XC4000EX Electrical Specifications

Definition of Terms

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or device families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.

Except for pin-to-pin input and output parameters, the a.c. parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions.

All specifications subject to change without notice.

XC4000EX DC Characteristics

Absolute Maximum Ratings

Symbol	Description		Value	Units	
V _{CC}	Supply voltage relative to GND		-0.5 to +7.0	V	
V _{IN}	Input voltage relative to GND (Note 1)		-0.5 to V _{CC} +0.5	V	
V _{TS}	Voltage applied to 3-state output (Note 1)	state output (Note 1)			
V _{CCt}	Longest Supply Voltage Rise Time from 1 V to 4 V	50	ms		
T _{STG}	Storage temperature (ambient)		-65 to +150	°C	
T _{SOL}	Maximum soldering temperature (10 s @ 1/16 in. = 1	.5 mm)	+260	°C	
т	Junction Temperature	Ceramic packages	+150	°C	
Т _Ј		Plastic packages	+125	°C	

Note 1: Maximum DC excursion above V_{cc} or below Ground must be limited to either 0.5 V or 10 mA, whichever is easier to achieve. Maximum total combined current on all dedicated inputs and Tri-state outputs must not exceed 200 mA. During transitions, the device pins may undershoot to -2.0 V or overshoot toV_{CC} +2.0 V, provided this over or undershoot lasts less than 10 ns and with the forcing current being limited to 200 mA.

Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

Recommended Operating Conditions

Symbol	Description		Min	Max	Units
V	$V_{CC} \qquad \frac{\text{Supply voltage relative to GND, } T_{J} = 0 ^{\circ}\text{C to } +85^{\circ}\text{C}}{\text{Supply voltage relative to GND, } T_{J} = -40^{\circ}\text{C to } +100^{\circ}\text{C}}$		4.75	5.25	V
v CC			4.5	5.5	V
V	V _{IH} High-level input voltage (Note1)	TTL inputs	2.0	V _{CC}	V
۷IH		CMOS inputs	70%	100%	V _{CC}
V	Low-level input voltage (Note1)	TTL inputs	0	0.8	V
VIL		CMOS inputs	0	20%	V _{CC}
T _{IN}	Input signal transition time			250	ns

Note 1: Maximum DC excursion above V_{cc} or below Ground must be limited to either 0.5 V or 10 mA, whichever is easier to achieve. Maximum total combined current on all dedicated inputs and Tri-state outputs must not exceed 200 mA. During transitions, the device pins may undershoot to -2.0 V or overshoot toV_{CC} +2.0 V, provided this over or undershoot lasts less than 10 ns and with the forcing current being limited to 200 mA.

DC Characteristics Over Recommended Operating Conditions

Symbol	Description		Min	Max	Units
V	High-level output voltage @ I_{OH} = -4.0 mA, V _{CC} min	TTL outputs	2.4		V
V _{OH}	High-level output voltage @ I _{OH} = -1.0 mA	CMOS outputs	V _{CC} -0.5		V
V	Low-level output voltage @ I_{OL} = 12.0 mA, V _{CC} min	TTL outputs		0.4	V
V _{OL}				0.4	V
V _{DR}	Data Retention Supply Voltage (below which configura	tion data may be lost)	3.0		V
I _{CCO}	Quiescent FPGA supply current (Note 2)		25	mA	
١ _L	Input or output leakage current		-10	+10	μA
C _{IN}	Input capacitance (sample tested)	BGA, SBGA, PQ, HQ, MQ packages		10	pF
		PGA packages		16	pF
I _{RPU}	Pad pull-up (when selected) @ V _{in} = 0 V (sample teste	0.02	0.25	mA	
I _{RPD}	Pad pull-down (when selected) @ $V_{in} = 5.5 V$ (sample	tested)	0.02	0.25	mA
I _{RLL}	Horizontal Longline pull-up (when selected) @ logic Lo	W	0.3	2.0	mA

Note 1: With up to 64 pins simultaneously sinking 12 mA.

Note 2: With no output current loads, no active input or Longline pull-up resistors, all package pins at Vcc or GND.

Notes: At junction temperatures above those listed , all delay parameters increase by 0.35% per °C. Input and output measurement thresholds for TTL are 1.5 V and for CMOS are 2.5 V.

