

Summary This document details the VHDL implementation of a Serial Peripheral Interface (SPI) master in
a Xilinx CoolRunner® XPLA3™ CPLD. CoolRunner CPLDs are the lowest power CPLDs
available, making this the perfect target device for an SPI Master. To obtain the VHDL code
described in this document, go to section VHDL Code Download and Disclaimer, page 19 for
instructions.

Introduction The Serial Peripheral Interface (SPI) is a full-duplex, synchronous, serial data link that is
standard across many microprocessors, microcontrollers, and peripherals. It enables
communication between microprocessors and peripherals and/or inter-processor
communication. The SPI system is flexible enough to interface directly with numerous
commercially available peripherals.

A SPI Master design has been implemented in a CoolRunner XPLA3 CPLD. The CoolRunner
SPI Master design can be used to provide a SPI controller to those microcontrollers or
microprocessors that do not contain a SPI interface. A high-level block diagram is shown in
Figure 1. The microcontroller (µC) interface chosen in this SPI Master implementation is based
on the popular 8051 microcontroller bus cycles, but can easily be modified to other
microcontroller interfaces. For more information on the 8051 microcontroller interface, please
refer to XAPP349, CoolRunner CPLD 8051 Microcontroller Interface.

SPI Background This section will describe the main protocol of the SPI bus. For more details and timing
diagrams, please refer to the description of the SPI bus in the Motorola 68HC11 Reference
Manual.

The SPI bus consists of four wires, Serial Clock (SCK), Master Out Slave In (MOSI), Master In
Slave Out (MISO), and Slave Select (SS_N), which carry information between the devices
connected to the bus.

Application Note: CoolRunner CPLD

XAPP348 (v1.0) November 29, 2000

CoolRunner XPLA3 Serial Peripheral
Interface Master

R

Figure 1: CoolRunner SPI Master

Address

Data

Control
Microcontroller Microcontroller

Interface

SPI Master
Interface

CoolRunner SPI Master
SCK

SS_N[7:0]

SS__IN_N

MOSI
MISO

X348_01_112500
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com/xapp/xapp349.pdf
http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

CoolRunner XPLA3 Serial Peripheral Interface Master
R

The SCK control line is driven by the SPI Master and regulates the flow of data bits. The master
may transmit data at a variety of baud rates; the SCK line transitions once for each bit in the
transmitted data. The SPI specification allows a selection of clock polarity and a choice of two
fundamentally different clocking protocols on an 8-bit oriented data transfer. The master selects
one of four different bit rates for SCK. Data is shifted on one edge of SCK and is sampled on the
opposite edge when the data is stable.

The MOSI data line carries the output data from the master which is shifted as the input data to
the selected slave. The MISO data line carries the output data from the selected slave to the
input of the master. There may be no more than one slave transmitting data during a particular
transfer.

All SCK, MOSI, and MISO pins are tied together. A single SPI device is configured as a master;
all other SPI devices on the SPI bus are configured as slaves. The single master drives data out
its SCK and MOSI pins to the SCK and MOSI pins of the slaves. One selected slave device can
drive data out its MISO pin to the MISO master pin.

The SS_N control line selects a particular slave via hardware control. This control line allows
individual selection of a slave SPI device. Slave devices that are not selected do not interfere
with SPI bus activities. Slave devices ignore the SCK signal and keeps the MISO output pin in
a high impedance state unless the slave select pin is active low.

The SS_IN_N control line can be used as an input to the SPI Master indicating a multiple-
master bus contention (SS_IN_N). If the SS_IN_N signal to the master is asserted, it indicates
that some other device on the bus is attempting to be a master and address this device as a
slave. Assertion of SS_IN_N automatically disables SPI output drivers in the master device if
more than one device attempts to become master.

The clock phase and polarity can be modified for SPI data transfers. The clock polarity (CPOL)
selects an active high or active low clock and has no significant effect on the transfer format. If
CPOL = "0", then the idle state of SCK is low. If CPOL = "1", then the idle state of SCK is high.
The clock phase (CPHA) can be modified to select one of two fundamentally different transfer
formats. If CPHA = "0", data is valid on the first SCK edge (rising or falling) after SS_N has
asserted. If CPHA = "1", data is valid on the second SCK edge (rising or falling) after SS_N has
asserted. The clock phase and polarity should be identical for the master SPI device and the
communicating slave device.

Figure 2 shows the timing diagram for a SPI data transfer when the clock phase, CPHA, is set
to "0". The waveform is shown for both positive and negative clock polarities of SCK. The SCK
signal remains inactive for the first half of the first SCK cycle (SCK Cycle 1). In this transfer
format, the falling edge of SS_N indicates the beginning of a data transfer. Therefore, the SS_N
2 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

line must be negated and reasserted between each successive serial byte. If the slave writes
data to the SPI data register while SS_N is active low, a write-collision error results.

Figure 3 shows the timing diagram for a SPI transfer when the clock phase, CPHA, is set to "1".
The waveform is shown for both positive and negative clock polarities of SCK. The first SCK
cycle begins with an edge on the SCK line from its inactive to its active level.The first edge of
SCK indicates the start of the data transfer in this format. The SS_N line may remain active low
between successive transfers. This format is useful in systems with a single master and single
slave.

When an SPI transfer occurs, an 8-bit data word is shifted out one interface pin while a different
8-bit data word is being shifted in on another interface pin. This can be viewed as an 8-bit shift
register in the SPI Master device and another 8-bit shift register in a SPI slave device that are
connected as a circular 16-bit shift register. When a transfer occurs, this 16-bit shift register is
shifted 8 positions, thus exchanging the 8-bit data between the master and slave devices.

