

Summary/
Introduction

Constraining a Virtex Design is different in 2.1i compared to older versions of the software.
There are improvements in the Trace, Timing Analyzer, FloorPlanner, Constraints Editor, and
other implementation tools to help make the designing procedure easier for Virtex. This paper
is devoted to describing some of the simple steps necessary to constraining a Virtex design
with the new 2.1i implementation tools. The major focus of this paper is to explain how to
constrain with a CLKDLL in Virtex and the new look of the Timing Analyzer Reports.

Creating a UCF
File for the
Design

The Constraints Editor is a very useful tool that helps the user to constraint the design without
knowing the User Constraints File (UCF) syntax. The Constraints Editor inputs are the
design.ngd file and, if it exists, a UCF file. The ngd file is created by the Translate/NGDBUILD
step of implementation tools. There are three ways to invoke the Constraint Editor. The first is
selecting the Utilities -> Constraints Editor menu item, when a version or revision is selected
and the Flow Engine runs Translation automatically, and brings up the Constraints Editor. The
second is to run the Translate Step, then open the Constraints Editor by selecting Utilities ->
Constraints Editor. The third option it to use the command line mode and run ngdbuild then
constraints_editor.

There are several ways to constraint in a Virtex design. Timing constraints are used to get the
performance that the designer requires. Location constraints are used to lockdown the IOBs. If
the Floorplanner is used, all location constraints in the UCF file are overwritten.

Other items can be constrained such as slew rate, whether to use IOB/CLB locations and so
forth. These have not been changed in 2.1i, and will not be covered in this paper. Please see
the online documentation of the Constraints Editor User Guide (http://toolbox.xilinx.com/docsan/
2_1i/data/alliance/cst/cst.htm) for more information.

The CLKDLL provides many powerful features that aid in the design of high-speed digital
circuits. Associated with these features is the ability of the Xilinx tool set to perform timing
based place and route. The new processing for TNMs, TNM_NET, PERIOD, OFFSET, FROM
TO constraints, the Low Skew Routing Resources information, the MAXSKEW constraint, and
the Priority of Constraints will be illustrated in detail.

CLKDLL & TNM
Processing

The rules regarding property tracing through the CLKDLL have changed in 2.1i. When a
TNM_NET property is traced into the CLKIN pin of a Virtex CLKDLL component, the TNM
group and its usage will be examined. The TNM will be pushed through the CLKDLL only if the
following conditions are met:

1. The TNM group name is used in exactly one PERIOD specification.

2. The TNM group name is not used in any FROM-TO or OFFSET specifications.

3. The TNM group name is not referenced in any user group definition.

If any of the above conditions are not met, the TNM will not be pushed through the CLKDLL,
and the following error message will be issued:

Constraining Virtex
Design in 2.1i

 XAPP400 (v1.0) October 1, 1999 Application Note

R

ERROR:NgdHelpers:702 - The TNM “PAD_CLK” drives the CLKIN pin of CLKDLL
“$I1”.

Application Note: Virtex
XAPP400 (v1.0) October 1, 1999 www.xilinx.com 1
1-800-255-7778

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/2_1i/data/alliance/cst/cst.htm
http://toolbox.xilinx.com/docsan/2_1i/data/alliance/cst/cst.htm

Constraining Virtex Design in 2.1i
R

This TNM cannot be traced through the CLKDLL because it is not used in exactly one PERIOD
specification. This TNM is used in the following user groups and/or specifications:

If the above conditions are met each clock output pin on the CLKDLL will be examined to see
if it is connected to a net with at least one other connection (i.e., it is not a dangling net). If the
output pin has a net, a new TNM group will be created on that net, and a new PERIOD speci-
fication will be created for that group. The new specification will be copied from the original
PERIOD specification, and then modified as shown in Table 1.

If the original TNM_NET property is pushed only into the CLKDLL CLKIN pin (i.e., it does not
trace to any appropriate elements without going through the CLKDLL), the original TNM group
and the original PERIOD specification will be eliminated from the design. If a newly-created
TNM group is pushed through a CLKDLL output and encounters the CLKIN input of a second
CLKDLL (such as in the 4X configuration), the above process will be repeated to further adjust
the PERIOD specification(s) per the behavior of the second CLKDLL. If the group created for
the first CLKDLL traces only into the second CLKDLL, that group and its PERIOD specification
become unnecessary and will be eliminated.

