DataSource CD-ROM Q4-01: techXclusives
m SUPPORT.XILINX. COM
27 XILINX .

techXclusives

Digitally Removing a DC Offset
(or "DSP Without Math?") - Part 1

By Ken Chapman
Staff Engineer, Core Applications - Xilinx UK

Introduction

Digital Signal Processing (DSP) - Does the very mention of this topic make
you think of horrible mathematics and make you have the burning desire to
dive for cover? If it does, then maybe you should approach the whole
subject the way | started to about 8 years ago. Rather than start with
mathematics, try to understand how simple functions in the analogue world
can be modeled, and then convert them into digital representations.

In Parts 1 and 2 of this techXclusive, | am going to examine how to remove
the DC content from a digitally sampled waveform using DSP without
mathematics -- well, nothing difficult, anyway! The first article will take a very
gentle look at DSP and illustrate how to create a circuit capable of
performing the required signal processing. In the second article, | will look
at how to optimise the derived function for use in audio telecom
applications, using my favorite SRL16E mode.

Sampled Waveforms

So, let's start by taking a look at the input signal. You may remember that
DSP is all about digital samples, which are numbers that represent the
amplitude of a waveform taken at regular intervals. These are normally the
result of an Analogue-to-Digital Converter (A/D or ADC) that generates
values of a given number of bits (resolution) at a sample rate set by a
sample clock.

In the upper plot, we see an analogue waveform being applied to the A/D.
The input signal needs to remain within the specified input range voltage
swing of the A/D converter (in this case, =1 volt). The A/D will sample this
waveform at a frequency (fs) that is relatively fast in comparison to the
frequency content of the signal. (Remember that Nyquist says you have to
sample at a rate at least twice that of the highest frequency present?)

Test signal formed of 800Hz and 960Hz components with a DC offset




DataSource CD-ROM Q4-01: techXclusives

f, = SkHz —p * 8-bit
Samples

In the lower plot, the actual digital samples provided by the A/D are shown
as red dots. The most important part of DSP has happened! In this case,
the samples are represented by 8-bit numbers. A twos complement format
is used in order to represent both positive and negative quantities. The first
values of the plot are +104, +80, +31, -19, -48, and -44. We know that these
can be represented in hexadecimal by 68, 50, 1F, ED, DO, and D4. So, all
that DSP has to do is work with such a stream of numerical data and
manipulate it in some way.

Although the only information you have to work with are the values
represented by the red dots, the shape of the waveform can be made more
apparent by joining the dots with straight lines. Now we can once again
"see" the analogue waveform; of course, it is less pure than it originally
was (the essence of quantisation noise).

Looking at the waveform plots, we can see that they contain high frequency
components of some kind (800Hz and 960Hz in this test case). We also
see that the waveform spends a greater percentage of time above the zero
axis than it does below it, indicating some kind of positive DC bias. This is
clearly seen in the digital plot, as there are many more positive red dots
than negative.

Generally speaking, a DC offset such as this is undesirable, because it
tends to mean that the positive peaks of the waveforms are more likely to
exceed the maximum level that can be represented. In the ideal world, the
DC offset would be removed before the A/D conversion; however, this may
be difficult to achieve. Indeed, it may be that the analogue components
have unintentionally inserted the DC bias as part of the signal amplification
and conditioning.

Removing DC Offset

Now, given that a DC offset has a frequency of zero, the DC offset can,
theoretically, be removed by the use of a high pass filter. This may lead us
directly into the world of serious DSP and investigation of such things as
FIR (Flnlte Impulse Response) filters. However, | would like to take a more

Armamiviaal A Aa A A Ih 4n AmAabhidina thhin mvalalanma latla AviAald An tmartialh ma At A A



DataSource CD-ROM Q4-01: techXclusives

Eliipiicdl approdacii U suiviiy ulis provieril -- 1IeLs davulu ds [uctli iatii as
possible and hopefully find a much easier and cost-effective
implementation!

If | know what the DC offset level is, then it is possible to remove it with a
simple subtraction. As if by magic, | have now determined that the DC offset
of the digital samples is equivalent to the value "+19". So, all we have to do
is take each input sample from the A/D converter and subtract the value 19
from it. The output from the subtractor is the waveform without any DC
offset. We have just performed DSP, because we have manipulated a
stream of digital samples to form new samples. The value of the first
sample is, of course, +104 -19 = +85.

