

XC4000 XLA Specification Information

Definition of Terms

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families.

Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered final.

All specifications are subject to change without notice.

Additional Specifications

Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications.

XC4000XLA D.C. Characteristic Guidelines

Absolute Maximum Ratings

Symbol	Descri	ption	Values	Units
V _{CC}	Supply voltage relative to GND		-0.5 to 4.0	V
V _{IN}	Input voltage relative to GND (Note 1)		-0.5 to 5.5	V
V _{TS}	Voltage applied to 3-state output (Note	e 1)	-0.5 to 5.5	V
V _{CCt}	Longest Supply Voltage Rise Time fro	50	ms	
T _{STG}	Storage temperature (ambient)		-65 to +150	°C
T _{SOL}	Maximum soldering temperature (10 s	@ 1/16 in. = 1.5 mm)	+260	°C
TJ	Junction temperature	Ceramic packages	+150	°C
'J		Plastic packages	+125	°C

Notes: 1. Maximum DC overshoot or undershoot above V_{CC} or below GND must be limited to either 0.5 V or 10 mA, whichever is easier to achieve. During transitions, the device pins may undershoot to -2.0 V or overshoot to + 7.0 V, provided this over-or undershoot lasts less than 10 ns and with the forcing current being limited to 200 mA.

Recommended Operating Conditions

Symbol	Description		Min	Max	Units
V	Supply voltage relative to GND, T _J = 0 °C to +85°C	•		3.6	V
V _{CC}	Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C$	Industrial	3.0	3.6	V
V _{IH}	High-level input voltage	50% of V _{CC}	5.5	V	
V _{IL}	Low-level input voltage		0	30% of V _{CC}	V
T _{IN}	Input signal transition time			250	ns

Note: At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per $^{\circ}$ C. Input and output measurement threshold is \sim 50% of V_{CC} .

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are
stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under
Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may
affect device reliability.

DC Characteristics Over Recommended Operating Conditions

Symbol	Descrip	otion	Min	Max	Units
\/	High-level output voltage @ I _{OH} = -4.0 n	nA, V _{CC} min (LVTTL)	2.4		V
V _{OH}	High-level output voltage @ I _{OH} = -500 į	uA, (LVCMOS)	90% V _{CC}		V
V _{OL}	Low-level output voltage @ I _{OL} = 24.0 m	nA, V _{CC} min (LVTTL) (Note 1)		0.4	V
	Low-level output voltage @ I _{OL} = 1500 μ	ıA, (LVCMOS)		10% V _{CC}	V
V_{DR}	Data Retention Supply Voltage (below w	2.5		V	
I _{cco}	Quiescent FPGA supply current (Note 2		10	mA	
Ι _L	Input or output leakage current		-10	+10	μΑ
C _{IN}	Input capacitance (sample tested)	BGA, SBGA, PQ, HQ, MQ packages		10	pF
CIN		PGA packages		16	pF
I _{RPU}	Pad pull-up (when selected) @ V _{in} = 0 \	0.02	0.25	mA	
I _{RPD}	Pad pull-down (when selected) @ V _{in} =	0.02	0.15	mA	
I _{RLL}	Horizontal Longline pull-up (when select	ted) @ logic Low	0.3	2.0	mA

Notes: 1. With up to 64 pins simultaneously sinking 24 mA

Power-On Power Supply Requirements

Xilinx FPGAs require a minimum rated power supply current capacity to insure proper initialization, and the power supply ramp rate does affect the current required. A fast ramp rate requires more current than a slow ramp rate. The slowest ramp rate is 50 ms with no specifications for a ramp rate faster than 2 ms.

Product Description		Ramp Rate			
Troduct	Description	Fast (120 μs)	Slow (50 ms)		
XC4000XLA Family	Minimum required current supply	500 mA	500 mA		

Notes: Fast condition is tested at factory only. Slow condition is tested at both wafer sort and factory.

All limits are based on VCC TRIP setting. Peak current is not measured. Devices are guaranteed to initialize properly with the minimum current listed above. A larger capacity power supply may result in a larger initialization current.

This specification applies to Commercial and Industrial grade products only.

^{2.} With no output current loads, no active input or Longline pull-up resistors, all I/O pins Tri-stated and floating

XC4000 XLA Switching Characteristics

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature. Values apply to all XC4000XLA devices and expressed in nanoseconds unless otherwise noted.

