

QPROTM XQR4000XL Radiation Hardened Field Programmable Gate Arrays

October 5, 1998 (Version 1.0)

XQR4000XL Series Features

- Radiation Hardened FPGAs for space and satellite applications
- Guaranteed Total Ionizing Dose
- Latch-up Immune
- Low Soft Upset Rate
- Guaranteed to meet full electrical specifications over -55°C to +125°C
- Available in -3 speed
- System featured Field-Programmable Gate Arrays
 - Select-RAM™ memory: on-chip ultra-fast RAM with
 - synchronous write option
 - dual-port RAM option
 - Abundant flip-flops
 - Flexible function generators
 - Dedicated high-speed carry logic
 - Wide edge decoders on each edge
 - Hierarchy of interconnect lines
 - Internal 3-state bus capability
 - 8 global low-skew clock or signal distribution networks
- System Performance beyond 60 MHz
- Flexible Array Architecture
- Low Power Segmented Routing Architecture
- Systems-Oriented Features

- IEEE 1149.1-compatible boundary scan logic support
- Individually programmable output slew rate
- Programmable input pull-up or pull-down resistors
- 12-mA sink current per output

Preliminary Product Specification

- Configured by Loading Binary File
- Unlimited reprogrammability
- Readback Capability
 - Program verification
 - Internal node observability
- Development System runs on most common computer platforms
 - Interfaces to popular design environments
 - Fully automatic mapping, placement and routing
 - Interactive design editor for design optimization
- Highest capacity over 130,000 usable gates
- Buffered Interconnect for Maximum Speed
- New Latch Capability in Configurable Logic Blocks
- Improved VersaRing[™] I/O Interconnect for Better Fixed Pinout Flexibility
 - Virtually unlimited number of clock signals
- Optional Multiplexer or 2-input Function Generator on Device Outputs
- 5V tolerant I/Os
- Advanced 0.35µ process
- Processed on Xilinx's QML Line

Table 1: XQR4000X Series Radiation Hardened Field Programmable Gate Arrays

Device	Logic Cells	Max. Logic Gates (No RAM)	Max. RAM Bits (No Logic)	Typical Gate Range (Logic and RAM)*	CLB Matrix	Total CLBs	Number of Flip-Flops	Max. User I/O	Packages
XQR4013XL	1,368	13,000	18,432	10,000 - 30,000	24 x 24	576	1,536	192	CB228
XQR4036XL	3,078	36,000	41,472	22,000 - 65,000	36 x 36	1,296	3,168	288	CB228
XQR4062XL	5,472	62,000	73,728	40,000 - 130,000	48 x 48	2,304	5,376	384	CB228

Note: Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Radiation Specifications

Symbol	Description	Min	Max	Units
TID	Total Ionizing Dose		60K	RAD(Si)
SEL	Single Event Latch-up LET> 100 MeV CM ² /mg. @ +125°C		0	
SEU	Single Event Upset Galactic p+ (Note 1)		2.43E-8	Upsets/ Bit-Day
SEU	Single Event Upset Galactic Heavy Ion (Note 1)		9.54E-8	Upsets/ Bit-Day
SEU	Single Event Upset Trapped p+ (Note 1)		2.50E-7	Upsets/ Bit-Day
SEU	Single Event Upset Galactic p+ (Note 2)		5.62E-8	Upsets/ Bit-Day
SEU	Single Event Upset Galactic Heavy Ion (Note 2)		2.43E-7	Upsets/ Bit-Day

Note 1: 680 Km LEO, 98° Inclination, 100 Mil Al Shielding

Note 2: 35,000 Km GEO, 0° Inclination, 100 Mil Al Shielding

Note 3: Simulations done using Space Radiation Version 2.5 code from Severn Communication Corp.

XQR4000XL Switching Characteristics

Definition of Terms

In the following tables, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered final.

All specifications subject to change without notice.

Additional Specifications

Except for pin-to-pin input and output parameters, the a.c. parameter delay specifications included in this document are derived from measuring internal test patterns. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. For design considerations requiring more detailed timing information, see the appropriate family a.c. supplements available on the Xilinx WEBLINX at http://www.xilinx.com.