The SPI specification details the timing and wave forms for byte transfers on the SPI bus, but
does not dictate the data protocol used in these transfers, i.e., the interface specification does

Figure 2: Data Transfer on the SPI Bus with CPHA=0

SCK Cycle 1

MSB

SCK (CPOL=1)

SCK (CPOL=0)

MOSL

MISO

SS

6 5 1 LSB

MSB

** Not defined, but normally MSB of character just received.

6 5 1 LSB **

SCK Cycle 2 SCK Cycle 3 SCK Cycle 4-6 SCK Cycle 7 SCK Cycle 8

X348_02_112500

Figure 3: Data Transfer on SPI Bus with CPHA=1

Cycle 1

MSB

SCK (CPOL=1)

SCK (CPOL=0)

MOSL

MISO

SS

6 5 1 LSB

MSB

** Not defined, but normally LSB of previously transmitted character.

6 5 1 LSB**

Cycle 2 Cycle 3 Cycle 4-6 Cycle 7 Cycle 8

X348_03_112500
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

not specify that the first byte contain an address or a read/write line. When communicating to
devices over the SPI bus, it is important to review the specifications of these devices to
determine the required communication protocol so that commands, addresses and the data
direction (read/write) can be set correctly. The CoolRunner CPLD SPI Master implementation
will not enforce a particular data protocol. It is expected that the µC will specify the data bytes
to be transferred on the SPI bus in the correct order. All data received on the SPI bus will be
stored in a receive register for the user logic to interpret. All data written to the transmit register
will be transmitted on the SPI bus.

CoolRunner
SPI Master
Implementation

The CoolRunner CPLD implementation of an SPI Master supports the following features:

• Microcontroller interface
• Multi-master bus contention detection and interrupt
• Eight external slave selects
• Four transfer protocols available with selectable clock polarity and clock phase
• SPI transfer complete microcontroller interrupt
• Four different bit rates available for SCK

Signal
Descriptions

The 36 I/O signals of the CoolRunner CPLD SPI Master are described in Table 1. Pin numbers
have not been assigned to this design, this can be done to meet the system requirements of the
designer.

Table 1: CoolRunner SPI Master Signal Description

Name Direction Description

MOSI Output SPI Serial Data Output. Serial data output from the
SPI Master to a SPI slave.

MISO Input SPI Serial Data Input. Serial data input from a SPI
slave to the SPI Master.

SS_IN_N Input SPI Slave Select Input. Active Low slave select
input to the SPI Master. If this line is asserted, it
indicates that another master on the bus was trying
to select this SPI Master as a SPI slave and thus bus
contention can occur. Assertion of this line causes
the CoolRunner CPLD SPI Master to reset all
communication and interrupt the µC.

SS_N[7:0] Output SPI Slave Selects. Active Low slave select signals
to eight SPI slaves in the system.

SCK Output SPI Serial Clock. Clock output selectable as 1/2,
1/4, 1/8, or 1/16 of the system clock.

ADDR[15:8] Input µC Address Bus. High byte address bus.

ADDR_DATA[7:0] Bidirectional µC Multiplexed Address/Data Bus.

ALE_N Input Address Latch Enable. Active Low µC control
signal indicating that the data present on the
multiplexed address/data bus is a valid address.

PSEN_N Input Program Store Enable. Active Low µC control
signal indicating that the current bus cycle is an
access to the external program memory.

RD_N Input Read Strobe. Active Low µC control signal
indicating that the current bus cycle is a read cycle.
4 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

WR_N Input Write Strobe. Active Low µC control signal
indicating that the current bus cycle is a write cycle.

INT_N Output Interrupt Request. Active Low signal to generate an
interrupt to the µC. This signal is asserted when
interrupts are enabled and there is SPI bus
contention as indicated by SS_IN_N or when the
transmit register is empty (SPITR) during a
transaction, or when the receive register is full and
the transaction is complete.

XMIT_EMPTY Output Transmit Register Empty. Active High signal
indicating that the transmit register (SPITR) is empty.
This bit is used to signal the loading of data from the
SPITR to the SPI transmit shift register indicating
that the µC can load another byte of data into the
SPITR. This signal could be connected to an µC
interrupt or to an I/O port. This signal causes INT_N
to assert during data transfers but does not cause an
interrupt after the transfer is complete (i.e. START =
0). This signal is brought out of the CPLD as a
separate I/O pin for systems that do not want to use
interrupts.

RCV_FULL Output Receive Register Full. Active High signal indicating
that the receive register (SPIRR) is full. This bit is
used to signal the loading of data from the SPI
receive shift register to the SPIRR. This signal could
be connected to an µC interrupt or to an I/O port.
This signal causes INT_N to assert only for the last
word received from the transfer (i.e., START = 0).
This signal is brought out of the CPLD as a separate
I/O pin for systems that do not want to use interrupts.

CLK Input Clock. This clock is input from the system and is
used to generate the SCK signal.

RESET Input Reset. Active High reset from the system. When
asserted, all logic in the CoolRunner CPLD is reset.

Table 1: CoolRunner SPI Master Signal Description
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

Block Diagram The block diagram of the CoolRunner CPLD SPI Master, shown in Figure 4 was broken into two
major blocks, the µC interface and the SPI interface.