Delay Via Global Low Skew Clock Buffer to Clock

	;	Speed Grade	All	-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Ullits
Delay from pad through Global Low Skew (GLS) clock	T _{GLS}	XC4013XLA	0.7	2.4	2.1	1.9	ns
buffer to any clock input, K.		XC4020XLA	0.7	2.6	2.3	2.1	ns
		XC4028XLA	0.8	2.9	2.6	2.3	ns
		XC4036XLA	0.8	3.2	2.8	2.5	ns
		XC4044XLA	0.9	3.6	3.1	2.8	ns
		XC4052XLA	1.0	3.9	3.4	3.1	ns
		XC4062XLA	1.1	4.2	3.7	3.3	ns
		XC4085XLA	1.2	5.0	4.4	3.9	ns
		•		Prelin	ninary		

Delay Via FastCLK Buffer to IOB Clock

		Speed Grade	All	-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Ullits
Delay from pad through FastCLK buffer to any IOB	T _{FCLK}	XC4013XLA	0.4	1.5	1.3	1.1	ns
clock input.		XC4020XLA	0.5	1.5	1.3	1.2	ns
		XC4028XLA	0.5	1.6	1.4	1.3	ns
		XC4036XLA	0.5	1.7	1.5	1.4	ns
		XC4044XLA	0.5	1.8	1.6	1.4	ns
		XC4052XLA	0.6	1.9	1.7	1.5	ns
		XC4062XLA	0.6	2.0	1.8	1.6	ns
		XC4085XLA	0.6	2.3	2.0	1.8	ns
Note: Values in bold face are preliminary, all other values are	advance.			Prelin	ninary		

Delay Via Global Early BUFGEs 1, 2, 5, 6 to IOB Clock

		Speed Grade	All	-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Units
Delay from pad through Global Early (GE) clock buffer to	T _{GE}	XC4013XLA	0.2	1.7	1.5	1.3	ns
any IOB clock input for BUFGEs 1, 2, 5, and 6.		XC4020XLA	0.2	1.9	1.7	1.5	ns
		XC4028XLA	0.2	2.1	1.9	1.7	ns
		XC4036XLA	0.3	2.4	2.2	1.9	ns
		XC4044XLA	0.3	2.7	2.4	2.2	ns
		XC4052XLA	0.3	3.0	2.7	2.4	ns
		XC4062XLA	0.3	3.3	3.0	2.7	ns
		XC4085XLA	0.3	3.7	3.3	3.0	ns
	•			Prelin	ninary		

Delay Via Global Early BUFGEs 3, 4, 7, 8 to IOB Clock

	Speed Grade			-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Ullits
Delay from pad through Global Early (GE) clock buffer to	T _{GE}	XC4013XLA	0.5	2.5	2.2	1.9	ns
any IOB clock input for BUFGEs 3, 4, 7, and 8.		XC4020XLA	0.6	2.7	2.4	2.1	ns
		XC4028XLA	0.6	2.9	2.5	2.3	ns
		XC4036XLA	0.7	3.1	2.7	2.4	ns
		XC4044XLA	0.8	3.3	2.9	2.6	ns
		XC4052XLA	0.8	3.6	3.1	2.8	ns
		XC4062XLA	0.9	3.8	3.4	3.0	ns
		XC4085XLA	1.0	4.3	3.8	3.4	ns
	•	•		Prelin	ninary		

XC4000XLA CLB Characteristics

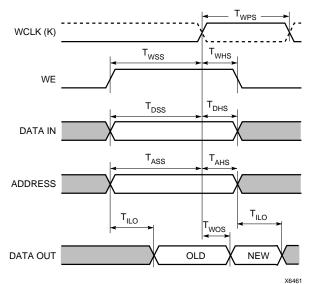
Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000XLA devices and expressed in nanoseconds unless otherwise noted