Absolute Maximum Ratings

Symbol	Description		Units
V _{CC}	Supply voltage relative to GND	-0.5 to 4.0	V
V _{IN}	Input voltage relative to GND (Note 1)	-0.5 to 5.5	V
V _{TS}	Voltage applied to 3-state output (Note 1)	-0.5 to 5.5	V
V _{CCt}	Longest Supply Voltage Rise Time from 1 V to 3V	50	ms
T _{STG}	Storage temperature (ambient)	-65 to +150	°C
T _{SOL}	Maximum soldering temperature (10 s @ 1/16 in. = 1.5 mm)	+260	°C
Т _Ј	Junction temperature	+150	°C

Note 1: Maximum DC overshoot or undershoot above V_{cc} or below GND must be limited to either 0.5 V or 10 mA, whichever is easier to achieve. During transitions, the device pins may undershoot to -2.0 V or overshoot to + 7.0 V, provided this over- or undershoot lasts less than 10 ns and with the forcing current being limited to 200 mA.

Note 2: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

Recommended Operating Conditions

Symbol	Description	Min	Мах	Units
V _{CC}	Supply voltage relative to GND, $T_C = -55^{\circ}C$ to $+125^{\circ}C$	3.0	3.6	V
V _{IH}	High-level input voltage	50% of V _{CC}	5.5	V
V _{IL}	Low-level input voltage	0	30% of V_{CC}	V
T _{IN}	Input signal transition time		250	ns

Note 1: At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C. Note 2: Input and output measurement threshold is ~50% of V_{CC} .

XQR4000XL DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Max	Units
Maria	High-level output voltage @ I _{OH} = -4.0 mA, V _{CC} min (LVTTL)	2.4		V
V _{OH}	High-level output voltage @ I _{OH} = -500 μA, (LVCMOS)	90% V _{CC}		V
V _{OL}	Low-level output voltage @ I _{OL} = 12.0 mA, V _{CC} min (LVTTL) (Note 1)		0.4	V
	Low-level output voltage @ I_{OL} = 1500 μ A, (LVCMOS)		10% V _{CC}	V
V_{DR}	Data Retention Supply Voltage (below which configuration data may be lost)	2.5		V
I _{CCO}	Quiescent FPGA supply current (Note 2)		20	mA
١ _L	Input or output leakage current	-10	+10	μΑ
I _{RPU}	Pad pull-up (when selected) @ V _{in} = 0 V (sample tested)	0.02	0.25	mA
I _{RPD}	Pad pull-down (when selected) @ $V_{in} = 3.6 V$ (sample tested)	0.02	0.15	mA
I _{RLL}	Horizontal Longline pull-up (when selected) @ logic Low	0.3	2.0	mA

Note 1: With up to 64 pins simultaneously sinking 12 mA.

Note 2: With no output current loads, no active input or Longline pull-up resistors, all I/O pins Tri-stated and floating.

XQR4000XL Global Buffer Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

When fewer vertical clock lines are connected, the clock distribution is faster; when multiple clock lines per column are driven from the same global clock, the delay is longer. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the

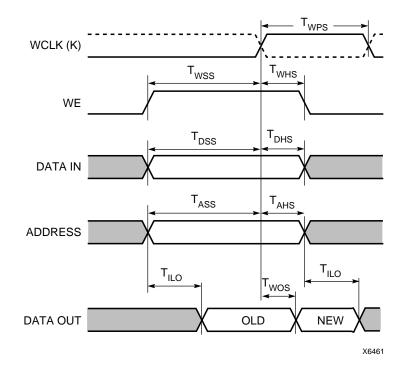
Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

		Speed Grade	-3	Units
Description	Symbol	Device	Max	Units
From pad through Global Low Skew buffer, to any clock K	T _{GLS}	XQR4013XL XQR4036XL XQR4062XL	3.6 4.8 6.3	ns ns ns
From pad through Global Early buffer, to any IOB clockK. Values are for BUFGE #s 1, 2, 5 and 6. Add 1 - 2 ns for BUFGE #s 3, 4, 7 and 8 and for all CLB clock Ks driven from any of the 8 BUFGEs, or consult TRCE.	T _{GE}	XQR4013XL XQR4036XL XQR4062XL	2.4 3.1 4.9	ns ns ns

XQR4000XL CLB Switching Characteristic Guidelines

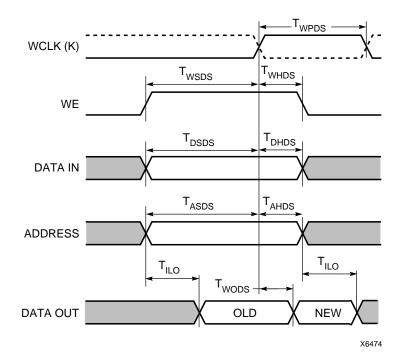
Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XQR4000XL devices and expressed in nanoseconds unless otherwise noted.

