

XV Specification Information

Definition of Terms

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families.

Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.

Except for pin-to-pin input and output parameters, the a.c. parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions.

All specifications subject to change without notice.

XC4000XV D.C. Characteristics

Absolute Maximum Ratings

Symbol	Description		Value	Units		
V _{CCINT}	Supply voltage relative to GND		-0.5 to 3.0	V		
V _{CCIO}	Supply voltage relative to GND		-0.5 to 4.0	V		
V _{IN}	Input voltage relative to GND (Note 1)	nput voltage relative to GND (Note 1)				
V _{TS}	Voltage applied to 3-state output (Note 1)	-0.5 to 5.5	V			
V _{CC}	Longest Supply Voltage Rise Time from 1 V to 3V		50	ms		
T _{STG}	Storage temperature (ambient)		-65 to +150	°C		
T _{SOL}	Maximum soldering temperature (10 s @ 1/16 in. =	1.5 mm)	+260	°C		
т	lunction tomporature	Ceramic packages	+150	°C		
T_J	Junction temperature	Plastic packages	+125	°C		

Maximum DC excursion above V_{cc} or below Ground must be limited to either 0.5 V or 10 mA, whichever is easier to Note 1: achieve. During transitions, the device pins may undershoot to -2.0 V or overshoot to V_{CC} + 2.0 V, provided this over or

undershoot lasts less than 10 ns and with the forcing current being limited to 200 mA.

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

Note:

Recommended Operating Conditions

Symbol	Description		Min	Max	Units
	Supply voltage relative to GND, $T_J = 0$ °C to +85°C	Commercial	2.3	2.7	V
V _{CCINT}	Supply voltage relative to GND, $T_J = -40$ °C to $+100$ °C	Industrial	2.3	2.7	V
	Supply voltage relative to GND, $T_J = 0$ °C to +85°C	Commercial	3.0	3.6	V
V _{CCIO}	Supply voltage relative to GND, $T_J = -40$ °C to $+100$ °C	Industrial	3.0	3.6	V
V _{IH}	High-level input voltage		50% of V _{CC}	5.5	V
V _{IL}	Low-level input voltage	w-level input voltage			
T _{IN}	Input signal transition time			250	ns

Notes:

At junction temperatures above those listed above, all delay parameters increase by 0.35% per °C. Input and output measurement threshold is ~50% of $V_{CC}\!.$

DC Characteristics Over Recommended Operating Conditions

Desc	cription	Min	Max	Units
High-level output voltage @ I _{OH} = -4.0	0 mA, V _{CC} min (LVTTL)	2.4		V
High-level output voltage @ I _{OH} = -50	00 μA, (LVCMOS)	90% V _{CC}		V
Low-level output voltage @ I _{OL} = 24.0	mA, V _{CC} min (LVTTL) (Note 1)		0.4	V
Low-level output voltage @ I _{OL} = 150		10% V _{CC}	V	
V _{CCINT} Data Retention Supply Voltage lost)	e (below which configuration data may be	2.1		V
V _{CCIO} Data Retention Supply Voltage lost)	(below which configuration data may be	2.5		V
Quiescent FPGA supply current (Note	e 2)		mA	
Input or output leakage current		-10	+10	μΑ
Input capacitance (cample tested)	BGA, SBGA, PQ, HQ, & MQ packages		10	pF
imput capacitance (sample testeu)	PGA packages		16	pF
Pad pull-up (when selected) @ V _{in} = 0	0 V (sample tested)	0.02	0.25	mA
Pad pull-down (when selected) @ V _{in}	= 3.6 V (sample tested)	0.02	0.15	mA
Horizontal Longline pull-up (when sele	ected) @ logic Low	0.3	2.0	mA
	High-level output voltage @ I _{OH} = -4.0 High-level output voltage @ I _{OH} = -500 Low-level output voltage @ I _{OL} = 24.0 Low-level output voltage @ I _{OL} = 1500 V _{CCINT} Data Retention Supply Voltage lost) V _{CCIO} Data Retention Supply Voltage lost) Quiescent FPGA supply current (Note Input or output leakage current Input capacitance (sample tested) Pad pull-up (when selected) @ V _{in} = 0 Pad pull-down (when selected) @ V _{in}	V _{CCIO} Data Retention Supply Voltage (below which configuration data may be lost) Quiescent FPGA supply current (Note 2) Input or output leakage current Input capacitance (sample tested) BGA, SBGA, PQ, HQ, & MQ packages	High-level output voltage @ IOH = -4.0 mA, VCC min (LVTTL)2.4High-level output voltage @ IOH = -500 μA, (LVCMOS)90% VCCLow-level output voltage @ IOL = 24.0 mA, VCC min (LVTTL) (Note 1)Low-level output voltage @ IOL = 1500 μA, (LVCMOS)VCCINT Data Retention Supply Voltage (below which configuration data may be lost)VCCIO Data Retention Supply Voltage (below which configuration data may be lost)Quiescent FPGA supply current (Note 2)Input or output leakage current-10Input capacitance (sample tested)BGA, SBGA, PQ, HQ, & MQ packagesPGA packagesPGA packagesPad pull-up (when selected) @ Vin = 0 V (sample tested)0.02Pad pull-down (when selected) @ Vin = 3.6 V (sample tested)0.02	High-level output voltage @ I _{OH} = -4.0 mA, V _{CC} min (LVTTL)2.4High-level output voltage @ I _{OH} = -500 μA, (LVCMOS)90% V _{CC} Low-level output voltage @ I _{OL} = 24.0 mA, V _{CC} min (LVTTL) (Note 1)0.4Low-level output voltage @ I _{OL} = 1500 μA, (LVCMOS)10% V _{CC} V _{CCINT} Data Retention Supply Voltage (below which configuration data may be lost)2.1V _{CCIO} Data Retention Supply Voltage (below which configuration data may be lost)2.5Quiescent FPGA supply current (Note 2)10Input or output leakage current-10+10Input capacitance (sample tested)PGA packages16Pad pull-up (when selected) @ V _{in} = 0 V (sample tested)0.020.25Pad pull-down (when selected) @ V _{in} = 3.6 V (sample tested)0.020.15