0% ﬁ A j\ H “ fta-bita-bi[; n

+159 (D C offset value)

It may seem hard to believe that a subtractor can be an important DSP
function, but it clearly is! (It is also very well-supported by Virtex™ and
Spartan-1I™ devices.) As with the basic adder function (see the previous
techXclusive "8x12 Does NOT Equal 12x8"), each "slice" of the device can
implement a 2-bit subtractor. Therefore, a simple 8-bit subtractor will
require 4 "slices". As this is such a basic function, it is supported well in
many design flows, including HDL and System Generator.

Finding the DC Level

Although we have achieved our objective to remove the DC offset with the
subtractor, the process relied on me stating the DC value that was to be
removed. Clearly, we now need to find a way to derive that DC offset value
automatically. Although this will be a little more complicated, we can again
take an empirical approach to finding a solution with another very common
function, and avoid a lot of "DSP theory".

In the analogue world, the simplest way to find the average DC level of a
signal is to smooth it with a capacitor. The larger the value of the
smoothing capacitor, the steadier the DC level (especially if there is a load
current).

R Losp=0
e
— 1}
¥ m+ Yo

In theory, we need to look at a differential equation to solve this simple
circuit. However, if we take an instant in time, then simple linear equations
can be used:

AVAVAWV

Voltage across the resister "R" is given by: vi-vo.

Therefore, the current flowing into the capacitor is given by:
ic = (vVi-vo)/R.

If the input voltage is higher than the average value "vo", the capacitor will
charge. Likewise, if the input voltage is lower than the average value, the
current will be negative (flowing out of the capacitor), and the capacitor will
discharge.



DataSource CD-ROM Q4-01: techXclusives

techXclusives

Digitally Removing a DC Offset
(or "DSP Without Math?") - Part 2

By Ken Chapman
Staff Engineer, Core Applications - Xilinx UK

Introduction

Welcome to the second part of this TechXclusive! Were you were able to
spot the first optimisations that | am going to make to the circuit?

After the optimisations are made to the algorithm, I will focus on how to
make a smaller and more efficient version for audio telecom applications.
This is pure hardware engineering, and | don't feel that any design is
complete until it has an SRL16E in it! | suggest you read my previous
TechXclusive articles about the SRL16E before you read the last section of
this one.

Removing the Multiplier Logic

Potentially, the largest part of the circuit so far is the multiplier. Although you
may have some dedicated multipliers to spare in future Virtex-II designs, it
is likely that the multiplier is costing slices in most cases. For really cost-
sensitive designs with Spartan-1l, we should be doing everything possible
to reduce size and stay in the smallest device.

It is actually very easy to remove the multiplier from this circuit, and
hopefully you have already seen how it can be achieved. | left a rather big
clue on the two response plots in the last article by specifying the
coefficient values as k=1/32 and k=1/256. In both cases, these values are
represented by numbers in which only one bit is active. | am going to adopt
the second of these values as | consider that the low ripple is much more
desirable than the response time -- especially as even 100ms is relatively

short.
77 0loo0l1l101
= 0.003%9 * 1
0.3003 01001101

Since the multiplication process only requires that the variable input be
multiplied by "1," the output product is the same as the input. Clearly, there
is no need for a real multiplier; the output product is the same value, and
the bit width is the same as the variable input. All that is required is to apply
the variable input value with the binary point reassigned to the correct
position. Our complete DC offset removal circuit is then reduced to the
following logic...



DataSource CD-ROM Q4-01: techXclusives

Corrected
Yi ra + | Signal
B-bits _8{:-_.'
_ -bits
S v, DC Level
— b 8bits
+ | 8-bits 8-b1 ts\Fracti otl

Llust sign extend
a-bits to 16-bits

The circuit now consists only of an accumulator and two subtractors. Care
is required when connecting the variable difference signal (vi - vo) to the
accumulator input. To represent that the 8 bits are all fractional (to the right
of the binary point), they are applied to the least significant byte of the 16-bit
input. However, the upper byte must also be defined, and this must be
achieved using sign extension (replicate the MSB of the 8-bit value a further
8 times to form either "00" or "FF" hexadecimal); this is so that the twos
complement logic of the accumulator will correctly add both positive and
negative values.