Speed Grade -3				
Description	Symbol	Min	Max	Units
Combinatorial Delays		•		
F/G inputs to X/Y outputs	T _{ILO}		1.6	ns
F/G inputs via H' to X/Y outputs	TIHO		2.7	ns
F/G inputs via transparent latch to Q outputs	T _{ITO}		2.9	ns
C inputs via SR/H0 via H to X/Y outputs	T _{HH0O}		2.5	ns
C inputs via H1 via H to X/Y outputs	T _{HH1O}		2.4	ns
C inputs via DIN/H2 via H to X/Y outputs	T _{HH2O}		2.5	ns
C inputs via EC, DIN/H2 to YQ, XQ output (bypass)	T _{CBYP}		1.5	ns
CLB Fast Carry Logic			,,	
Operand inputs (F1, F2, G1, G4) to C _{OUT}	T _{OPCY}		2.7	ns
Add/Subtract input (F3) to C _{OUT}	T _{ASCY}		3.3	ns
Initialization inputs (F1, F3) to C _{OUT}	T _{INCY}		2.0	ns
C _{IN} through function generators to X/Y outputs	Т _{SUM}		2.8	ns
C _{IN} to C _{OUT} , bypass function generators	T _{BYP}		0.26	ns
Carry Net Delay, C _{OUT} to C _{IN}	T _{NET}		0.32	ns
Sequential Delays		i		
Clock K to Flip-Flop outputs Q	тско		2.1	ns
Clock K to Latch outputs Q	T _{CKLO}		2.1	ns
Setup Time before Clock K		1	TT	
F/G inputs	T _{ICK}	1.3		ns
F/G inputs via H	TIHCK	2.3		ns
C inputs via H0 through H	Т _{нноск}	2.0		ns
C inputs via H1 through H	Т _{НН1СК}	1.9		ns
C inputs via H2 through H	Т _{НН2СК}	2.0		ns
C inputs via DIN	TDICK	0.9		ns
C inputs via EC	Т _{ЕССК}	1.0		ns
C inputs via S/R, going Low (inactive)	T _{RCK}	0.6 2.3		ns
CIN input via F/G CIN input via F/G and H	Т _{ССК}	3.4		ns ns
Hold Time after Clock K	Тснск	3.4		115
	<u>т</u>	0	г г	
F/G inputs	т _{скі}	0		ns
F/G inputs via H C inputs via SR/H0 through H	Т _{СКІН}	0		ns
C inputs via SR/H0 through H	Т _{СКНН0}	0		ns
C inputs via DIN/H2 through H	T _{CKHH1}	0		ns ns
C inputs via DIN/H2	Т _{СКНН2} Т _{СКDI}	0		ns
C inputs via EC	T _{CKEC}	0 0		ns
C inputs via SR, going Low (inactive)	T _{CKR}	Ő		ns
Clock	CRIX			
Clock High time	Т _{СН}	3.0		ns
Clock Low time	T _{CL}	3.0		ns
Set/Reset Direct	02		1 1	
Width (High)	T _{RPW}	3.0		ns
Delay from C inputs via S/R, going High to Q	T _{RIO}		3.7	ns
Global Set/Reset			1	
Minimum GSR Pulse Width	T _{MRW}		19.8	ns
Delay from GSR input to any Q	T _{MRQ}		14 for T _{RRI} er device.	
Toggle Frequency (MHz) (for export control)	F _{TOG}		166	MHz


XQR4000XL RAM Synchronous (Edge-Triggered) Write Operation Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all XQR4000XL devices and are expressed in nanoseconds unless otherwise noted.