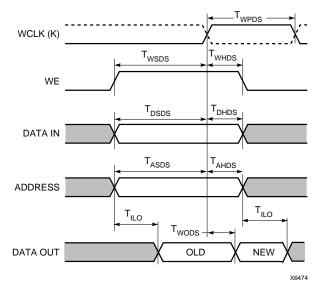
CLB Switching Characteristic Guidelines

	Speed Grade	-(09	-(08	-()7	11
Description	Symbol	Min	Max	Min	Max	Min	Max	Units
Combinatorial Delays	-		1		1			
F/G inputs to X/Y outputs	T _{ILO}		1.1		1.0		0.9	ns
F/G inputs via H' to X/Y outputs	T _{IHO}		1.9		1.7		1.5	ns
F/G inputs via transparent latch to Q outputs	T _{ITO}		2.0		1.8		1.6	ns
C inputs via SR/H0 via H to X/Y outputs	T _{HH0O}		1.7		1.6		1.4	ns
C inputs via H1 via H to X/Y outputs	T _{HH1O}		1.6		1.4		1.3	ns
C inputs via DIN/H2 via H to X/Y outputs	T _{HH2O}		1.7		1.6		1.4	ns
C inputs via EC, DIN/H2 to YQ, XQ output (bypass)	T _{CBYP}		1.1		1.0		0.9	ns
CLB Fast Carry Logic	0511							
Operand inputs (F1, F2, G1, G4) to C _{OUT}	T _{OPCY}		1.0		0.9		0.8	ns
Add/Subtract input (F3) to C _{OUT}	TASCY		1.2		1.1		1.0	ns
Initialization inputs (F1, F3) to C _{OUT}	TINCY		0.8		0.7		0.6	ns
C _{IN} through function generators to X/Y outputs	T _{SUM}		1.7		1.5		1.3	ns
C _{IN} to C _{OUT} , bypass function generators	T _{BYP}		0.1		0.1		0.1	ns
Carry Net Delay, C _{OUT} to C _{IN}	T _{NET}		0.17		0.15		0.13	ns
Sequential Delays	INE							
Clock K to Flip-Flop outputs Q	T _{CKO}		1.5		1.3		1.2	ns
Clock K to Latch outputs Q	T _{CKLO}		1.5		1.3		1.2	ns
Setup Time before Clock K	CKLO							
F/G inputs	T _{ICK}	0.7		0.7		0.6		ns
F/G inputs via H		1.4		1.3		1.2		ns
C inputs via H0 through H	TIHCK	1.3		1.2		1.1		ns
, ,	THHOCK	1.3		1.1		1.0		_
C inputs via H2 through H	T _{HH1CK}	1.3		1.2		1.0		ns
C inputs via H2 through H	T _{HH2CK}							ns
C inputs via DIN	TDICK	0.6		0.6		0.5		ns
C inputs via EC	LECCK	0.7		0.6		0.5		ns
C inputs via S/R, going Low (inactive)	T _{RCK}	0.5		0.4		0.4		ns
CIN input via F/G	LCCK	1.2		1.1		1.0		ns
CIN input via F/G and H	T _{CHCK}	2.0		1.7		1.6		ns
Hold Time after Clock K								
All Hold Times		0.0		0.0		0.0		ns
Clock								
Clock High time	T _{CH}	2.2		1.9		1.7		ns
Clock Low time	T _{CL}	2.2		1.9		1.7		ns
Set/Reset Direct								
Width (High)	T _{RPW}	2.3		2.3		2.3		ns
Delay from C inputs via S/R, going High to Q	T _{RIO}		2.5		2.2		2.0	ns
Global Set/Reset								
Minimum GSR Pulse Width	T _{MRW}		12.8		11.4		10.2	ns
Delay from GSR input to any Q	T _{MRQ}	See p	age 184	for TR	RI valu	es per c	levice.	
Toggle Frequency (MHz) (for export control)	F _{TOG}		227		263		294	MHz
				Prelin	ninary			

CLB Single Port RAM Synchronous (Edge-Triggered) Write Operation Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XC4000XLA devices and are expressed in nanoseconds unless otherwise noted.


Single Port RAM	Spe	ed Grade	-(09	-08		-07		Units
Single Fort KAW	Size	Symbol	Min	Max	Min	Max	Min	Max	Units
Write Operation		'			'				
Address write cycle time (clock K period)	16x2 32x1	T _{WCS}	6.7 6.7		5.9 5.9		5.3 5.3		ns ns
Clock K pulse width (active edge)	16x2 32x1	T _{WPS} T _{WPTS}	3.4 3.4		3.0 3.0		2.7 2.7		ns ns
Address setup time before clock K	16x2 32x1	T _{ASS} T _{ASTS}	1.5 1.5		1.3 1.3		1.2 1.2		ns ns
Address hold time after clock K	16x2 32x1	T _{AHS} T _{AHTS}	0.0 0.0		0.0		0.0 0.0		ns ns
DIN setup time before clock K	16x2 32x1	T _{DSS} T _{DSTS}	1.5 1.8		1.3 1.6		1.2 1.5		ns ns
DIN hold time after clock K	16x2 32x1	T _{DHS} T _{DHTS}	0.0 0.0		0.0		0.0 0.0		ns ns
WE setup time before clock K	16x2 32x1	T _{WSS} T _{WSTS}	1.4 1.3		1.3 1.2		1.1 1.1		ns ns
WE hold time after clock K	16x2 32x1	T _{WHS} T _{WHTS}	0.0 0.0		0.0 0.0		0.0 0.0		ns ns
Data valid after clock K	16x2 32x1	T _{WOS} T _{WOTS}		5.0 5.8		4.4 5.2		4.2 4.7	ns ns
Read Operation		<u> </u>			'	'	!		
Address read cycle time	16x2 32x1	T _{RC} T _{RCT}	2.6 3.8		2.6 3.8		2.6 3.8		ns ns
Data Valid after address change (no Write Enable)	16x2 32x1	T _{ILO} T _{IHO}		1.1 1.9		1.0 1.7		0.9 1.5	ns ns
Address setup time before clock K	16x2 32x1	T _{ICK}	0.7 1.4		0.7 1.3		0.6 1.2		ns ns
	ļ.	1		•	Prel	iminary	/	!	