Figure 4: SPI Master Block Diagram

A
D

D
R

[1
5:

8]

IN
T

_N

S
C

K

S
S

_I
N

_N

S
S

_N
[7

:0
]

X
M

IT
_E

M
P

T
Y

A
D

D
R

_D
A

T
A

[7
:0

]

R
C

V
_F

U
LL

A
LE

_N

P
S

E
N

_N

R
D

_N

W
R

_N

RESET

SYS_CLK

Address Decode/Bus Interface

X348_04_112500

Transmit Register
SPITR

Receive Register
SPIRR

Slave Select
Register - SPISSR

Control Register
SPICR

Status Register
SPISR

 Microcontroller
Interface

SPI Interface

SPI Shift Registers

SPI Control
State Machine

Input
Registers

SCK Clock
Logic

M
O

S
I

M
IS

O

6 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

µC Interface
Logic

The µC interface for the SPI Master design supports a byte-wide, multiplexed address/data bus
protocol found in the popular 8051 µC. This protocol is the method in which the µC reads and
writes the registers in the CoolRunner CPLD and is shown in Figure 5.

Note that the code to interface to the 8051 µC is a separate VHDL module which interfaces to
the SPI interface logic via a set of registers. Therefore, this code can easily be replaced with the
µC interface of your choice.

Figure 5: µC Read/Write Protocol

Microcontroller

1. Place high byte of address on ADDR[15:8]

2. Place low byte of address on ADDR_DATA[7:0]

3. Assert Address Latch Enable (ALE_N)

4. Negate Program Store Enable (PSEN_N)

Address the Device

X348_05_112500

1. If write cycle, negate Write Strobe (WR_N) then
 remove data from ADDR_DATA[7:0]

2. If read cycle, latch data from ADDR_DATA[7:0]
 then negate Read Strobe (RD_N)

Terminate Transfer

1. Remove data from ADDR_DATA{7:0]

2. If write cycle, place data on ADDR_DATA[7:0]
 and assert Write Strobe (WR_N)

3. If read cycle, assert Read Strobe (RD_N)

Transfer Data

1. Remove Address Latch Enable (ALE_N)

Terminate the Cycle

Start Next Cycle

SPI Master

1. Latch the address

2. Decode the address and determine if the
 CPLD is being addressed

Decode the Address

1. If write cycle, latch data on ADDR_DATA[7:0]
 into addressed register

2. If read cycle, output data from addressed
 register on ADDR_DATA[7:0]

Transfer Data

1. If read cycle, remove data from
 ADDR_DATA[7:0]

Terminate Transfer
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

Address Decode/Bus Interface Logic
The µC bus protocol is implemented in the CoolRunner SPI Master in the state machine shown
in Figure 6.

In the first cycle, the µC places the address on the address bus and asserts address latch
enable (ALE_N). ALE_N indicates that the data on the multiplexed address/data bus is a valid
address and that the address on ADDR[15:0] is also valid.

Upon the assertion of ALE_N, the CoolRunner SPI Master transitions to the ADDR_DECODE
state to decode the address and determine if it is the device being addressed. The enables for
the internal registers are set in this state. ALE_N is also used to register the lower address bits
from the multiplexed ADDR_DATA bus.

If this is a write cycle, the µC removes the address from the multiplexed address/data bus and
places the data to be written onto these signals. The write strobe (WR_N) is then asserted. If
this a read cycle, the µC 3-states the multiplexed address/data bus and asserts the read strobe
(RD_N) indicating that the CoolRunner SPI Master can place data from the addressed register
on the data bus.

If the CoolRunner SPI Master is being addressed and either RD_N or WR_N are asserted, the
CoolRunner SPI Master progresses to the DATA_TRS state. If this is a read cycle, the
requested data is placed on the bus and if this is a write cycle, the data from the data bus is
latched in the addressed register.

The µC latches the data present on the bus if this is a read cycle and then negates the read
strobe (RD_N). If this is a write cycle, the µC removes data from the bus and then negates the
write strobe (WR_N). The negation of either RD_N or WR_N causes the CoolRunner SPI
Master to progress to the END_CYCLE state. The CoolRunner CPLD will 3-state the
multiplexed address/data bus in this state, removing the data if it is a read cycle.

At this point, the µC ends the cycle by negating address latch enable (ALE_N), which causes
the CoolRunner CPLD to return to the IDLE state.

CoolRunner SPI Master Registers
The base address used for address decoding is set in the VHDL code via the constant
BASE_ADDRESS. The lower four address bits determine which register inside the CPLD is
being accessed. Each register address is set by a constant in the µC interface VHDL code that
can easily be modified to meet the addressing scheme of the system.

Figure 6: µC Bus Interface State Machine

IDLE

ale_n=0
psen_n=1

rd_n=0 or wr_n=0
addr_match=1

rd_n=1 or wr_n=1

ADDR_DECODE

DATA_TRS

END_CYCLE

X348_06_112500

rd_n=0 or wr_n=0

addr_match=0
8 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

The registers supported in the CoolRunner SPI Master are described in the Table 2. The µC
interface logic of the CoolRunner SPI Master handles the reading and writing of these registers
by the µC and supplies and/or retrieves these bits to/from the SPI interface logic.

SPI Status Register (SPISR)

This register contains the status of the SPI controller. This status register is read-only with the
exception of certain bits which are software clearable as described in Table 3.