Single Port RAM		ed Grade	-3		Units	
	Size	Symbol	Min	Max	Units	
Write Operation						
Address write cycle time (clock K period)	16x2 32x1	T _{WCS} T _{WCTS}	9.0 9.0		ns ns	
Clock K pulse width (active edge)	16x2 32x1	T _{WPS} T _{WPTS}	4.5 4.5		ns ns	
Address setup time before clock K	16x2 32x1	T _{ASS} T _{ASTS}	2.2 2.2		ns ns	
Address hold time after clock K	16x2 32x1	T _{AHS} T _{AHTS}	0 0		ns ns	
DIN setup time before clock K	16x2 32x1	T _{DSS} T _{DSTS}	2.0 2.5		ns ns	
DIN hold time after clock K	16x2 32x1	T _{DHS} T _{DHTS}	0 0		ns ns	
WE setup time before clock K	16x2 32x1	T _{WSS} T _{WSTS}	2.0 1.8		ns ns	
WE hold time after clock K	16x2 32x1	T _{WHS} T _{WHTS}	0 0		ns ns	
Data valid after clock K	16x2 32x1	T _{WOS} T _{WOTS}		6.8 8.1	ns ns	
Read Operation						
Address read cycle time	16x2 32x1	T _{RC} T _{RCT}	4.5 6.5		ns ns	
Data Valid after address change (no Write Enable)	16x2 32x1	T _{ILO} T _{IHO}		1.6 2.7	ns ns	
Address setup time before clock K	16x2 32x1	T _{ICK} T _{IHCK}	1.3 2.3		ns ns	


Dual Port RAM	Spe	ed Grade	-3		Units
	Size	Symbol	Min	Max	Units
Write Operation					
Address write cycle time (clock K period)	16x1	T _{WCDS}	9.0		ns
Clock K pulse width (active edge)	16x1	T _{WPDS}	4.5		ns
Address setup time before clock K	16x1	T _{ASDS}	2.5		ns
Address hold time after clock K	16x1	T _{AHDS}	0		ns
DIN setup time before clock K	16x1	T _{DSDS}	2.5		ns
DIN hold time after clock K	16x1	T _{DHDS}	0		ns
WE setup time before clock K	16x1	T _{WSDS}	1.8		ns
WE hold time after clock K	16x1	T _{WHDS}	0		ns
Data valid after clock K	16x1	T _{WODS}		7.8	ns

Note 1: Timing for16 x1 RAM option is identical to16 x 2 RAM.

XQR4000XL CLB RAM Synchronous (Edge-Triggered) Write Timing

XQR4000XL CLB Dual-Port RAM Synchronous (Edge-Triggered) Write Timing

XQR4000XL Pin-to-Pin Output Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

XQR4000XL Output Flip-Flop, Clock to Out

		Speed Grade	-3	Units
Description	Symbol	Device	Max	Units
Global Low Skew Clock to Output using OFF	T _{ICKOF}	XQR4013XL	8.6	ns
		XQR4036XL	9.8	ns
		XQR4062XL	11.3	ns
Global Early Clock to Output using OFF	T _{ICKEOF}	XQR4013XL	7.4	ns
Values are for BUFGE #s 3, 4, 7, and 8. Add		XQR4036XL	8.1	ns
1.4 ns for BUFGE #s 1, 2, 5, and 6.		XQR4062XL	9.9	ns
For output SLOW option add	T _{SLOW}	All Devices	3.0	ns

OFF = Output Flip Flop

Note 1: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Note 2: Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see graph below.

XQR4000XL Output Mux, Clock to Out

		Speed Grade	-3	Units
Description	Symbol	Device	Max	onits
Global Low Skew Clock to Output using OFF	T _{ICKOF}	XQR4013XL	8.8	ns
		XQR4036XL	10.0	ns
		XQR4062XL	11.4	ns
Global Early Clock to Output using OFF. Val-	T _{ICKEOF}	XQR4013XL	7.6	ns
ues are for BUFGE #s 3, 4, 7, and 8. Add 1.4		XQR4036XL	8.2	ns
ns for BUFGE #s 1, 2, 5, and 6.		XQR4062XL	10.0	ns
For output SLOW option add	T _{SLOW}	All Devices	3.0	ns

OFF = Output Flip Flop

Note 1: Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Note 2: Output timing is measured at ~50% V_{CC} threshold with 50 pF external capacitive load. For different loads, see graph below.

Capacitive Load Factor

Figure 1 shows the relationship between I/O output delay and load capacitance. It allows a user to adjust the specified output delay if the load capacitance is different than 50 pF. For example, if the actual load capacitance is 120 pF, add 2.5 ns to the specified delay. If the load capacitance is 20 pF, subtract 0.8 ns from the specified output delay.

Figure 1 is usable over the specified operating conditions of voltage and temperature and is independent of the output slew rate control.