CLB Dual Port RAM Synchronous (Edge-Triggered) Write Operation Guidelines

Dual Port RAM	Speed	d Grade	-09		-08		-07		Units
Duai Fort RAIN	Size	Symbol	Min	Max	Min	Max	Min	Max	Units
Address write cycle time (clock K period)	16x1	T _{WCDS}	6.7		5.9		5.3		ns
Clock K pulse width (active edge)	16x1	T _{WPDS}	3.4		3.0		2.7		ns
Address setup time before clock K	16x1	T _{ASDS}	1.5		1.3		1.2		ns
Address hold time after clock K	16x1	T _{AHDS}	0.0		0.0		0.0		ns
DIN setup time before clock K	16x1	T _{DSDS}	1.7		1.6		1.4		ns
DIN hold time after clock K	16x1	T _{DHDS}	0.0		0.0		0.0		ns
WE setup time before clock K	16x1	T _{WSDS}	1.4		1.3		1.1		ns
WE hold time after clock K	16x1	T _{WHDS}	0.0		0.0		0.0		ns
Data valid after clock K	16x1	T _{WODS}		5.7		5.1		4.6	ns
Note: Timing for 16x1 option is identical to 16x2 RAM.			Preliminary						

CLB RAM Synchronous (Edge-Triggered) Write Timing Waveforms

Single Port RAM

Dual Port RAM

XC4000XLA Pin-to-Pin Output Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

Global Clock Input to Output Delay

		Speed Grade	All	-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Ullita
Global Low Skew (GLS) Clock Input to Output Delay us-	T _{ICKOF}	XC4013XLA	1.2	5.6	5.0	4.5	ns
ing Output Flip-Flop		XC4020XLA	1.3	5.8	5.2	4.7	ns
		XC4028XLA	1.4	6.1	5.5	4.9	ns
		XC4036XLA	1.4	6.4	5.7	5.1	ns
		XC4044XLA	1.5	6.8	6.0	5.4	ns
		XC4052XLA	1.6	7.1	6.3	5.7	ns
		XC4062XLA	1.6	7.4	6.6	5.9	ns
		XC4085XLA	1.6	8.2	7.3	6.5	ns
For output SLOW option add	T _{SLOW}	All Devices	0.5	1.7	1.6	1.4	ns
				Prelin	ninary		

Notes: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 1.

FastCLK Input to Output Delay for BUFNW, BUFSW, BUFNE, & BUFSE

	Speed Grade	All	-09	-08	-07	Units	
Description	Symbol	Device	Min	Max	Max	Max	Ullits
FastCLK Input to Output Delay using Output Flip-Flop	T _{ICKFOF}	XC4013XLA	1.0	4.6	4.1	3.7	ns
for FastCLK buffers BUFNW, BUFSW, BUFNE, and		XC4020XLA	1.0	4.7	4.2	3.7	ns
BUFSE.		XC4028XLA	1.0	4.8	4.3	3.8	ns
		XC4036XLA	1.1	4.9	4.4	3.9	ns
		XC4044XLA	1.1	5.0	4.4	4.0	ns
		XC4052XLA	1.1	5.1	4.5	4.1	ns
		XC4062XLA	1.1	5.2	4.6	4.1	ns
		XC4085XLA	1.1	5.4	4.8	4.3	ns
	1			Prelin	ninary		

Notes: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Output timing is measured at \sim 50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 1.

Global Early Clock Input to Output Delay for BUFGE #s 1, 2, 5, and 6

	;	Speed Grade	All	-09	-08	-07	Units
Description	Symbol	Device	Min	Max	Max	Max	Ullits
Global Clock Signal Input to Output Delay using	T _{ICKEOF}	XC4013XLA	0.8	4.9	4.4	3.9	ns
Global Early (GE) clock buffer to clock Output		XC4020XLA	0.8	5.1	4.6	4.1	ns
Flip-Flop for BUFGE #s 1, 2, 5, & 6.		XC4028XLA	0.8	5.3	4.8	4.3	ns
		XC4036XLA	0.8	5.6	5.1	4.5	ns
		XC4044XLA	0.9	5.9	5.3	4.8	ns
		XC4052XLA	0.9	6.2	5.6	5.0	ns
		XC4062XLA	0.9	6.5	5.9	5.3	ns
		XC4085XLA	0.9	6.9	6.2	5.6	ns
				Prelin	ninary		

Notes: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 1.

Global Early Clock Input to Output Delay for BUFGE #s 3, 4, 7, and 8

	Speed Grade				-08	-07	Units
Description		Device	Min	Max	Max	Max	Units
Global Clock Signal Input to Output Delay using	T _{ICKEOF}	XC4013XLA	1.1	5.7	5.1	4.5	ns
Global Early (GE) clock buffer to clock Output		XC4020XLA	1.1	5.9	5.3	4.7	ns
Flip-Flop for BUFGE #s 3, 4, 7, & 8.		XC4028XLA	1.2	6.1	5.4	4.9	ns
		XC4036XLA	1.3	6.3	5.6	5.0	ns
		XC4044XLA	1.3	6.5	5.8	5.2	ns
		XC4052XLA	1.4	6.8	6.0	5.4	ns
		XC4062XLA	1.5	7.0	6.3	5.6	ns
		XC4085XLA	1.6	7.5	6.7	6.0	ns
	!			Prelin	ninary		

Notes: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see Figure 1.