For further information regarding property tracing through the CLKDLL refer to the
Developmental System Reference Guide Chapter 6.

CLKDLL
PERIOD
Example

A PERIOD constraint can be applied to the CLKDLL in Figure 1, and the following PERIOD
constraint will be pushed through to the outputs of the CLKDLL. The Constraint Editor creates
PERIOD constraints based upon the CLKDLL input name. Care still needs to be taken with
respect to duty cycle correction, multiplication, and division.

TS_PAD_CLK=PERIOD PAD_CLK 20.0 ns HIGH 50.000000%
TS_01=FROM PAD_CLK TO PADS 20.0 ns

Table 1: Period Modifications

Output Pin Modifications to PERIOD Specification

CLK90
CLK180
CLK270

CLK0 If the DUTY_CYCLE_CORRECTION=TRUE property is found on or
above the CLKDLL, the duty cycle will be adjusted to 50%. If
DUTY_CYCLE_CORRECTION=FALSE is found, the duty cycle will be
unchanged from the original PERIOD specification. If no
DUTY_CYCLE_CORRECTION property is found, the default value of TRUE
will be assumed.

CLK2X The PERIOD value will be doubled (if originally expressed as a frequency) or
divided in half (if originally expressed as a delay). The duty cycle will also be
adjusted to 50%.

CLKDV The PERIOD value will be divided (if a frequency) or multiplied (if a delay) by
the value in the CLKDV_DIVIDE property. If no such property is found on or
above the CLKDLL, the default value of 2.0 will be used. The duty cycle will
also be adjusted to 50%.
2 www.xilinx.com XAPP400 (v1.0) October 1, 1999
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

An example:

When NGDBUILD/Translate sees the previous example in the UCF file, it will produce the
following message:

X400_01_082899

RSTRESET

CLKIN

CLKFB

CLKIN

CLKDLL

LOCKED

CLKDV
BUFG

BUFG

ONESY

TWOTIME
CLK2X

CLK270

CLK180

CLK2X

CLK180

CLK90

CLK0

Figure 1: CLKDLL Implementation

NET “CLKIN” TNM_NET = “CLKIN”;
TIMESPEC “TS_CLKIN” = PERIOD “CLKIN” 9 ns HIGH
50%;

INFO:NgdHelpers - TNM "CLKIN", used in period specification
"TS_CLKIN", was traced into CLKDLL instance "$I1". The following new
TNM groups and period specifications were generated at the CLKDLL
output(s). TNM "CLKIN" and
specification "TS_CLKIN" are no longer needed and have been removed
from the design.

TS_ONESY=PERIOD ONESY 9.0 nS HIGH 50.000000%

TS_TWOTIME=PERIOD TWOTIME 4.5 nS HIGH 50.000000%
XAPP400 (v1.0) October 1, 1999 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

After implementing the design, the timing report shows the two new timespecs that were
created in NGDBUILD/Translate, which are shown below. The pushing of the PERIOD
constraint occurs in the Timing Engine and is reported in the Trace Report (See Figure 2).

So, the PERIOD constraint on the CLKIN will be pushed to be applied to net ONESY and
TWOTIME, as seen in Figure 1. The action of pushing the Period constraint forward through
the DLL will not happen if the TNM Path Tracing Control conditions are not met.

Note: Timing Analyzer and Trace will be modified to no longer check pad-to-register paths relative to
setup requirements or period and frequency constraints. The general OFFSET IN will be need
to cover this path. The OFFSET in/after and OFFSET out/before constraints will need the
period constraint to calculate the appropriate offset

PAD to SETUP
(OFFSET IN
BEFORE)

When creating pad-to-setup requirements, care should be taken to incorporate any phase or
PERIOD adjustment factor into the value specified for an OFFSET IN constraint. When
creating pad or register specific OFFSET constraints in the Constraints Editor the user must
specify the clock pad net name for flip-flops driven by the CLKDLL. In Figure 3, PADCLKIN is
the pad net name used in OFFSET constraints.