Table 2: SPI Master Registers

Address Register VHDL Constant Description

BASE + $80\h SPISR SPISR_ADDR SPI Status Register

BASE + $84\h SPICR SPICR_ADDR SPI Control Register

BASE + $88\h SPISSR SPISSR_ADDR SPI Slave Select Register

BASE + $8A\h SPITR SPITR_ADDR SPI Transmit Data Register

BASE + $8E\h SPIRR SPIRR_ADDR SPI Receive Data Register

Table 3: Status Register Bits

Bit

Location Name µC Access Description

7 Done Read Done Bit. While one byte of data is being transferred, this bit is cleared. It is
set during the eighth SCK clock period of a byte transfer.

• “1” transfer is complete

• “0” transfer in progress

6 SPIERR Read
Software
Clearable

SPI Error Bit. When the SS_IN_N input pin is asserted, this bit is set
indicating an SPI error condition. The SPI interface resets and 3-states all
signals on the SPI bus. An interrupt will be asserted to the µC when this bit
is set if interrupts are enabled. This bit must be cleared by the µC writing a
"0" to this bit in the interrupt service routine. See Figure 11 for details on how
to handle an SPI error.

5 BB Read Bus Busy Bit. This bit indicates the status of the SPI bus. This bit is set when
a slave select line (SS_N) is asserted and cleared when a slave select line
(SS_N) is negated.

• “1” indicates the bus is busy

• “0” indicates the bus is idle

The µC should examine this bit to insure that the bus is not busy before
configuring the SPI interface for an SPI transaction.

4 INT_N Read
Software
Clearable

Interrupt Bit. This bit is asserted (active low) when an interrupt is pending
which causes a processor interrupt request if INTEN is set. An interrupt is
asserted if any of the following conditions occur:

• The transmit register (SPITR) is empty and there are more data words
to transmit (START = 1)

• The receive register (SPIRR) is full and there are no more data words to
transmit (START = 0)

• An SPI error has occurred

This bit is negated whenever the µC writes data to the SPITR, reads data
from the SPIRR, or resets the SPIERR bit.
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

SPI Control Register (SPICR)

This register contains the bits to configure the SPI Master. (Table 4)

3 XMIT_EMPTY Read Transmit Register Empty. This bit is set when the transmit register (SPITR)
is empty. It is cleared when the µC writes data into this register. An interrupt
will be asserted to the µC when this bit is set if interrupts are enabled and
there are more data words to transmit (START = 1). Note that this bit is also
an output pin.

2 RCV_FULL Read Receive Register Full. This bit is set whenever the receive register (SPIRR)
is full. It is cleared when the µC reads from this register. An interrupt will be
asserted to the µC when this bit is set if interrupts are enabled and there are
no more data words to transmit (START =0). Note that this bit is also an
output pin.

1-0 Unused Unused Bits. These bits will read as "0" when the status register is read.

Table 3: Status Register Bits (Continued)

Bit

Location Name µC Access Description

Table 4: Control Register Bits

Bit
Location Name µC Access Description

7 SPIEN Read/Write SPI Master Enable. This bit must be set before any other SPICR bits have
any effect

• “1” enables the SPI Master

• “0” resets and disables the SPI Master

6 INTEN Read/Write Interrupt Enable.

• “1” enables interrupts. An interrupt occurs if the INT_N bit in the status
register is also set

• “0” disables interrupts but does not clear the cause of any currently
pending interrupts

5 START Read/Write SPI Transfer Start. When the µC changes this bit from “0” to “1”, the SPI
Master begins to transfer the data in the SPI Transfer data register (SPITR)
on the SPI bus if XMIT_EMPTY is negated. All data received from the SPI
bus is captured in the SPI Receive data register (SPIRR). As long as this bit
stays asserted, SPI transfers will occur. After the µC has written the last data
word to be transferred in SPITR and XMIT_EMPTY asserts, the µC must
negate this bit to indicate that this is the last word in the SPI transfer.

4-3 CLKDIV Read/Write Clock Divider Bits. These bits determine the frequency of SCK by selecting
a divide by 4, 8,16, or 32 of the system clock.

• "00" - SCK is 1/4 of the system clock

• "01" - SCK is 1/8 of the system clock

• "10" - SCK is 1/16 of the system clock

• "11" - SCK is 1/32 of the system clock
10 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

SPI Slave Select Register (SPISSR)

This register contains bits which indicate which slave select line should be asserted. A "1" in a
bit position indicates that the corresponding bit in the slave select output bus is asserted
according to the SPI timing specifications. A "0" in a bit position indicates that the
corresponding bit in the slave select output bus stays negated. This allows the µC to specify
which slave select line is asserted during a SPI data transfer. Note that only one slave select
line can be asserted during a SPI data transfer. This must be adhered to by the µC, the
hardware implementation of this specification does not enforce this requirement, in other
words, if the µC sets multiple bits in this register, multiple slave select lines will be asserted for
the SPI transfer. (Table 5)

SPI Transfer Data Register (SPITR)

This register contains data to be transmitted on the SPI bus on the MOSI pin (Table 6). Data
written into this register is output on the SPI bus once the START bit in the control register
(SPICR) has been asserted. As long as the START bit in the SPICR is asserted, additional
bytes of data in this register will continue to be transmitted on the SPI bus.