XC4000EX Switching Characteristics

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

Global Buffer Switching Characteristic Guidelines

	Speed Grade					
Description	Symbol	Device	Max	Max	Max	Units
From pad through Global Low Skew buffer, to any clock K	T _{GLS}	XC4028EX XC4036EX	9.2 9.8	7.5 7.9	6.4 7.1	ns ns
From pad through Global Early buffer, to any clock K in same quadrant	T _{GE}	XC4028EX XC4036EX	5.7 5.9	4.4 4.6	4.2 4.4	ns ns

Horizontal Longline Switching Characteristic Guidelines

	S	peed Grade	-4	-3	-2	Units
Description	Symbol	Device	Max	Max	Max	Units
TBUF driving a Horizontal Longline						
I going High or Low to Horizontal Longline going High or Low, while T is Low. Buffer is constantly active.	T _{IO1}	XC4028EX XC4036EX	13.7 16.5	11.3 13.6	10.9 13.2	ns ns
T going Low to Horizontal Longline going from resistive pull-up or floating High to active Low. TBUF configured as open-drain or active buffer with I = Low.	T _{ON}	XC4028EX XC4036EX	14.7 17.4	12.1 14.4	11.7 14.0	ns ns
TBUF driving Half a Horizontal Longline						
I going High or Low to half of a Horizontal Longline going High or Low, while T is Low. Buffer is constantly active.	T _{HIO1}	XC4028EX XC4036EX	6.3 7.3	5.6 6.0	4.6 5.7	ns ns
T going Low to half of a Horizontal Longline going from resis- tive pull-up or floating High to active Low. TBUF configured as open-drain or active buffer with $I = Low$.	T _{HON}	XC4028EX XC4036EX	7.2 8.2	6.4 6.8	5.4 6.5	ns ns

Note: These values include a minimum load of one output, spaced as far as possible from the activated pullup(s). Use the static timing analyzer to determine the delay for each destination.

XC4000EX CLB Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devicees unless otherwise noted.

CLB Switching Characteristic Guidelines

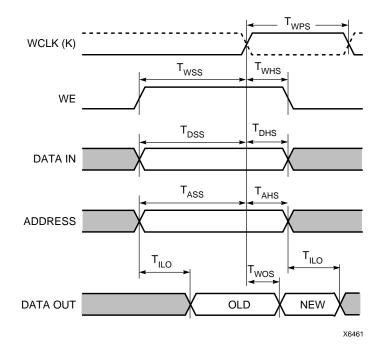
	Speed Grade		-4	-	-3	-	2	
Description	Symbol	Min	Max	Min	Max	Min	Max	Units
Combinatorial Delays								
F/G inputs to X/Y outputs	T _{ILO}		2.2		1.8		1.5	ns
F/G inputs via H' to X/Y outputs	TIHO		3.8		3.2		2.7	ns
F/G inputs via transparent latch to Q outputs	T _{ITO}		3.2		2.7		2.5	ns
C inputs via SR/H0 via H' to X/Y outputs	T _{HH0O}		3.6		3.0		2.5	ns
C inputs via H1 via H' to X/Y outputs	T _{HH10}		3.0		2.5		2.3	ns
C inputs via DIN/H2 via H' to X/Y outputs	T _{HH2O}		3.6		3.0		2.5	ns
C inputs via EC, DIN/H2 to YQ, XQ output (bypass)	T _{CBYP}		2.0		1.6		1.4	ns
CLB Fast Carry Logic								
Operand inputs (F1, F2, G1, G4) to COUT	T _{OPCY}		2.5		2.2		1.9	ns
Add/Subtract input (F3) to COUT	TASCY		4.1		3.6		3.1	ns
Initialization inputs (F1, F3) to COUT	T _{INCY}		1.9		1.6		1.4	ns
CIN through function generators to X/Y outputs	T _{SUM}		3.0		2.6		2.2	ns
C _{IN} to C _{OUT} , bypass function generators	T _{BYP}		0.60		0.50		0.40	ns
Carry Net Delay, C_{OUT} to C_{IN}	T _{NET}		0.18		0.15		0.15	ns
Sequential Delays	INET							-
Clock K to Flip-Flop outputs Q	тско		2.2		1.9		1.7	ns
Clock K to Latch outputs Q	T _{CKLO}		2.2		1.9		1.7	ns
Setup Time before Clock K	CKLO							
F/G inputs	T _{ICK}	1.3		1.1		1.1		ns
F/G inputs via H'	TIHCK	3.0		2.5		2.2		ns
C inputs via H0 through H'	THUCK	2.8		2.3		2.0		ns
C inputs via H1 through H'	THHOCK	2.2		1.8		1.8		ns
C inputs via H2 through H'	T _{HH2CK}	2.8		2.3		2.0		ns
C inputs via DIN	TDICK	1.2		0.9		0.9		ns
C inputs via EC	TECCK	1.2		1.0		0.9		ns
C inputs via S/R, going Low (inactive)	T _{RCK}	0.8		0.7		0.6		ns
CIN input via F'/G'	T _{CCK}	2.2		1.8		2.1		ns
CIN input via F'/G' and H'	T _{CHCK}	3.9		3.2		3.2		ns
Hold Time after Clock K	CHCK	0.0		0.2		0.2		110
F/G inputs	т _{скі}	0		0		0		ns
F/G inputs via H'		0		0		0		ns
C inputs via SR/H0 through H'	T _{CKIH}	0		0		0		ns
C inputs via H1 through H'	T _{CKHH0}	0		0		0		ns
C inputs via DIN/H2 through H'	T _{CKHH1}	0		0		0		ns
C inputs via DIN/H2	T _{CKHH2}	0		0		0		ns
C inputs via EC	T _{CKDI}	0		0		0		ns
C inputs via SR, going Low (inactive)	T _{CKEC} T _{CKR}	0		0		0		ns
Clock	- CKR	0		0		0		115
	- T	2 5		2.0		2.0		D 2
Clock High time Clock Low time	T _{CH}	3.5 3.5		3.0 3.0		3.0 3.0		ns
	T _{CL}	3.5		3.0		3.0		ns
Set/Reset Direct		<u> </u>	-		1			
Width (High)	T _{RPW}	3.5		3.0		3.0		ns
Delay from C inputs via S/R, going High to Q	T _{RIO}		4.5		3.8		3.6	ns
Global Set/Reset								
Minimum GSR Pulse Width	T _{MRW}		13.0		11.5		11.5	ns
Delay from GSR input to any Q (XC4028EX)	T _{MRQ}		22.8		19.0		19.0	ns
Delay from GSR input to any Q (XC4036EX)	T _{MRQ}		24.0		21.0		21.0	ns
Toggle Frequency) (for export control purposes)	F _{TOG}		143		166		166	MHz
	106							···· •

CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines

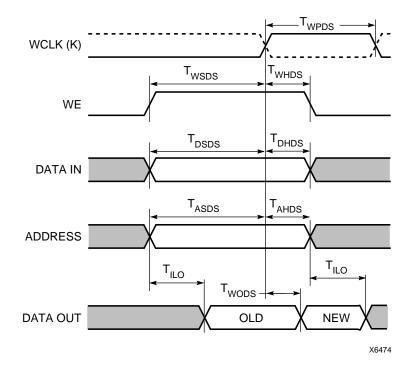
Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted.

Single Port RAM	Spee	d Grade	-	4	-	3	-	2	Units
	Size	Symbol	Min	Max	Min	Max	Min	Max	Units
Write Operation									
Address write cycle time (clock K period)	16x2 32x1	T _{WCS} T _{WCTS}	11.0 11.0		9.0 9.0		9.0 9.0		ns ns
Clock K pulse width (active edge)	16x2 32x1	T _{WPS} T _{WPTS}	5.5 5.5		4.5 4.5		4.5 4.5		ns ns
Address setup time before clock K	16x2 32x1	T _{ASS} T _{ASTS}	2.7 2.6		2.3 2.2		2.2 2.2		ns ns
Address hold time after clock K	16x2 32x1	T _{AHS} T _{AHTS}	0 0		0 0		0 0		ns ns
DIN setup time before clock K	16x2 32x1	T _{DSS} T _{DSTS}	2.4 2.9		2.0 2.5		2.0 2.5		ns ns
DIN hold time after clock K	16x2 32x1	T _{DHS} T _{DHTS}	0 0		0 0		0 0		ns ns
WE setup time before clock K	16x2 32x1	T _{WSS} T _{WSTS}	2.3 2.1		2.0 1.8		2.0 1.8		ns ns
WE hold time after clock K	16x2 32x1	T _{WHS} T _{WHTS}	0 0		0 0		0 0		ns ns
Data valid after clock K	16x2 32x1	T _{WOS} T _{WOTS}		8.2 10.1		6.8 8.4		6.8 8.2	ns ns

Notes::


Timing for the 16x1 RAM option is identical to 16x2 RAM timing.