Note 1:

With up to 64 pins simultaneously sinking 24 mA.

Note 2: With no output current loads, no active input or Longline pull-up resistors, all I/O pins Tri-stated and floating.

XC4000XV Switching Characteristics Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

Global Buffer Switching Characteristics Guidelines

		Speed Grade	All	-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Units
Delay from pad through Global Low Skew (GLS)	T _{GLS}	XC40110XV		7.2	6.3	5.4	ns
clock buffer to any clock input, K.		XC40150XV		7.3	6.4	5.5	ns
		XC40200XV		8.8	7.7	6.6	ns
		XC40250XV		8.9	7.8	6.7	ns
Delay from pad through Global Early (GE) clock	T _{GE_1256}	XC40110XV		2.5	2.2	1.8	ns
ouffer to any IOB clock input for BUFGE #s 1, 2, 5, and 6.		XC40150XV		2.6	2.3	1.9	ns
		XC40200XV		2.9	2.6	2.2	ns
		XC40250XV		3.0	2.7	2.3	ns
Delay from pad through Global Early (GE) clock	T _{GE_3478}	XC40110XV		5.1	4.5	3.8	ns
buffer to any IOB clock input for BUFGE #s 3, 4,		XC40150XV		5.2	4.6	3.9	ns
7, and 8.		XC40200XV		5.6	4.9	4.2	ns
		XC40250XV		5.7	5.0	4.3	ns
Delay from pad through FastCLK buffer to any	T _{FCLK}	XC40110XV		5.1	4.5	3.8	ns
IOB clock input		XC40150XV		5.2	4.6	3.9	ns
		XC40200XV		5.6	4.9	4.2	ns
		XC40250XV		5.7	5.0	4.3	ns
Bold Face : Preliminary Values for the XC40150-09. All of	her values are A	dvance.		Adv	ance		

XC4000XV CLB Characteristics Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted.