Timing constraint: TS_ONESY = PERIOD TIMEGRP "ONESY" 9 ns HIGH 50.000%;
32 items analyzed, 0 timing errors detected.
Minimum period is 9.869 ns.

Timing constraint:TS_TWOTIME = PERIOD TIMEGRP "TWOTIME" 4.5 ns HIGH 50.000%;
1 item analyzed, 0 timing errors detected.
Minimum period is 4.384 ns.

Figure 2: Trace/Timing Report

X400_02_082899

RST

CLKFB

CLKIN

LOCKED

CLKDV

BUFG

BUFG

ZERO

NINETY

CLK2X

CLK270

CLK180

CLK90

CLK0

CLK90

CLK0

RESETPAD_RESET
IPAD

IBUF

CLKINPADCLKIN
IPAD

IBUFG

Figure 3: CLKDLL Implementation
4 www.xilinx.com XAPP400 (v1.0) October 1, 1999
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

For example: If your register is clocked by the net from the CLK90 pin of the CLKDLL which has
a PERIOD of 20 ns, then the OFFSET value should be adjusted by an additional 5 ns as seen
in Table 2 for Figure 3. The equations is to add 75% of the Period constraint value from the
original constraint, to give it 15 ns = 10 ns + (0.75 x 20 ns). If the original constraint was with
respect to the CLK0 pin of the CLKDLL, then one would subtract the 75% of the Period
constraint value.

Note: The clock net name required for OFFSET constraints is the clock net name attached to the
IPAD. In this case it is PADCLKIN not CLK90, refer to Figure 4 for the clk network.

CLOCK to PAD
(OFFSET OUT
AFTER)

When creating clock-to-pad requirements, care should be taken to incorporate any phase or
PERIOD adjustment factor into the value specified for an OFFSET OUT constraint. In the
Constraints Editor the user must specify the clock pad net name for flip-flops driven by the
CLKDLL when specifying a specific OFFSET constraint. In Figure 4, PAD CLKIN is the pad net
name used in OFFSET constraints.

For example: If a register is clocked by the net from the CLK180 pin of the CLKDLL which has
a PERIOD of 20 ns, Then the OFFSET value should be adjusted by 10 ns less than the original
constraint as shown in Table 2 for Figure 3. The equations is to subtract 50% of the Period
constraint value from the Original constraint, to give it 5 ns = 15 ns - (0.5 x 20 ns).

FROM TO In
Multiple Clock
Domains

When using PERIOD constraints, the user must properly constrain the paths between multiple
clock domains as seen in Figure 5. If a PERIOD constraint is applied to the CLK90 and CLK0
pins of the CLKDLL, the CLK0 PERIOD constraint will constrain the paths between flip-flop A
and B. This type of constraining can lead to setup violations.

Consider the waveforms in Figure 6. Because of the phase shift between CLK90 and CLK0, the
path from A to B has 25% less time than the PERIOD constraint allows. To properly constrain
these paths use a FROM TO constraint. For example:

The TIMESPEC is set at 15 ns because the PERIOD on CLK0 is 20 ns.

Original Constraint: NET “PAD_IN” OFFSET = IN 10 BEFORE “PADCLKIN”;
Modified Constraint: NET “PAD_IN” OFFSET = IN 15 BEFORE “PADCLKIN”;

Original Constraint: NET “PAD_OUT” OFFSET = OUT 15 BEFORE “PADCLKIN”;
Modified Constraint: NET “PAD_IN” OFFSET = OUT 5 BEFORE “PADCLKIN”;

X400_03_082899

IN OUT PAD_OUTPAD_IN
IPAD OPADD

IBUF OBUF
Q

CLK90

FD

D Q

CLK180

FD

Figure 4: Schematic Layout

NET “CLK90” TNM_NET = “CLK90”;
NET “CLK0” TNM_NET = “CLK0”;
TIMESPEC “TS_CLK90_2_CLK0” = FROM “CLK90” TO “CLK0” 15ns;
XAPP400 (v1.0) October 1, 1999 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

This type of correction is required for all clock domain interactions. Table 2 contains some of
the possible configurations and the associated corrections.