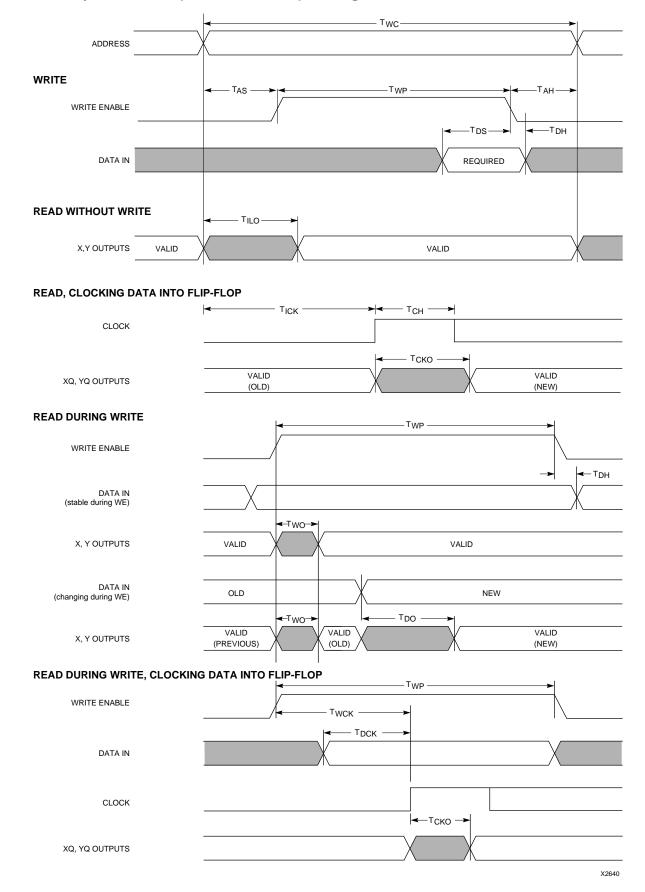
Applicable Read timing specifications are identical to Level-Sensitive Read timing.


Dual-Port RAM	Spee	Speed Grade		-4		-3		-2	
	Size	Symbol	Min	Max	Min	Max	Min	Max	Units
Write Operation				Ι		1			
Address write cycle time (clock K period)	16x1	T _{WCDS}	11.0		9.0		9.0		ns
Clock K pulse width (active edge)	16x1	T _{WPDS}	5.5		4.5		4.5		ns
Address setup time before clock K	16x1	T _{ASDS}	3.1		2.6		2.5		ns
Address hold time after clock K	16x1	T _{AHDS}	0		0		0		ns
DIN setup time before clock K	16x1	T _{DSDS}	2.9		2.5		2.5		ns
DIN hold time after clock K	16x1	T _{DHDS}	0		0		0		ns
WE setup time before clock K	16x1	T _{WSDS}	2.1		1.8		1.8		ns
WE hold time after clock K	16x1	T _{WHDS}	0		0		0		ns
Data valid after clock K	16x1	T _{WODS}		9.4		7.8		7.8	ns

Note:: Applicable Read timing specifications are identical to Level-Sensitive Read timing.

CLB Single-Port RAM Synchronous (Edge-Triggered) Write Timing Waveforms

CLB Dual-Port RAM Synchronous (Edge-Triggered) Write Timing Waveforms


CLB RAM Asynchronous (Level-Sensitive) Write and Read Operation Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted.