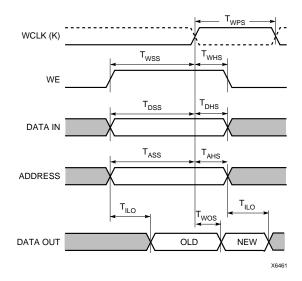
CLB Switching Characteristic Guidelines

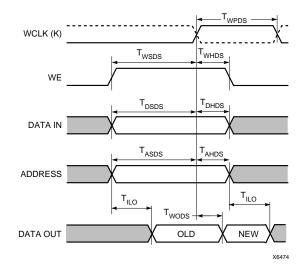
	Speed Grade	-(09	-(08	-(07	11-24
Description	Symbol	Min	Max	Min	Max	Min	Max	Units
Combinatorial Delays								
F/G inputs to X/Y outputs	T _{ILO}		1.3		1.1		1.0	ns
F/G inputs via H' to X/Y outputs	T _{IHO}		2.0		1.7		1.5	ns
F/G inputs via transparent latch to Q outputs	T _{ITO}		2.1		1.8		1.6	ns
C inputs via SR/H0 via H to X/Y outputs	T _{HH0O}		1.9		1.6		1.4	ns
C inputs via H1 via H to X/Y outputs	T _{HH1O}		1.7		1.5		1.3	ns
C inputs via DIN/H2 via H to X/Y outputs	T _{HH2O}		1.9		1.6		1.4	ns
C inputs via EC, DIN/H2 to YQ, XQ output (bypass0	T _{CBYP}		1.2		1.0		0.9	ns
CLB Fast Carry Logic	05							
Operand inputs (F1, F2, G1, G4) to C _{OUT}	T _{OPCY}		2.2		1.9		1.7	ns
Add/Subtract input (F3) to C _{OUT}	T _{ASCY}		1.3		1.1		1.0	ns
Initialization inputs (F1, F3) to C _{OUT}	T _{INCY}		1.4		1.2		1.0	ns
C _{IN} through function generators to X/Y outputs	T _{SUM}		1.8		1.6		1.4	ns
C _{IN} to C _{OUT} , bypass function generators	T _{BYP}		0.3		0.2		0.2	ns
Carry Net Delay, C _{OUT} to C _{IN}	T _{NET}		0.4		0.3		0.3	ns
Sequential Delays								
Clock K to Flip-Flop outputs Q	T _{CKO}		1.6		1.4		1.2	ns
Clock K to Latch outputs Q	T _{CKLO}		1.6		1.4		1.2	ns
Setup Time before Clock K								
F/G inputs	T _{ICK}	0.8		0.7		0.6		ns
F/G inputs via H	T _{IHCK}	1.5		1.3		1.1		ns
C inputs via H0 through H	T _{HH0CK}	1.4		1.2		1.0		ns
C inputs via H1 through H	T _{HH1CK}	1.2		1.1		0.9		ns
C inputs via H2 through H	T _{HH2CK}	1.4		1.2		1.0		ns
C inputs via DIN	T _{DICK}	0.6		0.6		0.5		ns
C inputs via EC	T _{ECCK}	0.7		0.6		0.5		ns
C inputs via S/R, going Low (inactive)	T _{RCK}	0.6		0.5		0.4		ns
CIN input via F/G	T _{CCK}	1.3		1.1		1.0		ns
CIN input via F/G and H	T _{CHC}	2.0		1.7		1.5		ns
Hold Time after Clock K								
All Hold Times		0.0		0.0		0.0		ns
Clocks								
Clock High time	T _{CH}	2.3		2.0		1.7		ns
Clock Low time	T _{CL}	2.3		2.0		1.7		ns
Set/Reset Direct								
Width (High)	T _{RPW}	3.0		2.8		2.5		ns
Delay from C inputs via S/R, going High to Q	T _{RIO}		2.6		2.3		2.0	ns
Global Set/Reset								
Minimum GSR Pulse Width	T _{MRW}		13.4		11.7		10.2	ns
Delay from GSR input to any Q	T _{MRQ}	Se	ee page 1	97 for TF	RI values	s per dev	rice	
Toggle Frequency (MHz) (for export control purposes)	F _{TOG}		224		258		296	MHz
				Adv	ance			

CLB RAM Single Port Synchronous (Edge-Triggered) Write Operation Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000XV devices and are expressed in nanoseconds unless otherwise noted.