Once this data has been loaded into the SPI transmit shift register, XMIT_EMPTY asserts and
the µC can place the next data byte for transmission on the SPI bus into this register. Writing
data into this register resets the XMIT_EMPTY flag. Note that XMIT_EMPTY must be negated

2 CPHA(1) Read/Write Clock Phase Bit. This bit determines the clock phase of SCK in relationship
to the serial data.

• "0" - data is valid on first SCK edge (rising or falling) after slave select
has asserted

• "1" - data is valid on second SCK edge (rising or falling) after slave
select has asserted

1 CPOL(1) Read/Write Clock Polarity Bit. This bit determines the polarity of SCK.

• "0" - SCK is low when idle

• "1" - SCK is high when idle

0 RCV_CPOL(1) Read/Write Receive Clock Polarity. This bit determines whether the MISO data is
sampled on the rising or falling edge of the outgoing SCK.

• "0" - MISO data is sampled on the falling edge of SCK

• "1" - MISO data is sampled on the rising edge of SCK

Note that in most cases, RCV_CPOL = "1" when CPHA is the same value
as CPOL and is "0" otherwise. However, this bit should be set according to
the slave that is being accessed.

Notes:
1. CPHA, CPOL, RCV_CPOL should be set to match the protocol expected by the SPI slave that is the target of the SPI bus cycle.

Table 4: Control Register Bits (Continued)

Bit
Location Name µC Access Description

Table 5: SPI Slave Select Register

Bit
Location Name µC Access Description

7 - 0 SS_N7 - SS_N0 Read/Write SPI Slave Selects
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

and START must be asserted before the SPI state machine will begin transmission of data on
the SPI bus.

SPI Receive Data Register (SPIRR)

This register contains the data received from the SPI bus on the MISO pin. When a byte of data
has been received from the SPI bus and transferred to the SPIRR, the RCV_FULL flag asserts.
The µC then reads data from the SPIRR which resets the RCV_FULL flag. Because data is
loaded from the SPI receive shift register to the SPIRR, the µC has an entire 8-bit SPI transfer
to read the data from the SPIRR. (Table 7)

SPI Interface
Logic

The SPI bus interface logic consists of several different processes as seen in Figure 4. Control
bits from the µC interface registers determine the behavior of these processes.

SPI Control State Machine
This process generates the slave select signals and controls the shift and load operations of the
SPI transmit shift register. It also monitors the SPI bus and determines when a byte transfer is
complete. This process also generates clock mask signals that control when the clock is output
to the SPI bus. If the START signal stays asserted after a byte has been transferred, the state
machine will continue to output the next byte and the SCK signal continues to transition. Note
that if CPHA = 0, the slave select signal will negate and then re-assert between consecutive
byte transfers as stated in the SPI specification. If the START signal is negated after a byte has
been transferred, then the state machine first insures that the current transfer has been
completed and the SCK output is placed in its inactive state as determined by CPOL. The slave

Table 6: SPI Transmit Data Register

Bit
Location Name µC Access Description

7 - 0 D7 - D0 Read/Write SPI Transmit Data

Table 7: SPI Receive Data Register

Bit
Location Name µC Access Description

7 - 0 D7 - D0 Read/Write SPI Receive Data
12 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

select is then negated after the required hold time. The SPI control state machine is shown in
Figure 7.

The SPI Control state machine remains in the IDLE state until the START bit in the SPI Control
register is asserted and the XMIT_EMPTY signal is negated. At this point, the state machine
moves to the ASSERT_SSN1 state to assert the internal SS_N signal. This signal is then
masked with the SPI Slave Select Register (SPISSR) to generate the slave select signals
output to the system. After a rising edge of the internal SCK (SCK_INT_RE=1), the state
machine transitions to the ASSERT_SSN2 state, keeping SS_N asserted until the falling edge
of the internal SCK. This state machine will insure that SS_N will assert ~1 SCK period before
the first SCK edge, meeting the SS_N setup time requirement of most SPI slave devices. This
timing parameter should be verified by the designer for the target system as the SS_N setup
time requirement may vary between different SPI slaves.

After SS_N has been asserted for both the ASSERT_SSN1 and ASSERT_SSN2 states, the
state machine transitions to the UNMASK_SCK state. The first edge of the phase 1 (CPHA=1)
version of SCK occurs before the first data is output, therefore, this state unmasks the phase1
version of SCK. The SPI transmit shift register is loaded with data from the SPITR in this state.
The SPI transmit shift register is clocked by the rising edge of the internal SCK signal. The state

Figure 7: SPI Control State Machine

IDLE

start=1
xmit_empty=0

sck_int_re=1

sck_int_fe=1

sck_int_re=1

ASSERT_SSN1

ASSERT_SSN2

UNMASK_SCK

XFER_BIT

bit_cnt=8

ASSERT_DONE

sck_int_fe=1

CHK_START

sck_int_fe=1

HOLD_SSN1

sck_int_fe=1

HOLD_SSN2

sck_int_fe=1

NEGATE_SSN

start=0 or
cpha=0 and ((cpol=0 and sck_fe=1) or

 (cpol=1 and sck_re=1))

MASK_SCK

X348_07_112500

sck_int_fe=1

cpha=1
start=1
xmit_empty=0

bit_cnt < > 8
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

machine waits for a rising edge of the internal SCK signal (SCK_INT_RE) to leave this state to
insure that the SPI transmit shift register has been loaded.

The state machine then moves to the XFER_BIT state. The first edge of the phase 0 (CPHA=0)
version of SCK occurs after data has been output, therefore, this state unmasks the phase 0
version of SCK. This state shifts data from the SPI transmit shift register and the state machine
remains in this state until the byte transfer is complete. Once the byte transfer has completed,
the state machine transitions to the ASSERT_DONE state where the DONE signal in the SPI
Status Register (SPISR) is asserted. The state machine will not transition to the CHK_START
state until the next falling edge of the internal SCK to synchronize this state machine to the
internal SCK.