	Spe	ed Grades	-	4	-	3	-	2	Units
Description	Size	Symbol	Min	Max	Min	Max	Min	Max	Units
Write Operation									
Address write cycle time	16x2 32x1	T _{WC} T _{WCT}	10.6 10.6		9.2 9.2		8.0 8.0		ns ns
Write Enable pulse width (High)	16x2 32x1	T _{WP} T _{WPT}	5.3 5.3		4.6 4.6		4.0 4.0		ns ns
Address setup time before WE	16x2 32x1	T _{AS} T _{AST}	2.8 2.9		2.4 2.5		2.0 2.0		ns ns
Address hold time after end of WE	16x2 32x1	T _{AH} T _{AHT}	1.7 1.7		1.4 1.4		1.4 1.4		ns ns
DIN setup time before end of WE	16x2 32x1	T _{DS} T _{DST}	1.1 1.1		0.9 0.9		0.8 0.8		ns ns
DIN hold time after end of WE	16x2 32x1	T _{DH} T _{DHT}	6.6 6.6		5.7 5.7		5.0 5.0		ns ns
Read Operation	1			1	1	1		1	
Address read cycle time	16x2 32x1	T _{RC} T _{RCT}	4.5 6.5		3.1 5.5		3.1 5.5		ns ns
Data valid after address change (no Write Enable)	16x2 32x1	T _{ILO} T _{IHO}		2.2 3.8		1.8 3.2		1.5 2.7	ns ns
Read Operation, Clocking Data into Fli	p-Flop			1		1			
Address setup time before clock K	16x2 32x1	T _{ICK} T _{IHCK}	1.5 3.2		1.2 2.6		1.2 2.6		ns ns
Read During Write	1			1	1	1		1	
Data valid after WE goes active (DIN stable before WE)	16x2 32x1	T _{WO} T _{WOT}		6.5 7.4		5.7 6.5		4.9 5.6	ns ns
Data valid after DIN (DIN changes during WE)	16x2 32x1	T _{DO} T _{DOT}		7.7 8.2		6.7 7.2		5.8 6.2	ns ns
Read During Write, Clocking Data into	Flip-Flop			1	1				
WE setup time before clock K	16x2 32x1	Т _{WCK} Т _{WCKT}	7.1 9.2		6.2 8.1		5.5 7.0		ns ns
Data setup time before clock K	16x2 32x1	Т _{DCK} Т _{DCKT}	5.9 8.4		5.2 7.4		4.6 6.4		ns ns

Note: Timing for the 16x1 RAM option is identical to 16x2 RAM timing.

CLB RAM Asynchronous (Level-Sensitive) Timing Waveforms

XC4000EX Pin-to-Pin Output Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values apply to all XC4000EX devices unless otherwise noted.

Output Flip-Flop, Clock to Out Guidelines

		Speed Grade	-4	-3	-2	Units
Description	Symbol	Device	Max	Max	Max	Units
Global Low Skew Clock to TTL Output (fast) using OFF	T _{ICKOF}	XC4028EX XC4036EX	16.6 17.2	13.7 14.1	12.4 13.1	ns ns
Global Early Clock to TTL Output (fast) using OFF	T _{ICKEOF}	XC4028EX XC4036EX	13.1 13.3	10.6 10.8	10.2 10.4	ns ns

OFF = Output Flip Flop

Output MUX, Clock to Out Guidelines

	Speed Grade					Units
Description	Symbol	Device	Max	Max	Max	Units
Global Low Skew Clock to TTL Output (fast) using OMUX	T _{PFPF}	XC4028EX XC4036EX	15.9 16.5	13.1 13.5	11.8 12.5	ns ns
Global Early Clock to TTL Output (fast) using OMUX	T _{PEFPF}	XC4028EX XC4036EX	12.4 12.6	10.0 10.2	9.6 9.8	ns ns

OMUX = Output MUX

Notes: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Output timing is measured at TTL threshold with 50 pF external capacitive load.

Set-up time is measured with the fastest route and the lightest load. Hold time is measured using the farthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer to determine the setup and hold times under given design conditions.

Output Level and Slew Rate Adjustments

The following table must be used to adjust output parameters and output switching characteristics.

	Speed Grade			-3	-2	
Description	Symbol	Device	Max	Max	Max	Units
For TTL output FAST add	T _{TTLOF}	All Devices	0	0	0	ns
For TTL output SLOW add	T _{TTLO}	All Devices	2.9	2.4	2.4	ns
For CMOS FAST output add	T _{CMOSOF}	All Devices	1.0	0.8	0.8	ns
For CMOS SLOW output add	T _{CMOSO}	All Devices	3.6	3.0	3.0	ns

XC4000EX Pin-to-Pin Input Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values apply to all XC4000EX devices unless otherwise noted

Global Low Skew Clock, Set-Up and Hold Guidelines

	Speed Grade		-4	-3	-2	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup Time, using Global Low Skew clock and	T _{PSD}	XC4028EX	8.0	6.8	6.8	ns
IFF (full delay)	_	XC4036EX	8.0	6.8	6.8	ns
Input Hold Time, using Global Low Skew clock and IFF	T _{PHD}	XC4028EX	0	0	0	ns
(full delay)		XC4036EX	0	0	0	ns