Single Port RAM	Spee	d Grade	-()9	-(08	-07		l lm!ta
Single Fort RAM	Size	Symbol	Min	Max	Min	Max	Min	Max	Units
Write Operation				_	'	'			
Address write cycle time (clock K period)	16x2	T _{WCS}	7.0		6.1		5.3		ns
	32x1	T _{WCTS}	7.0		6.1		5.3		ns
Clock K pulse width (active edge)	16x2	T _{WPS}	3.5		3.1		2.7		ns
	32x1	T _{WPTS}	3.5		3.1		2.7		ns
Address setup time before clock K	16x2	T _{ASS}	1.5		1.3		1.2		ns
	32x1	T _{ASTS}	1.6		1.4		1.2		ns
Address hold time after clock K	16x2	T _{AHS}	0.0		0.0		0.0		ns
	32x1	T _{AHTS}	0.0		0.0		0.0		ns
DIN setup time before clock K	16x2	T _{DSS}	1.6		1.4		1.2		ns
	32x1	T _{DSTS}	2.0		1.7		1.5		ns
DIN hold time after clock K	16x2	T _{DHS}	0.0		0.0		0.0		ns
	32x1	T _{DHTS}	0.0		0.0		0.0		ns
WE setup time before clock K	16x2	T _{WSS}	1.5		1.3		1.2		ns
	32x1	T _{WSTS}	1.4		1.3		1.1		ns
WE hold time after clock K	16x2	T _{WHS}	0.0		0.0		0.0		ns
	32x1	T _{WHTS}	0.0		0.0		0.0		ns
Data valid after clock K	16x2	T _{WOS}		5.2		4.6		4.0	ns
	32x1	T _{WOTS}		6.2		5.4		4.7	ns
Read Operation									
Address read cycle time	16x2	T _{RC}	4.5		3.1		3.1		ns
	32x1	T _{RCT}	6.5		5.5		5.5		ns
Data Valid after address change (no Write Enable)	16x2	T _{ILO}		1.3		1.1		1.0	ns
	32x1	T _{IHO}		2.0		1.7		1.5	ns
Address setup time before clock K	16x2	T _{ICK}	0.8		0.7		0.6		ns
	32x1	T _{IHCK}	1.5		1.3		1.1		ns
		•			Adv	ance			




CLB RAM Dual Port Synchronous (Edge-Triggered) Write Operation Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report.

Dual Port RAM	Speed	d Grade	-()9	-08		-07		Units
Duai Fort NAIW	Size	Symbol	Min	Max	Min	Max	Min	Max	Ullits
Address write cycle time (clock K period)	16x1	T _{WCDS}	7.0		6.1		5.3		ns
Clock K pulse width (active edge)	16x1	T _{WPDS}	3.5		3.1		2.7		ns
Address setup time before clock K	16x1	T _{ASDS}	1.5		1.3		1.2		ns
Address hold time after clock K	16x1	T _{AHDS}	0.0		0.0		0.0		ns
DIN setup time before clock K	16x1	T _{DSDS}	1.9		1.7		1.4		ns
DIN hold time after clock K	16x1	T _{DHDS}	0.0		0.0		0.0		ns
WE setup time before clock K	16x1	T _{WSDS}	1.5		1.3		1.2		ns
WE hold time after clock K	16x1	T _{WHDS}	0.0		0.0		0.0		ns
Data valid after clock K	16x1	T _{WODS}		6.0		5.3		4.6	ns
Note: Timing for 16x1 option is identical to 16x2 RAM.			Advance						

CLB RAM Synchronous (Edge-Triggered) Write Timing Waveforms

Single Port RAM

Dual Port RAM

XC4000XV Pin-to-Pin Output Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report.

Global Clock Input to Output Delay Guidelines

	Speed Grade						Units
Description	Symbol	Device	Min	Max	Max	Max	Offics
Global Low Skew (GLS) Clock Input to Output	T _{ICKOF}	XC40110XV		10.6	9.2	8.0	ns
Delay using Output Flip-Flop.		XC40150XV		10.7	9.3	8.1	ns
		XC40200XV		12.2	10.6	9.2	ns
		XC40250XV		12.3	10.7	9.3	ns
For output SLOW option add	T _{SLOW}	All Devices		1.7	1.6	1.4	ns
Bold Face: Preliminary Values for the XC40150-09. All or	ther values a	re Advance.	Advance				

Notes: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Clock-to-out minimum delay is measured with the fastest route and the lightest load, Clock-to-out maximum delay is measured using the farthest distance and a reference load of one clock pin (IK or OK) per IOB as well as driving all accessible CLB flip-flops. For designs with fewer number of clock loads, the pad-to-IOB clock pin delay as determined by the static timing analyzer (TRCE) can be added to the AC parameter Tokpof and used as a worst-case pin-to-pin clock-to-out delay for clocked outputs in FAST mode specification.

Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 1.