The SPI specification requires that SS_N be negated and re-asserted between consecutive
byte transfers when CPHA=0. If CPHA=1, SS_N can remain asserted during consecutive byte
transfers. Therefore, if START is still asserted in the CHK_START state and CPHA=1 and
XMIT_EMPTY is negated, the state machine transitions back to the UNMASK_SCK state and
continues SPI transfers. If START is negated or CPHA=0, the state machine transitions to the
MASK_SCK state which masks both the phase 0 and the phase1 versions of SCK. Note,
however, that the state machine waits for either the rising edge (if CPOL=1) or the falling edge
(if CPOL=0) of the external SCK before transitioning to this state to insure that the transmission
has been completed before masking the external clock.

At the next falling edge of the internal SCK (SCK_INT_FE), the state machine transitions to the
HOLD_SSN1 state. SS_N must stay asserted for some time period after the last SCK edge.To
insure that the SS_N hold time is at least 2 SCK periods, the state machine transitions to
HOLD_SSN2 after the next falling edge of the internal SCK (SCK_INT_FE) and remains in this
state until another falling edge of the internal SCK has occurred. This will meet the SS_N hold
time requirement of most SPI slave devices. This timing parameter should be verified by the
designer for the target system as the SS_N hold time requirement may vary between different
SPI slaves.

At this point, the state machine transitions to the NEGATE_SSN state and remains in this state
until the next falling edge of the internal SCK. This insures that the pulse width of SS_N
between SPI transfers is at least one SCK period. This will meet the SS_N pulse width
requirement of most SPI slave devices. This timing parameter should be verified by the
designer for the target system as the SS_N pulse width requirement may vary between different
SPI slaves.

The state machine then transitions to the IDLE state. If START is asserted and XMIT_EMPTY
is negated, the SPI transfer and state machine operation will repeat.

Note that if no further SPI transfers are required, the µC must negate the START signal after
writing the last data word of the transmission to the SPITR as shown in Figure 11.

Also note that at any time, the assertion of SS_IN_N will cause the SPI Control state machine
to return to the IDLE state and the MOSI, SS_N, and SCK outputs will be 3-stated. The SPI
Master will remain in this state until the SS_IN_N signal is negated and the START signal is
asserted. When a SPI error occurs, the system must be examined to determine the cause of
the error. The µC can reset the bit in the SPI status register (SPISR) and then continue to read
the SPI status register (SPISR) to determine if the system error has been corrected. Once the
error has been fixed at the system level, the SPI interface should be reset to guarantee correct
operation as shown in Figure 11. The µC can reset the SPI Master by negating the SPIEN bit
in the SPI control register (SPICR).

Transmit Empty and Receive Full Flags
The transmit empty flag (XMIT_EMPTY) is set whenever data is loaded from the SPITR to the
SPI transmit shift register. This signal is clocked from the internal SCK and is reset whenever
the µC writes data into the SPITR or when the system reset signal is asserted.
14 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

The receive full flag (RCV_FULL) is set whenever data is loaded from the SPI receive shift
register to the SPIRR. This signal is clocked from the system clock and is reset whenever the
µC reads data from the SPIRR.

SCK Clock Logic
This process generates the SCK output based on the CLKDIV, CPHA, and CPOL settings in
the SPI control register. The clock frequency of the SCK signal is determined by dividing down
the input clock based on the entries in the control register. The signal, SCK_INT is the internal
SCK used to clock serial data out of the device and is continually generated. The SPI Control
state machine is synchronized to this internal signal. The signal SCK_1 represents SCK when
CPHA = 1 and the signal SCK_0 represents SCK when CPHA = 0. The SPI control state
machine generates the masks for these clocks (CLK0_MASK, CLK1_MASK) so that the output
SCK has the correct phase relationship with the data and is held in its inactive state when there
is no data to be transferred. A representation of the logic required to generate the SCK signal
output to the SPI bus is shown in Figure 8.

SPI Shift Registers

SPI Transmit Shift Register

The SPI transmit shift register is an 8-bit loadable shift register containing SPI data. This shift
register is loaded from the SPI Transmit Register (SPITR) via a load signal generated by the
SPI Control state machine and is clocked by the rising edge of SCK_INT. The data shifting out
is the MOSI data. Note that in Figure 8, SCK_OUT is one SYS_CLK delay from SCK_INT.
Therefore, it is necessary to delay the data being shifted out from the SPI transmit shift register
by one SYS_CLK as well so that the relationship between MOSI and SCK_OUT is maintained.

Figure 8: SCK Clock Generation Logic

cllk_cnt(1)

sys_clk
clkdiv(0)

clk1_mask

clkdiv(1)

sys_clk

cpha

cpol

sys_clk

X348_08_112500

cllk_cnt(2)

cllk_cnt(3)

cllk_cnt(4)
Clock

Counter

Mux/Reg Mux/Reg

clk0_mask
sck_0

sck_1

sck_int
sck_out
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

This is accomplished by a single register clocked from SYS_CLK which simply clocks the data
output from the shift register as shown in Figure 9..