IFF = Input Flip-Flop or Latch

Global Early Clock, Set-Up and Hold for IF Guidelines

		Speed Grade	-4	-3	-2	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup Time, using Global Early clock and IFF	T _{PSEP}	XC4028EX	6.5	5.4	5.4	ns
(partial delay)	_	XC4036EX	6.5	5.4	5.4	ns
Input Hold Time, using Global Early clock and IFF (par-	T _{PHEP}	XC4028EX	0	0	0	ns
tial delay)		XC4036EX	0	0	0	ns

IFF = Input Flip-Flop or Latch

Note: Set-up parameters are for BUFGE #s 3, 4, 7 and 8. Add 1.6 ns for BUFGE #s 1, 2, 5 and 6.

Global Early Clock, Set-Up and Hold for FCL Guidelines

		Speed Grade	-4	-3	-2	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup Time, using Global Early clock and	T _{PFSEP}	XC4028EX	3.4	3.4	3.4	ns
FCL (partial delay)		XC4036EX	4.4	4.2	4.2	ns
Input Hold Time, using Global Early clock and	T _{PFHEP}	XC4028EX	0	0	0	ns
FCL (partial delay)		XC4036EX	0	0	0	ns

FCL = Fast Capture Latch

Notes: For CMOS input levels, see the "Input Threshold Adjustments" on page 96.

Setup time is measured with the fastest route and the lightest load. Use the static timing analyzer to determine the setup time under given design conditions.

Hold time is measured using the farthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer to determine the setup and hold times under given design conditions.

Set-up parameters are for BUFGE #s 3, 4, 7 and 8. Add 1.2 ns for BUFGE #s 1, 2, 5 and 6.

Input Threshold Adjustments

The following table must be used to adjust input parameters and input switching characteristics.

	Speed Grade		-4	-3	-2	
Description	Symbol	Device	Max	Max	Max	Units
For TTL input add	T _{TTLI}	All Devices	0	0	0	ns
For CMOS input add	T _{CMOSI}	All Devices	0.3	0.2	0.2	ns

XC4000EX IOB Input Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000EX devices unless otherwise noted.