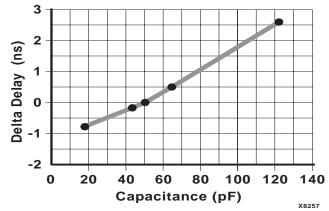


Figure 1: Delay Factor at Various Capacitive Loads

XQR4000XL Pin-to-Pin Input Parameter Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

XQR4000XL Global Low Skew Clock, Set-Up and Hold

		Speed Grade	-3	Units
Description	Symbol	Device	Min	Units
Input Setup and Hold Times Using Global Low Skew Clock and IFF		·		
No Delay	T _{PSN} /T _{PHN}	XQR4013XL	1.2 / 3.2	ns
	_	XQR4036XL	1.2 / 5.5	ns
		XQR4062XL	1.2 / 7.0	ns
Partial Delay	T _{PSP} /T _{PHP}	XQR4013XL	6.1 / 0.0	ns
	-	XQR4036XL	6.4 / 1.0	ns
		XQR4062XL	6.7 / 1.2	ns
Full Delay	T _{PSD} /T _{PHD}	XQR4013XL	6.4 / 0.0	ns
		XQR4036XL	6.6/0.0	ns
		XQR4062XL	6.8 / 0.0	ns

IFF = Input Flip-Flop or Latch

Note 1: Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer (TRCE) to determine the setup and hold times under given design conditions.

Note 2: The XQ4013XL, XQ4036XL, and 4062XL have significantly faster partial and full delay setup times than other devices.

XQR4000XL BUFGE #s 3, 4, 7, & 8 Global Early Clock, Set-up and Hold for IFF and FCL

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

		Speed Grade	-3
Description	Symbol	Device	Min
Input Setup and Hold Times			
No Delay		XQR4013XL	1.2 / 4.7
Global Early Clock and IFF	T _{PSEN} /T _{PHEN}	XQR4036XL	1.2 / 6.7
Global Early Clock and FCL	T _{PFSEN} /T _{PFHEN}	XQR4062XL	1.2 / 8.4
Partial Delay		XQR4013XL	5.4 / 0.0
Global Early Clock and IFF	T _{PSEP} /T _{PHEP}	XQR4036XL	6.4 / 0.8
Global Early Clock and FCL	T _{PFSEP} /T _{PFHEP}	XQR4062XL	8.4 / 1.5
Full Delay		XQR4013XL	12.0 / 0.0
Global Early Clock and IFF	T _{PSED} /T _{PHED}	XQR4036XL	13.8 / 0.0
		XQR4062XL	13.1 / 0.0

IFF = Input Flip-Flop or Latch, FCL = Fast Capture Latch

Note 1: Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer(TRCE) to determine the setup and hold times under given design conditions.

XQR4000XL BUFGE #s 1, 2, 5, & 6 Global Early Clock, Set-up and Hold for IFF and FCL

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Pin-to-pin timing parameters are derived from measuring external and internal test patterns and are guaranteed over worst-case operating conditions (supply voltage and junction temperature). Listed below are representative values for typical pin locations and normal clock loading. For more specific, more precise, and worst-case guaranteed data, reflecting the actual routing structure, use the values provided by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. Values are expressed in nanoseconds unless otherwise noted.

		Speed Grade	-3
Description	Symbol	Device	Min
Input Setup and Hold Times			
No Delay		XQR4013XL	1.2/4.7
Global Early Clock and IFF	T _{PSEN} /T _{PHEN}	XQR4036XL	1.2 / 6.7
Global Early Clock and FCL	T _{PFSEN} /T _{PFHEN}	XQR4062XL	1.2/8.4
Partial Delay		XQR4013XL	6.4 / 0.0
Global Early Clock and IFF	T _{PSEP} /T _{PHEP}	XQR4036XL	7.0/0.0
Global Early Clock and FCL	T _{PFSEP} /T _{PFHEP}	XQR4062XL	9.0 / 0.8
Full Delay		XQR4013XL	10.0 / 0.0
Global Early Clock and IFF	T _{PSED} /T _{PHED}	XQR4036XL	12.2 / 0.0
		XQR4062XL	13.1 / 0.0

IFF = Input Flip-Flop or Latch, FCL = Fast Capture Latch

Note 1: Setup time is measured with the fastest route and the lightest load. Hold time is measured using the furthest distance and a reference load of one clock pin per two IOBs. Use the static timing analyzer(TRCE) to determine the setup and hold times under given design conditions.