SPI Receive Shift Register

A separate shift register is used to receive the MISO data since the clock phase and polarity of
the SCK output can vary based on each transaction. The SPI receive shift register is clocked on
the rising edge of the external SCK. The RCV_CPOL bit set in the control register allows the µC
to specify which edge of the external SCK incoming MISO data is sampled on. This allows for
flexibility in dealing with all types of different SPI slave devices as some SPI slaves will clock
data out on the rising edge of SCK while others will clock data out on the falling edge of SCK.
If a slave clocks data out on the falling edge of SCK, then RCV_CPOL should be set to "1" so
that the CoolRunner SPI Master will clock data in on the rising edge of SCK. If a slave clocks
data out on the rising edge of SCK, then RCV_CPOL should be set to "0" so that the
CoolRunner SPI Master clocks data in on the falling edge of SCK. This eliminates any setup
and hold timing issues. If slaves behave according to the SPI specification for CPHA and
CPOL, RCV_CPOL will equal "1" whenever CPHA and CPOL are equal and "0" otherwise.

In the actual implementation, two input registers are used to sample MISO, one clocked on the
rising edge of SCK, the other clocked on the falling edge of SCK. The outputs of these two
registers are then multiplexed with the RCV_CPOL bit used as the select line. The output of this
multiplexor then becomes the input to the SPI receive shift register which is clocked on the
rising edge of the external SCK. Using this implementation method eliminates multiplexing
clocks inside the CPLD. Multiplexing clocks within the CPLD places a delay between SCK and
the actual data input to the shift register. This delay on SCK could impose an additional data
hold time requirement on the slave device which is undesirable. Therefore, it was decided to
multiplex the data instead, thus eliminating the need to specify a holdtime requirement on the
slave device.

A counter, clocked off the rising edge of the external SCK, is used to count the bits shifted into
the SPI receive shift register and to indicate when a byte transfer is complete. When the byte
transfer is complete, the data in the SPI receive shift register is loaded into the SPI Receive

Figure 9: SPI Transmit Shift Register

load

data from
SPI Transmit
Register 8

sys_clk

shift

sck_int
X348_09_112500

8-bit SPI Xmit Shift Register
MOSI

Register MOSI
16 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

Register for use by the µC. The SPI receive shift register, MISO input registers, and receive bit
counter are shown in Figure 10.

Operational
Flow Diagrams

The flow of the interface between the µC and the CoolRunner SPI Master is detailed in the
following flow charts. These flow charts are meant to be a guide for utilizing the CoolRunner
SPI Master in a µC system.

SPI Transaction Flow Chart
The flow chart for configuring and performing a SPI transaction for the CoolRunner SPI Master
is shown in Figure 11. Since SPI is a full duplex communication protocol, data is received while
data is transmitted.

Note that if an SPI error occurs indicating that another master has taken control over the bus,
the system operation should be verified. The flow chart shows continually polling SPIERR in
the status register to determine when the SPI error has been corrected. Since an SPI error also
asserts an interrupt (if interrupts have been enabled), an alternative to polling the SPI status
register (SPISR) is to service the interrupt to determine if the SPI error has been corrected.
Note that either of these flows may not be the operational flow required by a system when an
SPI error has occurred; the designer should determine the correct operations to execute when
an SPI error occurs based on the system requirements.

Figure 10: SPI Receive Shift Register and MISO Input Data Registers

data to
SPI Receive

Register

8

shift
rcv_cpol

SCK

MISO

rcv_load

sck_int

X348_10_112500

8-bit SPI Receive Shift RegisterMUX

MISO
Register

MISO
Register

Receive
Bit Counter
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

Figure 11: CoolRunner SPI Master Transaction Flow Chart

BEGIN

END

No

Yes

Yes

Yes

Yes

Yes

Bus Busy= 1?

Configure SPI Master
by writing to SPICR:

SPIEN, INTEN,
CLKDIV, CPHA

CPOL, RCV_CPOL

No

No

No

No

XMIT_EMPTY
=1?

Last Word?

Last Word?

RCV_FULL
=1?

X348_11_112500

Negate START bit
in SPICR

Read SPI Receive
Data in SPIRR

Write SPI Transmit
Data in SPITR

Read SPI Bus
Status from SPISR

Configure Slave Select
in Slave Select Register

(SPISSR)

Yes

No Interrupt
(INT_N=0)?

Yes

Yes

No
SPIERR = 1?

No

SPIERR = 1?

Write SPI Transmit
Data in SPITR

Set START bit in SPITR

Read SPI Bus Status
from SPISR

Reset SPIERR in SPISR

Read SPI Bus Status
from SPISR

Reset SPIEN in SPICR
to reset SPI Master
18 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com

CoolRunner XPLA3 Serial Peripheral Interface Master
R

VHDL
Testbench and
Functional
Simulation

A VHDL testbench has been developed that verifies the CoolRunner SPI Master
implementation through all the possible combinations of CLKDIV, CPHA, CPOL, and
RCV_CPOL. This testbench contains a process that emulates the bus cycles of the 8051 µC.
Constants are provided at the top of the testbench file to set up the base address of the SPI
Master device and all of the registers contained within the device. These constants should be
modified to match the addressing scheme of the designer’s system.

The VHDL testbench also provides a model of a simple SPI slave. The slave first transmits the
hex value "CE" and then simply transmits the value that was received. The clock phase and
polarity of the slave are dynamically set in the test bench based on the CPHA and CPOL values
currently being tested.

To test the SPI Master reaction to an SPI error, the test bench contains the constant
SS_IN_ASSERT_TIME which specifies the delay from the beginning of the simulation until
SS_IN_N is asserted and also specifies the amount of time that SS_IN_N is asserted. Setting
this constant to "0" disables assertion of SS_IN_N.