Capacitive Load Factor

Figure 1 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay.

Figure 1 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control.

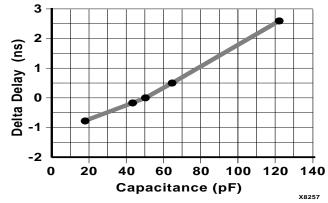


Figure 1: Delay Factor at Various Capacitive Loads

XC4000XLA Pin-to-Pin Input Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

Global Low Skew Clock, Set-Up and Hold

		Speed Grade	-09	-08	-07	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup and Hold Time Relative	to Global Clock I	nput Signal				
No Delay		XC4013XLA	1.0 / 3.0	0.8 / 2.6	0.2 / 2.5	ns
Global Low Skew Clock and IFF	T _{PSN} /T _{PHN}	XC4020XLA	0.9 / 3.2	0.7 / 2.9	0.1 / 2.7	ns
		XC4028XLA	0.8 / 3.8	0.6 / 3.3	0.0 / 3.0	ns
		XC4036XLA	0.6 / 4.0	0.4 / 3.5	0.0 / 3.3	ns
		XC4044XLA	0.4 / 4.4	0.2 / 3.9	0.0 / 3.6	ns
		XC4052XLA	0.3 / 4.6	0.2 / 4.1	0.0 / 3.9	ns
		XC4062XLA	0.2 / 5.0	0.1 / 4.5	0.0 / 4.2	ns
		XC4085XLA	0.0 / 5.4	0.0 / 4.8	0.0 / 4.5	ns
Partial Delay		XC4013XLA	4.4 / 0.5	4.1 / 0.3	3.7/ 0.0	ns
Global Low Skew Clock and IFF	T _{PSP} /T _{PHP}	XC4020XLA	4.5 / 0.6	4.1 / 0.3	3.7 / 0.0	ns
		XC4028XLA	4.6 / 0.7	4.2 / 0.4	3.7/ 0.0	ns
		XC4036XLA	4.6 / 0.8	4.2 / 0.4	3.7/ 0.0	ns
		XC4044XLA	4.7 / 0.9	4.3 / 0.5	3.8 / 0.0	ns
		XC4052XLA	4.8 / 1.0	4.3 / 0.6	3.8 / 0.2	ns
		XC4062XLA	5.0 / 1.0	4.4 / 0.7	3.8 / 0.4	ns
		XC4085XLA	5.5 / 1.2	4.7 / 0.9	3.8 / 0.5	ns
Full Delay		XC4013XLA	4.4 / 0.0	4.1 / 0.0	3.7 / 0.0	ns
Global Low Skew Clock and IFF	T _{PSD} /T _{PHD}	XC4020XLA	4.6 / 0.0	4.2 / 0.0	3.8 / 0.0	ns
		XC4028XLA	4.8 / 0.0	4.4 / 0.0	3.9 / 0.0	ns
		XC4036XLA	4.9 / 0.0	4.5 / 0.0	4.0 / 0.0	ns
		XC4044XLA	5.0 / 0.0	4.6 / 0.0	4.1 / 0.0	ns
		XC4052XLA	5.2 / 0.0	4.7 / 0.0	4.2 / 0.0	ns
		XC4062XLA	5.5 / 0.0	4.9 / 0.0	4.3 / 0.0	ns
		XC4085XLA	6.0 / 0.0	5.2/ 0.0	4.4 / 0.0	ns
IFF = Input Flip-Flop or Latch				Preliminary		

Note: Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer (TRCE) to determine the setup and hold times under given design conditions.