XQR4000XL IOB Input Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature).

	Speed Grade	-3	Units
Symbol	Device	Min	Units
T _{ECIK}	All devices	0.3	ns
_	All devices	1.7	ns
-			
T _{PICK}	All devices	1.7	ns
_	All devices	2.3	ns
T _{POCK}	All devices	0.7	ns
	All devices	0	ns
T _{MRW}	All devices	19.8	ns
T _{RRI}	XQR4013XL	15.9	ns
	XQR4036XL	22.5	ns
	XQR4062XL	29.1	ns
		Max	
T _{PID}	All devices	1.6	ns
T _{PLI}	All devices	2.6	ns
T _{PFLI}	All devices	3.1	ns
	All devices	1.8	ns
	All devices	1.9	ns
	All devices	3.6	ns
-			
	Symbol T _{ECIK} T _{OKIK} T _{PICK} T _{PICKF} T _{POCK} T _{RR}	T _{ECIK} All devices T _{OKIK} All devices T _{PICK} All devices T _{PICKF} All devices T _{POCK} All devices T _{POCK} All devices T _{POCK} All devices T _{RRI} All devices T _{RRI} All devices T _{RRI} All devices T _{PID} All devices T _{PLI} All devices T _{PFLI} All devices T _{IKRI} All devices T _{IKRI} All devices	SymbolDeviceMinT _{ECIK} All devices0.3T _{OKIK} All devices1.7T _{PICK} All devices1.7T _{PICKF} All devices2.3T _{POCK} All devices0.7T _{POCK} All devices0.7T _{POCK} All devices0T _{RRI} All devices19.8XQR4013XL15.9XQR4062XL29.1MaxT _{PID} All devicesT _{PIL} All devices1.6T _{PLI} All devices3.1T _{IKRI} All devices1.8T _{IKLI} All devices1.9

IFF = Input Flip-Flop or Latch, FCL = Fast Capture Latch

XQR4000XL IOB Output Switching Characteristic Guidelines

Testing of switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). For Propagation Delays, slew-rate = fast unless otherwise noted. Values are expressed in nanoseconds unless otherwise noted.

		-	3	Units
Description	Symbol	Min	Max	Units
Clocks			ı.	
Clock High	Т _{СН}	3.0		ns
Clock Low	T _{CL}	3.0		ns
Propagation Delays				
Clock (OK) to Pad	T _{OKPOF}		5.0	ns
Output (O) to Pad	T _{OPF}		4.1	ns
3-state to Pad hi-Z (slew-rate independent)	T _{TSHZ}		4.4	ns
3-state to Pad active and valid	T _{TSONF}		4.1	ns
Output (O) to Pad via Fast Output MUX	T _{OFPF}		5.5	ns
Select (OK) to Pad via Fast MUX	T _{OKFPF}		5.1	ns
Setup and Hold Times				
Output (O) to clock (OK) setup time	Тоок	0.5		ns
Output (O) to clock (OK) hold time	Т _{ОКО}	0.0		ns
Clock Enable (EC) to clock (OK) setup time	Т _{ЕСОК}	0.0		ns
Clock Enable (EC) to clock (OK) hold time	T _{OKEC}	0.3		ns
Global Set/Reset	1		•	•
Minimum GSR pulse width	T _{MRW}	19.8		ns
Delay from GSR input to any Pad	T _{RPO}			
XQR4013XL		20.5		ns
XQR4036XL		27.1		ns
XQR4062XL		33.7		ns
Slew Rate Adjustment			1	<u>.</u>
For output SLOW option add	T _{SLOW}		3.0	ns

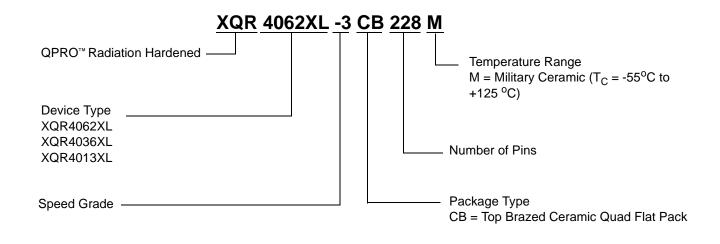
Note 1: Output timing is measured at ~50% V_{CC} threshold, with 50 pF external capacitive loads.