Speed Grad		-4	-3	-2	Unito
Symbol	Device	Min	Min	Min	Units
			•		-
Токік	All devices	3.2	2.6	2.6	ns
		Max	Max	Max	
T _{PID}	All devices	2.2	1.9	1.8	ns
T _{PLI}	All devices	3.8	3.2	3.0	ns
T _{PPLI}	XC4028EX	13.3	11.1	10.9	ns
	XC4036EX	14.5	12.1	11.9	ns
T _{PDLI}	XC4028EX	18.2	15.2	14.9	ns
	XC4036EX	19.4	16.2	15.9	ns
T _{PFLI}	All devices	5.3	4.4	4.2	ns
T _{PPFLI}	XC4028EX	13.6	11.3	11.1	ns
	XC4036EX	14.8	12.3	12.1	ns
T _{IKRI}	All devices	3.0	2.5	2.4	ns
T _{IKLI}	All devices	3.2	2.7	2.6	ns
	All devices	6.2	5.2	5.0	ns
				•	
T _{MRW}	All devices	13.0	11.5	11.5	ns
T _{RRI}	XC4028EXX	22.8	19.0	19.0	ns
T _{RRI}	C4036EX	24.0	21.0	21.0	ns
	Symbol T _{OKIK} T _{PID} T _{PLI} T _{PPLI} T _{PPLI} T _{PFLI} T _{PFLI} T _{IKRI} T _{IKRI} T _{IKLI} T _{OKLI}	SymbolDeviceTOKIKAll devicesTPIDAll devicesTPLIAll devicesTPLIAll devicesTPLIAll devicesTPLIXC4028EXXC4036EXXC4036EXTPLIXC4028EXXC4036EXXC4036EXTPFLIAll devicesTPFLIAll devicesTIKRIAll devicesTIKRIAll devicesAll devicesAll devicesTOKLIAll devicesAll devicesAll devicesTMRWAll devicesXC4028EXXXC4028EXX	$\begin{tabular}{ c c c c } \hline Symbol & Device & Min \\ \hline \hline \hline \hline T_{OKIK} & All devices & 3.2 \\ \hline \hline T_{OKIK} & All devices & 3.2 \\ \hline \hline \hline T_{PID} & All devices & 2.2 \\ \hline \hline T_{PLI} & All devices & 3.8 \\ \hline \hline T_{PPLI} & XC4028EX & 13.3 \\ XC4036EX & 14.5 \\ \hline \hline T_{PDLI} & XC4028EX & 18.2 \\ XC4036EX & 19.4 \\ \hline \hline T_{PFLI} & All devices & 5.3 \\ \hline \hline \hline T_{PFLI} & All devices & 5.3 \\ \hline \hline \hline \hline T_{PFLI} & XC4028EX & 13.6 \\ XC4036EX & 14.8 \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline T_{IKRI} & All devices & 3.0 \\ \hline \hline T_{OKLI} & All devices & 3.2 \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \\ \hline \hline$	Symbol Device Min Min T _{OKIK} All devices 3.2 2.6 T _{OKIK} All devices 3.2 2.6 Max Max Max T _{PID} All devices 2.2 1.9 T _{PLI} All devices 3.8 3.2 T _{PLI} All devices 3.8 3.2 T _{PPLI} XC4028EX 13.3 11.1 XC4036EX 14.5 12.1 T _{PDLI} XC4028EX 18.2 15.2 XC4036EX 19.4 16.2 T _{PFLI} All devices 5.3 4.4 T _{PFFLI} XC4028EX 13.6 11.3 XC4036EX 14.8 12.3 T All devices 3.0 2.5 T _{IKRI} All devices 3.2 2.7 GoKLI All devices 3.2 5.2 ToKLI All devices 13.0 11.5 T _{RRI} All devices 13.0 11.5 <td>Symbol Device Min Min Min T_{OKIK} All devices 3.2 2.6 2.6 T_{OKIK} All devices 3.2 2.6 2.6 Max Max Max Max T_{PID} All devices 2.2 1.9 1.8 T_{PLI} All devices 3.8 3.2 3.0 T_{PPLI} All devices 3.8 3.2 3.0 T_{PPLI} All devices 13.3 11.1 10.9 XC4036EX 14.5 12.1 11.9 T_{PDLI} XC4028EX 18.2 15.2 14.9 XC4036EX 19.4 16.2 15.9 T_{PFLI} All devices 5.3 4.4 4.2 T_{PFFLI} XC4028EX 13.6 11.3 11.1 T_{OKLI} All devices 3.0 2.5 2.4 T_{IKRI} All devices 3.2 2.7 2.6 T_{OKLI} All devices 6.2</td>	Symbol Device Min Min Min T _{OKIK} All devices 3.2 2.6 2.6 T _{OKIK} All devices 3.2 2.6 2.6 Max Max Max Max T _{PID} All devices 2.2 1.9 1.8 T _{PLI} All devices 3.8 3.2 3.0 T _{PPLI} All devices 3.8 3.2 3.0 T _{PPLI} All devices 13.3 11.1 10.9 XC4036EX 14.5 12.1 11.9 T _{PDLI} XC4028EX 18.2 15.2 14.9 XC4036EX 19.4 16.2 15.9 T _{PFLI} All devices 5.3 4.4 4.2 T _{PFFLI} XC4028EX 13.6 11.3 11.1 T _{OKLI} All devices 3.0 2.5 2.4 T _{IKRI} All devices 3.2 2.7 2.6 T _{OKLI} All devices 6.2

FCL = Fast Captur Latch, IFF = Input Flip-Flop or Latch

Notes: For CMOS input levels, see the "Input Threshold Adjustments" on page 96.

For setup and hold times with respect to the clock input pin, see the Global Low Skew Clock and Global Early Clock Set-up and Hold tables on page 96.

XC4000EX IOB Input Switching Characteristic Guidelines (Continued)