FastCLK Input Set-Up and Hold for BUFNW, BUFSW, BUFNE, & BUFSE

		Speed Grade	-09	-08	-07	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup and Hold Time R		1				
No Delay		XC4013XLA	0.0 / 3.2	0.0 / 2.9	0.0 / 2.6	ns
FastCLK and IFF	T _{PSFN} /T _{PHFN}	XC4020XLA	0.0 / 3.3	0.0 / 3.0	0.0 / 2.7	ns
		XC4028XLA	0.0 / 3.4	0.0 / 3.1	0.0 / 2.8	ns
		XC4036XLA	0.0 / 3.5	0.0 / 3.2	0.0 / 2.9	ns
		XC4044XLA	0.0 / 3.6	0.0 / 3.3	0.0 / 3.0	ns
		XC4052XLA	0.0 / 3.7	0.0 / 3.4	0.0 / 3.1	ns
		XC4062XLA	0.0 / 3.8	0.0 / 3.5	0.0 / 3.2	ns
		XC4085XLA	0.0 / 3.9	0.0 / 3.6	0.0 / 3.3	ns
Partial Delay		XC4013XLA	3.5 / 0.6	3.2 / 0.3	2.9 / 0.0	ns
FastCLK and IFF	T _{PSFP} T _{PHFP}	XC4020XLA	3.7 / 0.4	3.4 / 0.2	3.1 / 0.0	ns
		XC4028XLA	3.9 / 0.2	3.6 / 0.1	3.3 / 0.0	ns
		XC4036XLA	4.1 / 0.0	3.8 / 0.0	3.5 / 0.0	ns
		XC4044XLA	4.3 / 0.0	4.0 / 0.0	3.7 / 0.0	ns
		XC4052XLA	4.5 / 0.0	4.2 / 0.0	3.9 / 0.0	ns
		XC4062XLA	4.7 / 0.0	4.4 / 0.0	4.1 / 0.0	ns
		XC4085XLA	5.1 / 0.0	4.8 / 0.0	4.5 / 0.0	ns
Full Delay		XC4013XLA	3.5 / 0.6	3.2 / 0.3	2.9 / 0.0	ns
FastCLK and IFF	T _{PSFD} /T _{PHFD}	XC4020XLA	3.8 / 0.4	3.5 / 0.2	3.2 / 0.0	ns
		XC4028XLA	4.0 / 0.2	3.7 / 0.1	3.4 / 0.0	ns
		XC4036XLA	4.3 / 0.0	4.0 / 0.0	3.7 / 0.0	ns
		XC4044XLA	4.6 / 0.0	4.3 / 0.0	4.0 / 0.0	ns
		XC4052XLA	4.9 / 0.0	4.6 / 0.0	4.3 / 0.0	ns
		XC4062XLA	5.3 / 0.0	5.0 / 0.0	4.7 / 0.0	ns
		XC4085XLA	6.1 / 0.0	5.8 / 0.0	5.5 / 0.0	ns
IFF = Input Flip-Flop or Latch				Preliminary		

IFF = Input Flip-Flop or Latch

Note: Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer (TRCE)) to determine the setup and hold times under given design conditions.

BUFGE #s 1, 2, 5, and 6 Global Early Clock, Set-up and Hold for IFF and FCL

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

Speed Grade				-08	-07	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup and Hold Time Relat	ive to Global Clock Inp	out Signal				
No Delay		XC4013XLA	1.0 / 3.2	0.8 / 2.6	0.5 / 1.8	ns
Global Early Clock and IFF	T _{PSEN} /T _{PHEN}	XC4020XLA	1.0 / 3.4	0.8 / 2.8	0.5 / 2.0	ns
Global Early Clock and FCL	T _{PFSEN} /T _{PFHEN}	XC4028XLA	1.0 / 3.5	0.8 / 3.0	0.5 / 2.2	ns
		XC4036XLA	1.0 / 3.6	0.8 / 3.1	0.5 / 2.4	ns
		XC4044XLA	1.0 / 3.8	0.8 / 3.3	0.5 / 2.6	ns
		XC4052XLA	1.0 / 4.0	0.8 / 3.5	0.5 / 2.8	ns
		XC4062XLA	1.0 / 4.2	0.8 / 3.7	0.5 / 3.0	ns
		XC4085XLA	1.0 / 4.6	0.8 / 4.0	0.5 / 3.2	ns
Partial Delay		XC4013XLA	4.6 / 0.0	4.2 / 0.0	3.9 / 0.0	ns
Global Early Clock and IFF	T _{PSEP} /T _{PHEP}	XC4020XLA	4.8 / 0.1	4.4 / 0.1	4.1 / 0.0	ns
Global Early Clock and FCL	T _{PFSEP} /T _{PFHEP}	XC4028XLA	4.9 / 0.1	4.6 / 0.1	4.4 / 0.0	ns
		XC4036XLA	5.0 / 0.2	4.7 / 0.1	4.5 / 0.0	ns
		XC4044XLA	5.5 / 0.3	5.1 / 0.2	4.8 / 0.0	ns
		XC4052XLA	5.8 / 0.3	5.3 / 0.2	5.0 / 0.0	ns
		XC4062XLA	6.2 / 0.4	5.6 / 0.2	5.2 / 0.0	ns
		XC4085XLA	6.5 / 0.5	5.9 / 0.3	5.4 / 0.0	ns
Full Delay		XC4013XLA	4.6 / 0.0	4.2 / 0.0	3.9 / 0.0	ns
Global Early Clock and IFF	T _{PSED} /T _{PHED}	XC4020XLA	4.9 / 0.0	4.5 / 0.0	4.1 / 0.0	ns
		XC4028XLA	5.1 / 0.0	4.7 / 0.0	4.4 / 0.0	ns
		XC4036XLA	5.3 / 0.0	4.9 / 0.0	4.5 / 0.0	ns
		XC4044XLA	5.8 / 0.0	5.3 / 0.0	5.0 / 0.0	ns
		XC4052XLA	6.2 / 0.0	5.7 / 0.0	5.3 / 0.0	ns
		XC4062XLA	6.7 / 0.0	6.1 / 0.0	5.6 / 0.0	ns
		XC4085XLA	7.0 / 0.0	6.4 / 0.0	6.0 / 0.0	ns
IFF = Input Flip-Flop or Latch, FCL = Fast Capture Latch				Preliminary		

Note: Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer (TRCE) to determine the setup and hold times under given design conditions.