Low Skew
Routing in
Virtex

The Virtex architectures have 24 horizontal long lines for use as low skew routing resources.
There are 12 low skew routing resources on the top edge and another 12 on the bottom edge
of the device. All the IOBs along the top and bottom edges can get on to the low skew routing
resources directly. Figure 7 shows the low skew routing resources on the top edge of the
device. Since the top and bottom edges are similar, one will refer to the top edge only in the
discussion below unless noted otherwise.

Table 2: Correct Percentage for Different Phase Clocks

CLKDLL Required Correction

CLK0 to CLK90 Subtract 75% of Period from Original Offset

CLK0 to CLK180 Subtract 50% of Period from Original Offset

CLK0 to CLK270 Subtract 25% of Period from Original Offset

CLK270 to CLK0 Subtract 75% of Period from Original Offset

CLK270 to CLK90 Subtract 50% of Period from Original Offset

CLK270 to CLK180 Subtract 25% of Period from Original Offset

X400_04_082899

IPAD OPADD Q

CLK90

IFD

D Q

CLK0

FD

D Q

CLK0

OFD

Figure 5: FROM TO Schematic

X400_05_082899

CLKIN

20 ns

CLK0

CLK90

15 ns

Figure 6: Waveform Illustration of CLKIN, CLK0, and CLK90
6 www.xilinx.com XAPP400 (v1.0) October 1, 1999
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

From every column, there are connections from the IOB switch box (Figure 8) to two of 12 low
skew routing resources. The specific low skew routings change varies per column but every
sixth column always connects to the same low skew routing resources. This places the
restriction that one cannot use more than two low skew routings for all columns that are apart
from each other by six rows. The same two low skew routings individually drive six hexes each
in the top tile for a total of 12 hexes per tile column being driven by the low skew routings. Each
of these hexes then connects to vertical long lines and onwards to other pins. The hierarchy of
routing resources used to connect to different pins is shown in the Figure 8.

As can be seen in Figure 8, a net that uses the low skew routings and connects to pins of
different types will use different resources and hence will have different delays. Connecting to
the block RAMs is the fastest while connecting to the general inputs of a slice is the slowest. An
important component of the skew comes from the horizontal span of the low skew routing that
is used. In other words, by limiting the distance between the left most vertical long line and the
right most vertical long line (horizontal span) the skew can be reduced considerably. Further, by
keeping the loads as close as possible to the low skew routing the skew can be limited

A similar routing hierarchy is present when an internally generated net is required to use the
low skew routing. While all slices can reach the low skew routings through the general routing,
for the purpose of reducing delay it is essential to use only the top and bottom row of slices if
they are the sources to nets that require the low skew routings.

X400_06_082899

IOB0

LOW
SKEW

ROUTING
ACKBONE

20 ns

IOB1

Figure 7: Low Skew Routing Resources
XAPP400 (v1.0) October 1, 1999 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

Currently, there is no way to properly place slices that source nets requiring low skew routings.
These slices ought to be automatically placed in the top and bottom rows, adjacent to the low
skew routings. However, in 2.1i, the user has to explicitly either lock the slices down to the top
or bottom rows or put range constraints on the slices. Xilinx is currently in the process of
developing solutions for the two issues mentioned above.

MAXSKEW for
Low Skew Lines

The nets that are sourced by IOBs and connect either clock pins or control pins such as CE,
RST, etc. are considered for special placement rules. Other candidates for these special
placement rules are nets that are tagged with a MAXSKEW constraint or very high fanout nets
that are sourced by IOBs. These IOB sources of these nets are placed in the top and bottom
edges of the device. Once these are placed in the top and bottom edges, the router routes
these nets using low skew routings in the preassignment phase. Care is taken in the initial IOB
placement to ensure that no more than two low skew routings are used in all the columns that
differ from each other in multiples of six.

