Using a CoolRunner CPLDR
References 1. Halsall, Fred, Data Communications, Computer Networks and Open Systems. Fourth Edition.
Addison-Wesley Publishing Company. 1996.

2. Widmer, A.X. & Franaszek, P.A., A DC-Balanced, Partitioned-Block, 8b/10b Transmission Code. IBM
J. Res. Develop., Vol. 27, No. 5. September 1983.

3. Gigabit Ethernet And Fibre Channel Technology. Optimized Engineering Technical Compendium
Corporation. (http://www.optimized.com)

Revision
History

The following table shows the revision history for this document.

Lxy Bit classification for encoding. Classification represents the four
least significant bits being sent. "x" represents the number of "1s"
in transmission, while "y" represents the number of "0s" being sent.
For example, L13, is the bit encoding for sending one "1" and three
"0s". See Table 1 on page 4 for more examples.

OSI Open Systems Interconnection

Pxy Bit classification for decoding. Classification represents the four
least significant bits of data being decoded. "x" represents the
number of "1s" that were sent, while "y" represents the number of
"0s" that were sent. For example, P31, is the decoding
classification that three "1s" and one "0" were sent. See Table 4 on
page 6 for more examples.

Run length Length of continuous "1s" or "0s" in an bit stream. The 8b/10b
encoding mechanism never allows data to be transmitted with a run
length of more than 5. For an example, see "Singular Commas" on
page 6.

Special Characters Special characters are characters used beyond the 8-bit, 256
character limitation. Special characters are denoted by the
assertion of the K control character. These characters are used for
things such as START, IDLE, RESET, STOP, and link diagnostics.
For more information on special characters, see "Special
Characters" on page 5.

Synchronization Way to represent or arrange (events) to indicate coincidence or
coexistence.

Table 8: Glossary

Date Version # Revision

07/15/00 1.0 Initial Release
26 www.xilinx.com XAPP336 (v1.0) July 15, 2000
1-800-255-7778

http://www.xilinx.com
http://www.optimized.com

	Summary
	Disclaimer
	Notice
	Introduction
	8b/10b Background
	Structure of 8b/10b Code
	Byte Synchronization
	Running Disparity
	Error Detection

	8b/10b Code Definition
	5b/6b Definition
	3b/4b Definition
	Special Characters
	Singular Commas

	10b/8b Decoding
	Error Detection

	Operational Flows
	8b/10b Design
	5b/6b Encoding
	3b/4b Encoding
	Disparity Control
	6b/5b and 4b/3b Decoding

	16b/20b Encoder VHDL Implementation
	Encoding Main Control Logic
	Encode Function Control Logic
	Disparity Generation Control Logic
	Upper Encoder Disparity
	Lower Encoder Disparity

	S Function Generation

	20b/16b Decoder VHDL Implementation
	Main Decode Control Logic
	Decode Function Control Logic
	Error Checking Control Logic
	Error Detection Control Logic

	CoolRunner XPLA3 CPLD Implementation
	Design Verification
	ModelSim Implementation

	VHDL Code Download
	Conclusion
	Glossary
	References
	Revision History

