
Expanding Virtex-II Multipliers, Pg. 1 Page 1 of 4

 

 

 techXclusives
   

 

Expanding Virtex-II™ Multipliers

By Ken Chapman
Staff Engineer, Core Applications - Xilinx UK

 

   
Introduction

I'm sure you have all been busy looking at Virtex-II™ data sheets and 
Application Notes recently. Certainly, those of you with DSP projects in 
mind will have been most interested in the dedicated multipliers these 
devices have to offer; the potential is enormous, with anything from 4 to 192 
available per device.

Each multiplier supports up to 18-bit by 18-bit signed inputs, providing 
support for a huge range of applications. Whilst many people exploit the 
configurable nature of Xilinx FPGA devices by reducing bit-widths, and 
therefore reducing product cost, I also see an exciting trend towards 
extending arithmetic precision (using more bits) to improve the quality of 
results and even make certain algorithms practical for the first time. This is 
particularly interesting in those cases where the processing performance 
made available by Virtex™ devices exceeds that of ASIC implementations, 
whilst at the same time providing a standard product solution to 
applications where the volume simply could not entertain the ASIC 
development costs (NRE). 

So, in this article we will look expanding the natural bit-width capability of 
the dedicated multipliers in a way that will make best use of the complete 
Virtex-II resources.

Multiplication Revision

Since we are going to exceed the bit-widths supported by a single 
dedicated multiplier, we are ultimately going to need to decompose the 
multiplication process into smaller sub-processes. In fact, we do this every 
time the battery runs out in our favourite calculator (and it's too dark for the 
solar cell to work!). Then, we revert to good old pencil and paper to perform 
long-hand multiplication... 

DataSource CD-ROM Q4-01: techXclusives



Expanding Virtex-II Multipliers, Pg. 1

 

In each of the examples above, we can see that a number can be split into 
separate digits. "87" has been split into an "8" (meaning 80) and "7", and 
"49" has been split into a "4" (meaning 40) and "9". Partial products are 
then formed by multiplying the individual digits of the multiplicand with the 
individual digits of the multiplier. Once all combinations have been 
completed, the partial products are summed to form the final result. Care 
must be taken to ensure that the weighting of each partial result is applied. 
We achieve this in long-hand multiplication by inserting the "0" to offset our 
partial product result (e.g., in the 87×49 example, the last partial product is 
4×8=32, but this really means 40×80=3200). 

The Weird Split! 

As "normal people", we learn to deal with numbers in powers of ten; during 
our long-hand multiplication process, we naturally split the numbers into 
individual digits. However, the rules still work if we split numbers in weird 
ways, even if it doesn't make the mental task easier... 

We see here that the multiplicand has again been split into two parts; in 
this case, however, the left-hand part consists of 2 digits. Since we do not 
naturally know our "81' times-table, we find it hard to work out 9×81=729 (I 
bet you split it into separate digits or use a calculator!); but so long as the 
partial product is appropriately weighted during the summation, then the 
final result is good. 

Splitting 2's Complement Numbers

A 2's complement number is an encoded binary representation of a signed 
value. We tend to learn about 2's complement as some form of "invert and 
add one" procedure that enables negative values to be represented; 
however, it is also possible to evaluate a negative value more directly by 
splitting the number... 

 

DataSource CD-ROM Q4-01: techXclusives



Expanding Virtex-II Multipliers, Pg. 1 Page 3 of 4

Here, the all "11111111" pattern of an 8-bit number is used to represent the 
value "-1". Rather than invert all bits and add one 
(00000000+1=00000001), we can see that the least significant bits can be 
considered to represent a positive value (+127), and the most significant 
bit, a large negative value (-128). The net effect of this is to form the value -
1. The interesting thing is that we can split the binary representation at any 
point, provided that the negative weighting associated with the MSB is 
taken into consideration... 

Once again, we take the 8-bit pattern of "11111111", but this time, we split it 
into 3-bits and 5-bits. It certainly doesn't make it easier to work out the value 
from a human perspective, but the rules still apply. The least significant 5-
bits are interpreted as a positive number since all of the original bit values 
were positive.

However, the most significant 3-bits must be interpreted as a signed value 
because the MSB has a negative weighting. In this example, the 3-bits have 
the potential to represent the range of values -4 to +3. With the value of the 
most significant 3-bits established, it can be added to the value of the 5-
bits; we must remember to restore the weighting of the most significant 
bits, which is a factor of 32 in this example (note that -128+64+32=-32 in 
just the same way that (-4+2+1)×32=-32). 

So, if we split any 2's complement number into two sections, the least 
significant bits will be a positive unsigned number, and the most significant 
bits will be a signed 2'complement number in its own right. The offset 
weighting of the most significant section must be restored at some stage. 

DataSource CD-ROM Q4-01: techXclusives


	Product Selection Guides
	Product Data Sheets
	Application Notes
	Application Briefs
	White Papers
	Package Information
	Software Manuals
	More Information
	Xcell Journal 
	Xcell Journal Archives
	Inside Out Columns
	techXclusives
	Glossary of Terms
	Xilinx Sales Offices
	Register DC-ROM
	-START_HERE PAGE