The MAXSKEW constraint is used to tell AR to use the low skew lines for a net. The
MAXSKEW value does not have to be a tight value. An example is as follows:

NET “net_needs_low_skew” MAXSKEW=12ns;

Figure 8: Routing Resource Hierarchy

X400_07_093099

IOB

LSR

Hex

Vertical Long Lines

Increasing D
elay

Hex

Hex

Clock Pin on Slice

Block RAM

Clock Pin on Pad

General Input on Slice
8 www.xilinx.com XAPP400 (v1.0) October 1, 1999
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

Constraint
Priority

Timing constraints have a priority system for when a constraint is covering the same path. The
following priority is from highest priority to the lowest priority with in a particular source.

Timing Report
Review

The timing reports are created when either Trace is run after AR or Timing Analyzer is run. Both
Timing Analyzer and Trace can produce similar reports, depending on what kind of report is
needed. In reviewing the reports, it is important to know if your constraints were met or not and
to know if more constraints are needed or not. In this section the new look of the Timing
Analyzer GUI will be discussed, along with a portion of the Timing Report, the datasheet IO
section, answer the question: what has happened when a constraint has zero items analyzed,
and why is the coverage less than 100%.

Timing Reports in Timing Analyzer

Timing Analyzer displays FPGA and CPLD analysis reports in a hierarchical format. The report
window (used to display all.twr files) now has three panes, as seen below. The lower-right
pane is the text view. It displays the text of the.twr file. The left pane is the index or outline view.
Click on the labels to scroll the corresponding line in the report to the top of the text view. Click
on the "+" or "-" buttons to expand or collapse topics. If there are timing errors, the text will
appear in red. The other standard mouse and keyboard manipulations for tree views work, too.
The upper-right pane is the context or path view. It shows the path through the topic hierarchy
to the item currently selected in the index view. The contents of the context view change only
when the selection in the index view changes. Click on items in the context view to scroll the
text view to the appropriate place. This can be handy if you are deep in a list of paths for a
timing constraint and need to jump back to the timing constraint definition (see Figure 9).

Table 3: Timing Constraints Priority

Priority Timing Constraints

Highest TIG (Timing Ignores)

FROM:THRU:TO spec

• Source & Destination defined by User
• Source or Destination defined by User
• Source & Destination are Pre-Defined Groups

FROM:TO spec

• Source & Destination defined by User
• Source or Destination defined by User
• Source & Destination are Pre-Defined Groups

OFFSET spec

• Specific Data IOB
• Time Group of Data IOBs
• For all Data IOBs

PERIOD specs

Lowest ALLPATHS specs (.pcf only)
XAPP400 (v1.0) October 1, 1999 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

Datasheet IO Section of the Timing Report

The Data Sheet IO Timing Report contains the setup/hold and clock to pad times for all
synchronous inputs and outputs with respect to the appropriate clock edge, it also contains the
pad-to-pad paths and a clock-to-setup table.

Figure 9: Timing Analyzer
10 www.xilinx.com XAPP400 (v1.0) October 1, 1999
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

The Data Sheet IO Timing Report is included in the Post Layout Timing Report, Timing
Analyzer Reports, and Trace Reports when any of the following criteria are met.

1. Designs containing timing constraints that constrain the input and outputs. For example:
OFFSET IN, OFFSET OUT, PADS to FFS, and FFS to PADS. Also a Pad-to-Pad and
PERIOD constraints are needed to present all data possible.

2. Unconstrained timing analysis is run in Trace or Timing Analyzer.

3. Advanced timing analysis is run in Trace or Timing Analyzer.

Zero Items
Analyzed

There are many reasons for a constraint to be reported as having zero items analyzed. The
most common reason is that two constraints cover the same paths. After all paths are
accounted for under the constraints in the PCF, the Timing Wizard will determine which paths
are covered by more than one constraint. By comparing the relative scopes of each constraint
a path is left in a single constraint. After all paths and constraints have been examined in this
way it is common for some constraints to end up with no items to analyze. This extraction
process allows the tool to analyze slow exceptions as well as reduce the run times by only
performing the analysis a single time per constraint where possible.

Be aware also that if there are two or more constraints, which define the same set of paths, the
one which appears last in the PCF is the one that will get analyzed, regardless of the value
placed on the constraint. One may force a constraint appearing earlier in the PCF to be
analyzed by applying a priority to the desired constraint.