Pinouts

CB228 Package for XQR4013XL/4036XL/ 4062XL

PIN_NAME	CB228
VSS	P1
BUFGP_TL_A16_GCK1_IO	P2
A17_IO	P3
IO	P4
IO	P5
TDI_IO	P6
TCK_IO	P7
IO	P8
IO	P9
IO	P10
IO	P11
IO	P12
IO	P13
VSS	P14
IO	P15
IO	P16
TMS_IO	P17
IO	P18
IO	P19
IO	P20
IO	P21
IO	P22
IO	P23
IO	P24
IO	P25
IO	P26
VSS	P27
VCC	P28
IO	P29
IO	P30
IO	P31
IO	P32
IO	P33
IO	P34
IO	P35
IO	P36
VCC	P37
IO	P38
IO	P39
IO	P40
IO	P41
VSS	P42
IO	P43

PIN_NAME	CB228
IO	P44
IO	P45
IO	P46
IO	P47
IO	P48
IO	P49
IO	P50
IO	P51
IO	P52
IO	P53
BUFGS_BL_GCK2_IO	P54
M1	P55
VSS	P56
MO	P57
VCC	P58
M2	P59
BUFGP_BL_GCK3_IO	P60
HDC_IO	P61
IO	P62
IO	P63
IO	P64
LDC_IO	P65
IO	P66
IO	P67
IO	P68
IO	P69
IO	P70
IO	P71
VSS	P72
IO	P73
IO	P74
IO	P75
IO	P76
IO	P77
IO	P78
IO	P79
IO	P80
IO	P81
IO	P82
IO	P83
/ERR_INIT_IO	P84
VCC	P85
VSS	P86
IO	P87
IO	P88
IO	P89



PIN_NAME	CB228
	P90
ΙΟ	P91
Ю	P92
Ю	P93
ΙΟ	P94
VCC	P95
ΙΟ	P96
Ю	P97
Ю	P98
Ю	P99
VSS	P100
Ю	P101
ΙΟ	P102
10	P103
10	P104
10	P105
10	P106
10	P107
10	P108
10	P109
10	P110
10	P111
BUFGS BR GCK4 IO	P112
VSS	P113
DONE	P114
VCC	P115
/PROG	P116
07_I0	P117
B/_IO BUFGP BR GCK5 IO	P118
0	P119
10	P120
0	P121
	P122
D6_IO	P123
10	P124
10	P125
10	P126
10	P127
10	P128
VSS	P129
10	P130
10	P131
10	P132
IO	P133
D5_IO	P134
/CS0_IO	P135
IO	P136
Ю	P137

PIN_NAME	CB228
IO	P138
Ю	P139
D4_IO	P140
10	P141
VCC	P142
VSS	P143
D3_IO	P144
/RS_IO	P145
IO	P146
10 10	P147
10	P148
10	P148
D2_IO	P150
10	P151
VCC	P152
10	P153
10	P154
IO	P155
10	P156
VSS	P157
IO	P158
IO	P159
IO	P160
IO	P161
IO	P162
IO	P163
D1_IO	P164
BUSY_/RDY_RCLK_IO	P165
IO	P166
IO	P167
D0 DIN IO	P168
BUFGS_TR_GCK6_DOUT_IO	P169
CCLK	P170
VCC	P171
TDO	P172
VSS	P173
A0_/WS_IO	P174
BUFGP TR GCK7 A1 IO	P175
	P176
10	P170
CSI_A2_IO	P178
A3_IO	P179
10	P180
10	P181
10	P182
10	P183
IO	P184
IO	P185

PIN_NAME	CB228
VSS	P186
IO	P187
IO	P188
IO	P189
IO	P190
VCC	P191
A4_IO	P192
A5_IO	P193
IO	P194
IO	P195
A21_IO	P196
A20_IO	P197
A6_IO	P198
A7_IO	P199
VSS	P200
VCC	P201
A8_IO	P202
A9_IO	P203
A19_IO	P204
A18_IO	P205
IO	P206
IO	P207
A10_IO	P208
A11_IO	P209
VCC	P210
IO	P211
IO	P212
Ю	P213
Ю	P214
VSS	P215
IO	P216
IO	P217
IO	P218
Ю	P219
A12_IO	P220
A13_IO	P221
IO	P222
IO	P223
IO	P224
IO	P225
A14_IO	P226
BUFGS_TL_GCK8_A15_IO	P227
VCC	P228

Ordering Information