Low Skew FastCLK Input to Output Delay Guidelines for BUFNW, SW, NE, and SE

	All	-09	-08	-07	Units		
Description	Symbol	Device	Min	Max	Max	Max	Ullits
FastCLK Input to Output Delay using Output	T _{ICKFOF}	XC40110XV		5.9	5.1	4.4	ns
Flip-Flop for FastCLK buffers BUFNW, BUFSW,		XC40150XV		6.0	5.2	4.5	ns
BUFNE, and BUFSE.		XC40200XV		6.3	5.5	4.8	ns
		XC40250XV		6.4	5.6	4.9	ns
Bold Face: Preliminary Values for the XC40150-09. All o	ther values a	re Advance.		Adv	ance		,

Notes: Listed above are representative values where one FastCLK input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the FastCLK net.

Clock-to-out minimum delay is measured with the fastest route and the lightest load, Clock-to-out maximum delay is measured using the farthest distance and a reference load of one clock pin (IK or OK) per IOB as well as driving all accessible CLB flip-flops. For designs with fewer number of clock loads, the pad-to-IOB clock pin delay as determined by the static timing analyzer (TRCE) can be added to the AC parameter Tokpof and used as a worst-case pin-to-pin clock-to-out delay for clocked outputs in FAST slew mode specification.

Output timing is measured at \sim 50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 1.

Notes:

Global Early Clock Input to Output Delay Guidelines for BUFGE #s 1, 2, 5, and 6

		Speed Grade	All	-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Ullits
Global Clock Signal Input to Output Delay using	T _{ICKEOF_1256}	XC40110XV		8.5	7.4	6.4	ns
Global Early (GE) clock buffer to clock Output		XC40150XV		8.6	7.5	6.5	ns
Flip-Flop for BUFGE #s 1, 2, 5, and 6.		XC40200XV		9.0	7.8	6.8	ns
		XC40250XV		9.1	7.9	6.9	ns
Bold Face: Preliminary Values for the XC40150-09. All of	ther values are A	dvance.		Adv	ance		

clock-to-out delay for clocked outputs in FAST mode specification.

Clock-to-out minimum delay is measured with the fastest route and the lightest load, Clock-to-out maximum delay is measured using the farthest distance and a reference load of one clock pin (IK or OK) per IOB as well as driving all accessible CLB flip-flops. For designs with fewer number of clock loads, the pad-to-IOB clock pin delay as determined by the static timing analyzer (TRCE) can be added to the AC parameter Tokpof and used as a worst-case pin-to-pin

Output timing is measured at \sim 50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 1.

Global Early Clock Input to Output Delay Guidelines for BUFGE #s 3, 4, 7, and 8

		Speed Grade	All	-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Offics
Global Clock Signal Input to Output Delay using	T _{ICKEOF_3478}	XC40110XV		8.5	7.4	6.4	ns
Global Early (GE) clock buffer to clock Output Flip-Flop for BUFGE #s 3, 4, 7, and 8.		XC40150XV		8. 6	7.5	6.5	ns
Filp-Fiop for BOFGE #\$ 3, 4, 7, and 6.		XC40200XV		9.0	7.8	6.8	ns
		XC40250XV		9.1	7.9	6.9	ns
Bold Face: Preliminary Values for the XC40150-09. All c	d Face: Preliminary Values for the XC40150-09. All other values are Advance.						

Clock-to-out minimum delay is measured with the fastest route and the lightest load, Clock-to-out maximum delay is Notes: measured using the farthest distance and a reference load of one clock pin (IK or OK) per IOB as well as driving all accessible CLB flip-flops. For designs with fewer number of clock loads, the pad-to-IOB clock pin delay as determined by the static timing analyzer (TRCE) can be added to the AC parameter Tokpof and used as a worst-case pin-to-pin clock-to-out delay for clocked outputs in FAST mode specification.

Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 1.

Capacitive Load Factor

Figure 1 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay.

Figure 1 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control.

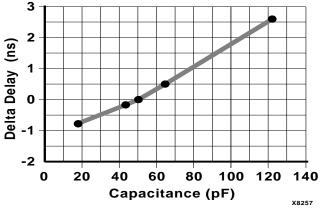


Figure 1: Delay Factor at Various Capacitive Loads

XC4000XV Pin-to-Pin Input Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report.