With this very small "k" value, it is obvious why the accumulation of the
fractional parts (as well as the integer parts) must be performed.

Removing a subtractor

Having drawn out the DC level detector and the DC removing subtractor on
the same diagram for the first time, it may appear more obvious that one of
the subtractors is redundant. The corrected signal is the original signal
with the DC level subtracted from it. This means that the output is the value
Vi - vo, which is the same as the difference signal being created by the
subtractor within the DC detection circuit.

This means that the complete DC offset removal circuit can be reduced to
just one accumulator and one subtractor...

W} m——
B-bits Corrected
signal

Using the simple but accurate rule that a 2-bit add or subtract function fits
into a "slice," then this circuit now only requires 12 "slices."” For each
additional bit of sample width, the subtractor and accumulator will each
increase by 1-bit and, accordingly, increase the total size by 1 "slice.”
Therefore, with 16-bit input samples, the size would increase to 20 "slices."
As a parallel circuit, this can also support a sample rate well in excess of
100MHz.

Low Sample Rate Applications

Although 12 and 20 "slices" may not sound like very much, it is still 6% to



10% of the smallest XC2S15 device, and this DC offset removal may well
be seen as just a pre-process to the main function.

In a typical application, this DC offset removal may be required in a
telephone conferencing facility. Each of the input lines (represented by
digital samples) will ultimately be summed together within the system, and
the contribution of multiple small DC offsets may have an adverse effect on
the overall dynamics. The requirement for a DC offset removal circuit on
each line input would soon see all those 6-10% units of a device mounting
up to something significant.

Also typical of audio telecommunications, data samples are transmitted
serially between units. These may be as packets within data frames, or
even directly from the A/D converter. The Texas Instruments TLC320AC01C
analogue Interface circuit (AIC) device uses a serial communications
protocol with 14-bit A/D samples being transmitted with the most
significant bit first as part of each 16-bit transfer...

SCle JUUUUUInrrIuuIe

Fs l—
Data Ao do0oo000oo00__
—

T 14-bit sample TEControlbits

M5B LB

To use the parallel implementation of the DC offset removal circuit, such
serial data samples would need to be applied to a 14-bit shift register in
order to read the sample in parallel. This requires an additional 7 "slices."



DataSource CD-ROM Q4-01: techXclusives

I ne linear equation 10r tne cnarge on a capacitoris: Q =cC.v = 1.1

So, for a constant current of "I" for a period of time "T", the voltage on the
capacitor will rise by the amount V = (1.T)/C

Obviously, the larger value of C, then the smaller the change in voltage for a
given current and time.

This means that we can derive a final formula that describes this simple
RC circuit:

TV, =[VT/(R.C)]. (vi-v.)

OK, I said | wasn't going to do mathematics, but this really is a simple
linear equation. During a period of time "% T, the voltage across the
capacitor will change by an amount proportional to the difference between
the input voltage and the output voltage. This equation is only valid if the
duration of time "% T" is so small that the voltage change "% Vo" does not
significantly change the value of "(vi-vo)".

The equation can be simplified to vvu =k. (Vi""'rn} by using a
constant value "k", which is set by the combination of "R", "C", and the
period of time over which each calculation is made "% T". At the end of each
period, the output voltage becomes the previous value of "Vo" plus the
incremental value "% Vo".

V)=V, + k. (viv,) where k = [VT / (R.C}]

We can try a simple experiment to prove this formula. Setting values of
R=50%2, C=100pF (a time constant of RC=5ms), and

% T=1ms, then k=0.2. By applying a simple 10-volt step input, we can see
that the calculated output for each step of time generates the exponential
charge curve we would expect for such an RC circuit:

¥

Al
—d

34 _}i“-l(_;’i-- v,)

01 2 3 4 5 6 7 8§ 9 10 11 12

time (ms)



	Product Selection Guides
	Product Data Sheets
	Application Notes
	Application Briefs
	White Papers
	Package Information
	Software Manuals
	More Information
	Xcell Journal 
	Xcell Journal Archives
	Inside Out Columns
	techXclusives
	Glossary of Terms
	Xilinx Sales Offices
	Register DC-ROM
	-START_HERE PAGE