Setup/Hold to clock CLK2 example

+---------------+------------+------------+

| | Setup to | Hold to |

|Source Pad | clk (edge) | clk (edge) |

+---------------+------------+------------+

|INA<1> | 1.058(R)| 0.000(R)|

|INA<0> | 1.847(R)| 0.000(R)|

|INA<3> | 1.220(R)| 0.000(R)|

|INA<2> | 1.578(R)| 0.000(R)|

|INA<5> | 1.152(R)| 0.000(R)|

|INA<4> | 1.700(R)| 0.000(R)|

|INA<7> | 1.516(R)| 0.000(R)|

|INA<6> | 1.850(R)| 0.000(R)|

+---------------+------------+------------+

Clock CLK1 to Pad example

+---------------+------------+

| | clk (edge) |

|Destination Pad| to PAD |

+---------------+------------+

|OUT<0> | 8.086(R)|

|OUT<1> | 8.164(R)|

|OUT<2> | 8.288(R)|

|OUT<3> | 8.335(R)|

|OUT<4> | 8.034(R)|

|OUT<5> | 8.008(R)|

|OUT<6> | 7.824(R)|

|OUT 7 | 8 486(R)|
XAPP400 (v1.0) October 1, 1999 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Constraining Virtex Design in 2.1i
R

Another common reason that a constraint may have no items analyzed is that TIG constraints
have been placed on elements in every path or on each path which might alternatively be
covered by the constraint.

It is also possible that all the paths which you may expect to be covered by the constraint
include a component delay path which is subject to path tracing controls.

Coverage is
Less Than
100%

The coverage statistic is not a measure of the percentage of paths covered by the constraints,
it is a measure of the percentage of total connections in the design covered by the constraints.
Thus a design can have all valid paths covered by constraints, but still have a coverage statistic
that isn’t 100%. Xilinx is aware of this confusion and has been considering alternatives to the
current report, but there are no plans to change it in the near future.

The most common reason for connection coverage not hitting 100% is that elements in the
design have TIGs. If the Trace/Timing Analyzer encounters a TIGged element when tracing a
path, the trace will stop there, possibly leaving connections on the "other side" of the element
uncovered. A TIG on a path, on the other hand will have all of its connections accounted for in
the coverage statistic.

There are less obvious reasons for less than 100% coverage. One is that the total number of
connections in a design includes some which cannot be covered by constraints. An example is
the connections on the STARTUP component. Another example is the case where a static pin
drives a LUT, like a logical one or zero, which combines with no other signals and then drives
other logic. This can happen at the start of a carry chain where a FORCE mode is used from a
logical "1" or "0". Also if terms for carry logic are connected to a CLB, but go unused within the
CLB, these connections will never be traced. These are just obscure cases that are not
handled.

If the coverage is less than 100%, the user can run an Unconstrained Paths Report from either
the command line or in the Timing Analyzer GUI. The command line is ‘trce –u
design.ncd design.pcf’ and the Timing Analyzer GUI button is under the Analyze Menu,
then Report Paths Not Covered by Timing Constraints. This report will give the user the
maximum percentage of coverage for that design. So, if the initial constraints gives coverage of
82%, and the Unconstrained Paths Report gives coverage of 91%, then the maximum
percentage of coverage is 91%. The user then can add more constraints to get the coverage up
to 91%, but the coverage will never go above that percentage for that version of the design.

Revision
History

© 1999 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaim-
ers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are
the property of their respective owners.

Date Version Revision

10.01.99 1.0 Initial Xilinx release.
12 www.xilinx.com XAPP400 (v1.0) October 1, 1999
1-800-255-7778

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

	Constraining Virtex Design in 2.1i
	Summary/ Introduction
	Creating a UCF File for the Design
	CLKDLL & TNM Processing
	CLKDLL PERIOD Example
	PAD to SETUP (OFFSET IN BEFORE)
	CLOCK to PAD (OFFSET OUT AFTER)
	FROM TO In Multiple Clock Domains
	Low Skew Routing in Virtex
	MAXSKEW for Low Skew Lines
	Constraint Priority
	Timing Report Review
	Timing Reports in Timing Analyzer
	Datasheet IO Section of the Timing Report

	Zero Items Analyzed
	Coverage is Less Than 100%
	Revision History