Global Low Skew Clock, Set-Up and Hold Guidelines

		Speed Grade	-09	-08	-07	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup and Hold Time Relative t	o Global Clock In	put Signal				
No Delay		XC40110XV	0.0 / 6.8	0.0 / 5.9	0.0 / 5.1	ns
Global Low Skew Clock and IFF	T _{PSN} /T _{PHN}	XC40150XV	0.0 / 7.5	0.0 / 6.6	0.0 / 5.7	ns
Global Low Skew Clock and FCL		XC40200XV	0.0 / 8.8	0.0 / 6.7	0.0 / 6.7	ns
		XC40250XV	0.0 / 9.8	0.0 / 8.5	0.0 / 7.4	ns
Partial Delay		XC40110XV	5.5 / 0.5	4.8 / 0.5	4.1 / 0.4	ns
Global Low Skew Clock and IFF	T _{PSP} /T _{PHP}	XC40150XV	6.1 / 0.5	5.3 / 0.5	4.6 / 0.4	ns
Global Low Skew Clock and FCL		XC40200XV	7.9 / 0.3	6.8 / 0.2	5.9 / 0.2	ns
		XC40250XV	8.7 / 0.0	7.6 / 0.0	6.6 / 0.0	ns
Full Delay		XC40110XV	8.0 / 0.0	6.9 / 0.0	6.0 / 0.0	ns
Global Low Skew Clock and IFF	T _{PSD} /T _{PHD}	XC40150XV	8.9 / 0.0	7.7 / 0.0	6.7 / 0.0	ns
		XC40200XV	9.4 / 0.0	8.2 / 0.0	7.1 / 0.0	ns
		XC40250XV	9.7 / 0.0	8.4 / 0.0	7.3 / 0.0	ns
IFF = Input Flip-Flop or Latch, FCL = Fast	Capture Latch	1		Advance	•	

Bold Face: Preliminary Values for the XC40150-09. All other values are Advance.

Notes: Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer (TRCE) to determine the setup and hold times under given design conditions.

FastCLK Input Set-Up and Hold Guidelines for BUFNW, SW, NE, and SE

		Speed Grade	-09	-08	-07	Units
Description	Symbol	Device	Min	Min	Min	Units
No Delay		XC40110XV	0.8 / 4.2	0.7 / 3.7	0.6 / 3.2	ns
FastCLK and IFF	T _{PSFN} /T _{PHFN}	XC40150XV	0.8 / 4.6	0.7 / 4.0	0.6 / 3.5	ns
		XC40200XV	0.8 / 4.9	0.7 / 4.3	0.6 / 3.7	ns
		XC40250XV	0.8 / 5.3	0.7 / 4.6	0.6 / 4.0	ns
Partial Delay		XC40110XV	11.0 / 0.0	9.5 / 0.0	8.3 / 0.0	ns
FastCLK and IFF	T _{PSFP} /T _{PHFP}	XC40150XV	11.1 / 0.0	9.7 / 0.0	8.4 / 0.0	ns
		XC40200XV	11.4 / 0.0	9.9 / 0.0	8.6 / 0.0	ns
		XC40250XV	11.6 / 0.0	10.1 / 0.0	8.8 / 0.0	ns
Full Delay		XC40110XV	11.7 / 0.0	10.5 / 0.0	9.1 / 0.0	ns
FastCLK and IFF	T _{PSFD} /T _{PHFD}	XC40150XV	11.8 / 0.0	10.6 / 0.0	9.2 / 0.0	ns
		XC40200XV	12.4 / 0.0	10.8 / 0.0	9.4 / 0.0	ns
		XC40250XV	12.7 / 0.0	11.0 / 0.0	9.6 / 0.0	ns
IFF = Input Flip-Flop or Latch	•		Advance			

Bold Face: Preliminary Values for the XC40150-09. All other values are Advance

Notes: Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer(TRCE) to determine the setup and hold times under given design conditions.

BUFGE #s 1, 2, 5, & 6 Global Early Clock, Set-Up and Hold for IFF and FCL Guidelines