The test bench contains a signal, ERROR, which indicates that the data received did not match
the expected data. The simulation has run correctly if ERROR stays "0" throughout all SPI
transfers. Note, however, that ERROR may assert some time during the simulation if the
testbench is set up to test SS_IN_N assertion. This is due to the fact that the data received may
be out of alignment with the expected data value.

The ModelSim command file, func_sim.do, can be used to open the correct waveform window
and run the simulation.

CoolRunner
XPLA3 CPLD
Implementation

The CoolRunner SPI Master design has been targeted to a XPLA3 256 macrocell device. The
speed grade chosen is dependent on the system clock frequencies and should be analyzed by
the designer to determine which speed grade is required.

The CoolRunner SPI Master utilizes 127 of the 256 macrocells available in the device, leaving
over 50% of the device resources for user logic.

The top level file for the SPI Master has been entered as a hierarchical schematic showing the
connection between the uc_interface block and the spi_interface block. The spi_interface block
is also a hierarchical schematic showing the inter connectivity between the spi_control_sm
block, the sck_logic block, the spi_rcv_shift_reg block and the spi_xmit_shift_reg block. The
structural VHDL models for the schematics are found in the files spi_master.vhf and
spi_interface.vhf. For more information on using schematic capture for showing the structure
and connectivity of HDL designs, please refer to XAPP350: Implementing HDL Designs with
WebPACK ECS Schematic Editor.

Post-fit Timing
Simulation

The Xilinx Project Navigator software package outputs a timing VHDL model of the fitted
design. This post-fit VHDL was simulated with the original VHDL test benches to insure design
functionality using ModelTech Xilinx Edition (MXE). Please note that all verification of this
design has been done through simulations.

The user of this design is strongly encouraged to thoroughly inspect the timing report for this
design to insure that the design meets the timing specification of the system. The user is also
strongly encouraged to perform post-fit timing simulations as well. The ModelSim command
file, post_sim.do, can be used to open the correct waveform window and run the simulation.

VHDL Code
Download and
Disclaimer

All VHDL source code, VHDL testbenches, and software files associated with this design are
available. THE DESIGN IS PROVIDED TO YOU "AS IS". XILINX MAKES AND YOU RECEIVE
NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
AND XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE.
This design should be used only as an example design, not as a fully functional core. XILINX
XAPP348 (v1.0) November 29, 2000 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/xapp/xapp350.pdf
http://www.xilinx.com/xapp/xapp350.pdf

CoolRunner XPLA3 Serial Peripheral Interface Master
R

does not warrant the performance, functionality, or operation of this Design will meet your
requirements, or that the operation of the Design will be uninterrupted or error free, or that
defects in the Design will be corrected. Furthermore, XILINX does not warrant or make any
representations regarding use or the results of the use of the Design in terms of correctness,
accuracy, reliability or otherwise.

THIRD PARTIES INCLUDING MOTOROLA MAY HAVE PATENTS ON THE SERIAL
PERIPHERAL INTERFACE (SPI) BUS. BY PROVIDING THIS HDL CODE AS ONE POSSIBLE
IMPLEMENTATION OF THIS STANDARD, XILINX IS MAKING NO REPRESENTATION THAT
THE PROVIDED IMPLEMENTATION OF THE SPI BUS IS FREE FROM ANY CLAIMS OF
INFRINGEMENT BY ANY THIRD PARTY. XILINX EXPRESSLY DISCLAIMS ANY
WARRANTY OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND
XILINX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE, THE ADEQUACY OF
THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OR
REPRESENTATION THAT THE IMPLEMENTATION IS FREE FROM CLAIMS OF ANY THIRD
PARTY. FURTHERMORE, XILINX IS PROVIDING THIS REFERENCE DESIGNS "AS IS" AS A
COURTESY TO YOU.

XAPP348 - http://www.xilinx.com/products/xaw/coolvhdlq.htm

Conclusion This document has detailed the design of a Serial Peripheral Interface Master design for a
CoolRunner XPLA3 CPLD. Though the design has been extensively verified in simulations,
Xilinx assumes no responsibility for the accuracy or the functionality of this design.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

11/29/00 1.0 Initial Xilinx release.
20 www.xilinx.com XAPP348 (v1.0) November 29, 2000
1-800-255-7778

http://www.xilinx.com/products/xaw/coolvhdlq.htm
http://www.xilinx.com

	Summary
	Introduction
	SPI Background
	CoolRunner SPI Master Implementation
	Signal Descriptions
	Block Diagram
	mC Interface Logic
	Address Decode/Bus Interface Logic
	CoolRunner SPI Master Registers
	SPI Status Register (SPISR)
	SPI Control Register (SPICR)
	SPI Slave Select Register (SPISSR)
	SPI Transfer Data Register (SPITR)
	SPI Receive Data Register (SPIRR)

	SPI Interface Logic
	SPI Control State Machine
	Transmit Empty and Receive Full Flags
	SCK Clock Logic
	SPI Shift Registers
	SPI Transmit Shift Register
	SPI Receive Shift Register

	Operational Flow Diagrams
	SPI Transaction Flow Chart

	VHDL Testbench and Functional Simulation
	CoolRunner XPLA3 CPLD Implementation
	Post-fit Timing Simulation
	VHDL Code Download and Disclaimer
	Conclusion
	Revision History