BUFGE #s 3, 4, 7, and 8 Global Early Clock, Set-up and Hold for IFF and FCL

		Speed Grade	-09	-08	-07	Units
Description	Symbol	Device	Min	Min	Min	Units
Input Setup and Hold Time Relati		'				
No Delay		XC4013XLA	0.8 / 3.2	0.6 / 2.6	0.4 / 2.0	ns
Global Early Clock and IFF	T _{PSEN} /T _{PHEN}	XC4020XLA	0.8 / 3.4	0.6 / 2.8	0.4 / 2.2	ns
Global Early Clock and FCL	T _{PFSEN} /T _{PFHEN}	XC4028XLA	0.8 / 3.5	0.6 / 3.0	0.4 / 2.4	ns
		XC4036XLA	0.8 / 3.6	0.6 / 3.1	0.4 / 2.6	ns
		XC4044XLA	0.8 / 3.8	0.6 / 3.3	0.4 / 2.8	ns
		XC4052XLA	0.8 / 4.0	0.6 / 3.5	0.4 / 3.0	ns
		XC4062XLA	0.8 / 4.2	0.6 / 3.7	0.4 / 3.2	ns
		XC4085XLA	0.8 / 4.6	0.6 / 4.0	0.4 / 3.4	ns
Partial Delay		XC4013XLA	4.4 / 0.0	4.0 / 0.0	3.6 / 0.0	ns
Global Early Clock and IFF	T _{PSEP} /T _{PHEP}	XC4020XLA	4.6 / 0.1	4.2 / 0.1	3.8 / 0.0	ns
Global Early Clock and FCL	T _{PFSEP} /T _{PFHEP}	XC4028XLA	4.7 / 0.1	4.4 / 0.1	4.1 / 0.0	ns
		XC4036XLA	4.8 / 0.2	4.5 / 0.2	4.2 / 0.0	ns
		XC4044XLA	5.2 / 0.3	4.8 / 0.3	4.4 / 0.0	ns
		XC4052XLA	5.6 / 0.3	5.1 / 0.3	4.6 / 0.0	ns
		XC4062XLA	6.0 / 0.4	5.4 / 0.4	4.8 / 0.0	ns
		XC4085XLA	6.3 / 0.5	5.7 / 0.5	5.0 / 0.0	ns
Full Delay		XC4013XLA	4.4 / 0.0	4.0 / 0.0	3.6 / 0.0	ns
Global Early Clock and IFF	T _{PSED} /T _{PHED}	XC4020XLA	4.7 / 0.0	4.3 / 0.0	3.8 / 0.0	ns
		XC4028XLA	4.9 / 0.0	4.5 / 0.0	4.1 / 0.0	ns
		XC4036XLA	5.1 / 0.0	4.7 / 0.0	4.2 / 0.0	ns
		XC4044XLA	5.6 / 0.0	5.1 / 0.0	4.6 / 0.0	ns
		XC4052XLA	6.0 / 0.0	5.5 / 0.0	4.9 / 0.0	ns
		XC4062XLA	6.5 / 0.0	5.9 / 0.0	5.2 / 0.0	ns
		XC4085XLA	6.8 / 0.0	6.2 / 0.0	5.6 / 0.0	ns
IFF = Input Flip-Flop or Latch, FCL = I	Fast Capture Latch	•		Preliminary		

Note: Setup time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer (TRCE) to determine the setup and hold times under given design conditions.