		Speed Grade	-09	-08	-07	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup and Hold Time Relative to Global Clock Input Signal						
No Delay		XC40110XV	0.5 / 6.1	0.4 / 5.3	0.4 / 4.6	ns
Global Early Clock and IFF	T _{PSEN} /T _{PHEN}	XC40150XV	0.6 / 6.2	0.5 / 5.4	0.4 / 4.7	ns
Global Early Clock and FCL	T _{PFSEN} /T _{PFHEN}	XC40200XV	1.3 / 7.3	1.2 / 6.3	1.0 / 5.5	ns
		XC40250XV	1.5 / 7.5	1.3 / 6.6	1.1 / 5.7	ns
Partial Delay		XC40110XV	7.3 / 0.0	6.3 / 0.0	5.5 / 0.0	ns
Global Early Clock and IFF	T _{PSEP} /T _{PHEP}	XC40150XV	8.1 / 0.0	7.0 / 0.0	6.1 / 0.0	ns
Global Early Clock and FCL	T _{PFSEP} /T _{PFHEP}	XC40200XV	10.8 / 0.0	9.4 / 0.0	8.2 / 0.0	ns
		XC40250XV	12.0 / 0.0	10.5 / 0.0	9.1 / 0.0	ns
FullDelay		XC40110XV	10.6 / 0.0	9.2 / 0.0	8.0 / 0.0	ns
Global Early Clock and IFF	T _{PSED} /T _{PHED}	XC40150XV	10.7 / 0.0	9.3 / 0.0	8.1 / 0.0	ns
		XC40200XV	11.9 / 0.0	10.4 / 0.0	9.0 / 0.0	ns
		XC40250XV	13.1 / 0.0	11.4 / 0.0	9.9 / 0.0	ns
IFF = Input Flip-Flop or Latch, FCL = Fast Ca		Advance				

Bold Face: Preliminary Values for the XC40150-09. All other values are Advance.

Notes: Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer(TRCE) to determine the setup and hold times under given design conditions.

BUFGE #s 3, 4, 7, & 8 Global Early Clock, Set-Up and Hold for IFF and FCL Guidelines

		Speed Grade	-09	-08	-07	Units
Description	Symbol	Device	Min	Min	Min	Ullits
Input Setup and Hold Time Relative to Global Clock Input Signal						
No Delay		XC40110XV	0.4 / 5.2	0.3 / 4.5	0.3 / 3.9	ns
Global Early Clock and IFF	T _{PSEN} /T _{PHEN}	XC40150XV	0.4 / 5.3	0.4 / 4.6	0.3 / 4.0	ns
Global Early Clock and FCL	T _{PFSEN} /T _{PFHEN}	XC40200XV	0.9 / 6.2	0.8 / 5.4	0.7 / 4.7	ns
		XC40250XV	1.1 / 6.5	0.9 / 5.6	0.8 / 4.9	ns
Partial Delay		XC40110XV	7.4 / 0.0	6.5 / 0.0	5.6 / 0.0	ns
Global Early Clock and IFF	T _{PSEP} /T _{PHEP}	XC40150XV	7.5 / 0.0	6.6 / 0.0	5.7 / 0.0	ns
Global Early Clock and FCL	T _{PFSEP} /T _{PFHEP}	XC40200XV	9.7 / 0.0	8.4 / 0.0	7.3 / 0.0	ns
		XC40250XV	11.6 / 0.0	10.1 / 0.0	8.8 / 0.0	ns
FullDelay		XC40110XV	10.0 / 0.0	8.6 / 0.0	7.5 / 0.0	ns
Global Early Clock and IFF	T _{PSED} /T _{PHED}	XC40150XV	10.1 / 0.0	8.7 / 0.0	7.6 / 0.0	ns
		XC40200XV	10.7 / 0.0	9.3 / 0.0	8.1 / 0.0	ns
		XC40250XV	12.8 / 0.0	11.2 / 0.0	9.7 / 0.0	ns
IFF = Input Flip-Flop or Latch, FCL = F		Advance				

Bold Face: Preliminary Values for the XC40150-09. All other values are Advance.

Notes: Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer(TRCE) to determine the setup and hold times under given design conditions.