		Speed Grade	-4	-3	-2	Units
Description	Symbol	Device	Min	Min	Min	Units
Setup Times		· · · · ·				
Pad to Clock (IK), no delay	T _{PICK}	All devices	2.5	2.0	2.0	ns
Pad to Clock (IK), partial delay	T _{PICKP}	XC4028EX	10.8	9.0	9.0	ns
		XC4036EX	12.0	10.0	10.0	ns
Pad to Clock (IK), full delay	T _{PICKD}	XC4028EX	15.7	13.1	13.1	ns
	-	XC4036EX	16.9	14.1	14.1	ns
Pad to Clock (IK), via transparent Fast Capture	T _{PICKF}	All devices	3.9	3.3	3.3	ns
Latch, no delay						
Pad to Clock (IK), via transparent Fast	T _{PICKFP}	XC4028EX	12.3	10.2	10.2	ns
Capture Latch, partial delay	-	XC4036EX	13.5	11.2	11.2	ns
Pad to Fast Capture Latch Enable (OK), no delay	Т _{РОСК}	All devices	0.8	0.7	0.7	ns
Pad to Fast Capture Latch Enable (OK), partial delay	T _{POCKP}	XC4028EX	9.1	7.6	7.6	ns
		XC4036EX	10.3	8.6	8.6	ns
Setup Times (TTL or CMOS Inputs)		· · · · ·				
Clock Enable (EC) to Clock (IK)	T _{ECIK}	All devices	0.3	0.2	0.2	ns
Hold Times				•	•	
Pad to Clock (IK),						
no delay	T _{IKPI}	All devices	0	0	0	ns
partial delay	T _{IKPIP}	All devices	0	0	0	ns
full delay	T _{IKPID}	All devices	0	0	0	ns
Pad to Clock (IK) via transparent Fast						
Capture Latch,						
no delay	T _{IKFPI}	All devices	0	0	0	ns
partial delay	T _{IKFPIP}	All devices	0	0	0	ns
full delay	TIKFPID	All devices	0	0	0	ns
Clock Enable (EC) to Clock (IK),						
no delay	TIKEC	All devices	0	0	0	ns
partial delay	T _{IKECP}	All devices	0	0	0	ns
full delay	TIKECD	All devices	0	0	0	ns
Pad to Fast Capture Latch Enable (OK),						
no delay	T _{OKPI}	All devices	0	0	0	ns
partial delay	TOKPIP	All devices	0	0	0	ns

Notes: For CMOS input levels, see the "Input Threshold Adjustments" on page 96. For setup and hold times with respect to the clock input pin, see the Global Low Skew Clock and Global Early Clock Set-up and Hold tables on page 96.

XC4000EX IOB Output Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). For Propagation Delays, slew-rate = fast unless otherwise noted. Values apply to all XC4000EX devices unless otherwise noted.

	Speed Grade	-	4		3	-2		Units
Description	Symbol	Min	Max	Min	Max	Min	Max	Units
Propagation Delays			1			I		1
Clock (OK) to Pad	T _{OKPOF}		7.4		6.2		6.0	ns
Output (O) to Pad	T _{OPF}		6.2		5.2		5.0	ns
3-state to Pad hi-Z (slew-rate independent)	T _{TSHZ}		4.9		4.1		4.1	ns
3-state to Pad active and valid	T _{TSONF}		6.2		5.2		5.0	ns
Output MUX Select (OK) to Pad	T _{OKFPF}		6.7		5.6		5.4	ns
Fast Path Output MUX Input (EC) to Pad	T _{CEFPF}		6.2		5.1		5.0	ns
Slowest Path Output MUX Input (O) to Pad	T _{OFPF}		7.3		6.0		5.9	ns
Setup and Hold Times			1			I		1
Output (O) to clock (OK) setup time	Тоок	0.6		0.5		0.5		ns
Output (O) to clock (OK) hold time	Токо	0		0		0		ns
Clock Enable (EC) to clock (OK) setup	T _{ECOK}	0		0		0		ns
Clock Enable (EC) to clock (OK) hold	TOKEC	0		0		0		ns
Clock						I		1
Clock High	Т _{СН}	3.5		3.0		3.0		ns
Clock Low	T _{CL}	3.5		3.0		3.0		ns
Global Set/Reset								
Minimum GSR pulse width	T _{MRW}	13.0		11.5		11.5		ns
Delay from GSR input to any Pad (XC4028EX)	T _{RPO}	30.2		25.2		25.0		ns
Delay from GSR input to any Pad (XC4036EX)	T _{RPO}	31.4		27.2		27.0		ns

Notes: Output timing is measured at TTL threshold, with 35pF external capacitive loads. For CMOS output levels, see the "Output Level and Slew Rate Adjustments" on page 95

Revision Control

Version	Description
2/1/99 (1.5)	Release included in 1999 data book, section 6
5/14/99 (1.6)	Replaced Electrical Specification pages for XLA and XV families with separate updates and added URL link on placeholder page for electrical specifications/pinouts for WebLINX users.