IOB Input Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

IOB Input Delay Guidelines

	Speed Grade		-()9	-()8	-07		Units
Description	Symbol	Device	Min	Max	Min	Max	Min	Max	Units
Clocks									
Clock Enable (EC) to Clock (IK)	T _{ECIK}	All devices	0.0		0.0		0.0		ns
Delay from FCL enable (OK) active edge to IFF clock (IK) active edge	T _{OKIK}	All Devices	1.4		1.3		1.2		ns
Setup Times									
Pad to Clock (IK), no delay	T _{PICK}	All Devices	1.2		1.0		0.9		ns
Pad to Clock (IK), via transparent Fast Capture Latch, no delay	T _{PICKF}	All Devices	1.6		1.4		1.3		ns
Pad to Fast Capture Latch Enable (OK), no delay	T _{POCK}	All Devices	0.8		0.7		0.6		ns
Hold Times									
All Hold Times		All Devices	0.0		0.0		0.0		ns
Global Set/Reset									
Minimum GSR Pulse Width	T _{MRW}	All devices	12.8		11.4		10.2		ns
Global Set/Reset									
Delay from GSR input to any Q	T _{RRI*}	XC4013XLA		11.4		10.2		9.1	ns
	l luu	XC4020XLA		13.3		11.9		10.6	ns
		XC4028XLA		14.3		12.8		11.4	ns
		XC4036XLA		16.2		14.5		12.9	ns
		XC4044XLA		18.1		16.2		14.4	ns
		XC4052XLA		19.5		17.4		15.6	ns
		XC4062XLA		20.9		18.7		16.7	ns
		XC4085XLA		24.7		22.1		19.7	ns
Propagation Delays									
Pad to I1, I2	T _{PID}	All devices		1.0		0.9		0.8	ns
Pad to I1, I2 via transparent input latch, no de- lay	T _{PLI}	All devices		2.1		1.9		1.7	ns
Pad to I1, I2 via transparent FCL and input	T	All devices		2.5		2.2		2.0	ns
latch, no delay	T _{PFLI}	All devices		2.5		2.2		2.0	115
Clock (IK) to I1, I2 (flip-flop)	T _{IKRI}	All devices		1.1		1.0		0.9	ns
Clock (IK) to 11, 12 (latch enable, active Low)	T _{IKLI}	All devices		1.2		1.1		1.0	ns
FCL Enable (OK) active edge to I1, I2	T _{OKLI}	All devices		2.4		2.1		1.9	ns
(via transparent standard input latch)		7 til GCVICG3		2.7		2.1		1.5	113
IFF = Input Flip-Flop or Latch, FCL = Fast Capture La	tch				Prelin	ninary			

^{....}

^{*} Indicates Minimum Amount of Time to Assure Valid Data.

XLA IOB Output Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). For Propagation Delays, slew-rate = fast unless otherwise noted. Values are expressed in nanoseconds unless otherwise noted.

	:	Speed Grade	-()9	-0	8	-(07	11!.
Description	Symbol	Device	Min	Max	Min	Max	Min	Max	Units
Clocks				1					
Clock High	T _{CH}	All devices	2.2		1.9		1.7		ns
Clock Low	T _{CL}	All devices	2.2		1.9		1.7		ns
Propagation Delays									
Clock (OK) to Pad	T _{OKPOF}	All devices		3.2		2.9		2.6	ns
Output (O) to Pad	T _{OPF}	All devices		2.6		2.4		2.1	ns
3-state to Pad hi-Z (slew-rate independent)	T _{TSHZ}	All devices		2.7		2.4		2.2	ns
3-state to Pad active and valid	T _{TSONF}	All devices		2.8		2.5		2.3	ns
Clock to Pad hi-Z	T _{OKSHZ}	All devices		3.5		3.1		2.8	ns
Clock to Pad active and valid	T _{OKSONF}	All devices		3.6		3.2		2.9	ns
Output (O) to Pad via Fast Output MUX	T _{OFPF}	All devices		3.6		3.2		2.9	ns
Select (OK) to Pad via Fast MUX	T _{OKFPF}	All devices		3.3		3.0		2.6	ns
Setup and Hold Times									
Output (O) to clock (OK) setup time	T _{OOK}	All devices	0.3		0.3		0.3		ns
Output (O) to clock (OK) hold time	T _{OKO}	All devices	0.0		0.0		0.0		ns
Clock Enable (EC) to clock (OK) setup time	T _{ECOK}	All devices	0.0		0.0		0.0		ns
Clock Enable (EC) to clock (OK) hold time	T _{OKEC}	All devices	0.0		0.0		0.0		ns
Global Set/Reset									
Minimum GSR pulse width	T _{MRW}		12.8		11.4		10.2		ns
Delay from GSR input to any Pad	T _{RPO*}	XC4013XLA		14.4		12.8		11.5	ns
		XC4020XLA		16.3		14.5		13.0	ns
		XC4028XLA		17.3		15.4		13.8	ns
		XC4036XLA		19.1		17.1		15.3	ns
		XC4044XLA		21.0		18.8		16.8	ns
		XC4052XLA		22.5		20.1		17.9	ns
		XC4062XLA		23.9		21.3		19.0	ns
		XC4085XLA		27.7		24.7		22.1	ns
Slew Rate Adjustment		1		1			!		
For output SLOW option add	T _{SLOW}			1.7		1.6		1.4	ns
* Indicates Minimum Amount of Time to Assure Va	alid Data	1		:	Prelin	ninary			

Revision Control

Version	Description
1/28/99 (1.0)	Release included in 1999 data book, section 6
2/19/99 (1.1)	Updated Switching Characteristics Tables
5/14/99 (1.2)	Replaced Electrical Specification pages for XLA and XV families with separate updates and added URL link on placeholder page for electrical specifications/pinouts for WebLINX users.
10/4/99 (1.3)	Added Power-on specification.