IOB Input Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

Description		Speed Grade		-09		-08		-07	
		Device	Min	Max	Min	Max	Min	Max	Units
Clocks		'		-					
Clock Enable (EC) to Clock (IK)	T _{ECIK}	All Devices	0.0		0.0		0.0		ns
Delay from Fast Capture Latch enable (OK) active edge to IFF clock (IK) active edge	T _{OKIK}	All Devices	1.3		1.2		1.0		ns
Setup Times									
Pad to Clock (IK), no delay	T _{PICK}	All Devices	1.3		1.1		1.0		ns
Pad to Clock (IK), via transparent Fast Capture Latch, no delay	T _{PICKF}	Al Devices	1.8		1.6		1.4		ns
Pad to Fast Capture Latch Enable (OK), no delay	T _{POCK}	All Devices	1.1		1.0		0.8		ns
Hold Times									
All Hold Times		All Devices	0.0		0.0		0.0		ns
Global Set/Reset		'							
Minimum GSR Pulse Width	T _{MRW}	All Devices	13.4		11.7		10.2		ns
Delay from GSR input to any Q	T _{RRI*}	XC40110XV	27.2		23.6		20.5		ns
		XC40150XV	29.1		25.3		22.0		ns
		XC40200XV	33.8		29.4		25.5		ns
		XC40250XV	35.8		31.1		27.0		ns
Propagation Delays									
Pad to I1, I2	T _{PID}	All devices		1.6		1.4		1.2	ns
Pad to I1, I2 via transparent input latch, no delay	T _{PLI}	All devices		2.7		2.3		2.0	ns
Pad to I1, I2 via transparent FCL and input latch,	T _{PFLI}	All Devices		3.6		3.1		2.7	ns
no delay									
Clock (IK) to I1, I2 (flip-flop)	T _{IKRI}	All Devices		1.4		1.2		1.1	ns
Clock (IK) to I1, I2 (latch enable, active Low)	T _{IKLI}	All Devices		1.6		1.4		1.2	ns
FCL Enable (OK) active edge to I1, I2 (via trans-	T _{OKLI}	All Devices		2.7		2.4		2.1	ns
parent standard input latch)									
IFF = Input Flip-Flop or Latch, FCL = Fast Capture Latch.			Advance						

Bold Face: Preliminary Values for the XC40150-09. All other values are Advance.

^{*} Indicates Minimum Amount of Time to Assure Valid Data.

IOB Output Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

		Speed Grade	-09		-08		-07		Units
Description	Symbol	Device	Min	Max	Min	Max	Min	Max	Units
Clocks									
Clock High	T _{CH}	All Devices	2.3		2.0		1.7		ns
Clock Low	T _{CL}	All Devices	2.3		2.0		1.7		ns
Propagation Delays (See Note 1)									
Clock (OK) to Pad	T _{OKPOF}	All Devices		3.5		3.0		2.7	ns
Output (O) to Pad	T _{OPF}	All Devices		3.0		2.6		2.3	ns
3-state to Pad hi-Z (slew-rate independent)	T _{TSHZ}	All Devices		3.0		2.6		2.2	ns
3-state to Pad active and valid	T _{TSONF}	All Devices		3.1		2.7		2.3	ns
Clock to Pad hi-Z	T _{OKSHZ}	All Devices		4.7		4.1		3.5	ns
Clock to Pad active and valid	T _{OKSONF}	All Devices		4.8		4.2		3.6	ns
Output (O) to Pad via Fast Output MUX	T _{OFPF}	All Devices		4.4		3.8		3.3	ns
Select (OK) to Pad via Fast MUX	T _{OKFPF}	All Devices		4.0		3.5		3.0	ns
Setup and Hold Times									
Output (O) to clock (OK) setup time	T _{OOK}	All Devices	0.4		0.4		0.3		ns
Output (O) to clock (OK) hold time	T _{OKO}	All Devices	0.0		0.0		0.0		ns
Clock Enable (EC) to clock (OK) setup time	T _{ECOK}	All Devices	0.0		0.0		0.0		ns
Clock Enable (EC) to clock (OK) hold time	T _{OKEC}	All Devices	0.3		0.2		0.1		ns
Global Set/Reset									
Minimum GSR pulse width	T _{MRW}	All Devices	13.4		11.7		10.2		ns
Delay from GSR input to any Pad	T _{RPO*}	XC40110XV		30.5		26.6		23.1	ns
	•	XC40150XV		32.5		28.3		24.6	ns
		XC40200XV		37.1		32.3		28.1	ns
		XC40250XV		39.1		34.0		29.6	ns
Slew Rate Adjustment									
For output SLOW option add	T _{SLOW}	All Devices		2.3		2.0		1.7	ns
* Indicates Minimum Amount of Time to Assure Valid Data.			Advance						

Indicates Minimum Amount of Time to Assure Valid Data.

Bold Face: Preliminary Values for the XC40150-09. All other values are Advance.

Note: Output timing is measured at ~50% V_{CC} threshold, with 50 pF external capacitive loads.

Revision Control

Version	Description						
2/1/99 (1.0)	Release included in 1999 data book, section 6						
2/19/99 (1.1)	Updated Switching Characteristics Tables						
5/14/99 (1.2)	Replaced Electrical Specification pages for XLA and XV families with separate updates and added URL link on placeholder page for electrical specifications/pinouts for WebLINX users.						