
SRL16E Part 2 Page 1 of 6

 

 

 techXclusives
   

 

The SRL16E: Engineer Level
How using this exciting mode can lead to 
"cost saving of an order of magnitude."
(Part 2 of a 3-part series)

By Ken Chapman
Staff Engineer, Core Applications - Xilinx UK

 

   
ENGINEER LEVEL:

At this level, the applications of SRL16E require additional thought about 
alternative ways in which a problem can be solved. It is often possible to 
find a solution to a problem using shift register delay. Although HDL tools 
will automatically convert simple delays into SRL16E primitives, they are 
not able to change the structure of the design. As an engineer, you are able 
to discover these fresh approaches. The following two examples illustrate 
some realistic cases of such structures.

Running Average

The running average (or more accurately the running sum) of a set of 
samples has a smoothing effect associated with a type of low pass filter. 

In the example shown, the output is the sum of the last 8 samples held in a 
shift register. If we assume 16-bit input samples, then we have 8 x 16 flip-
flops to form the registers and then an adder tree made of 8 x 17-bits, 2 x 
18-bits, and 1 x 19-bits. Hence, there is a total of 128 flip-flops and 123 bits 
of addition. This would appear to require 63 CLBs to implement.

In theory, assuming that the performance can be met by using the non-
pipelined adder tree shown, the adders and registers can be mapped into 
the same CLBs, reducing this size to 32 CLBs. This may be considered to 
be an optimum solution; yet, using knowledge of SRL16E, we can go much 
further.

The observation to make in this running average function is that a sample 
entering the shift register is contributing to the result for 8 clock cycles. 
Although a sample always contributes the same value to the result, it is 
doing so via different paths through the addition tree each cycle.

DataSource CD-ROM Q4-01: techXclusives



SRL16E Part 2

An alternative solution to this function is to use the fact that when a new 
sample is applied, it will contribute to the result for 8 cycles. This is 
achieved by adding the new sample to an accumulator that remembers the 
contribution that it made. After 8 clock cycles, we then subtract the delayed 
sample from the accumulator. Not only does this reduce the adder tree to a 
simple subtractor and accumulator, but it also forms the shift register into a 
simple delay line which is easily absorbed into SRL16E primitives. In this 
example, the 16-bit input samples still require 8 x 16 flip-flops for the shift 
register, but now fit into just 4 CLBs. The subtractor is 17-bits and the final 
accumulator is 19-bits (requiring a further 9 CLBs). The total size is 13 
CLBs.

In this example, a 60% size reduction was achieved over the most optimum 
mapping of the "obvious" technique. Clearly, as the length of the running 
average is increased, the savings are significantly greater. 

Pulse Generation and "Clock Division"

Unless there are very special reasons to do so, the use of a single clock 
source (distributed via one of the global clock networks) should be used for 
all elements of a design. Clock enable pulses should then be used to 
enable subsections of the system to operate at a lower rate. In the diagram 
below, the enable pulses are used to enable a counter. Clearly, the pulse 
must occur at regular intervals and have a duration of one clock cycle. 

In this practical case study, we see an RS232 receiver module which will 
be used to receive serial data at 9600 bits per second (baud rate). Typical 
of most RS232 interfaces, this unit is provided with a timing reference 
which is 16 times the baud rate. In line with good design practice, this 
macro takes this reference as a clock enable pulse.

Pulses at 16 x 9600 baud are not an exact integer division of 40MHz. 
However a division by 260 is equivalent to 16 x 9615 which is more than 
adequate for RS232. This means that a pulse must be active for one cycle 
in every 260. A simple way to achieve this is with a 9-bit counter and AND 
gate detection of the count value 259 which is used to provide the pulse 
and synchronously reset the counter. This will require 6 "slices" of logic.

A counter can be viewed as a simple state machine. In this case, the 9 bits 

DataSource CD-ROM Q4-01: techXclusives



SRL16E Part 2 Page 3 of 6

 

provide a possible 512 states of which the first 260 are actually used. The 
operation of the state machine is also very simple in that each state simply 
leads to the next (except when reaching the 259th state, which returns to 
zero). An equivalent "one-hot" state machine is one in which a different flip-
flop is used to represent each state. Only the active state is at logic "1"; all 
others are logic "0." 

Since SRL can provide us with such a high number of flip-flops, this type of 
simple "one hot" state machine becomes very practical. It can be seen that 
16 x SRL16E primitives and 4 flip-flops can provide the 260 states required. 

In this case, the SRL16E solution appears to be larger, but the simplicity of 
the technique is already clear. 

Although the "one-hot" state machine approach is very simple and ideal for 
small division factors, it is obvious that even with the efficiency of the 
SRL16E at providing flip-flops, there is a point at which the number of flip-
flops required is too large compared with the doubling of states available 
with each additional bit of an encoded state machine counter. A solution to 
this is to "divide and conquer."

The division by 260 can be broken into 2 stages. First, the clock will be 
divided by 26 to provide enable pulses to a second unit, which divides 
these enable pulses by 10.

The first stage simply requires a 26-state looped delay around which the 
single "hot" bit is clocked to produce an enable pulse. Clearly, the 26 flip-
flops can be created in just two SRL16E primitives that are contained within 
a single "slice." (Note the high efficiency of the SRL16E implementation for 
this number of states; it is the equivalent of a 5-bit counter and decoder, 
requiring 3 "slices.")

The second stage is a different style than the first, as it must divide the 
clock enable pulses from the first stage, rather than the clock directly. For 
this reason, the clock enable input to the SRL16E-based delay is driven.

 

DataSource CD-ROM Q4-01: techXclusives



SRL16E Part 2 Page 4 of 6

Since this SRL16E is only enabled every 26 clock cycles, the output pulse 
is also active high for 26 clock cycles. To generate a single cycle clock 
enable pulse, this long pulse is gated with the input enable. The available 
flip-flop is used to ensure high performance, as such an enable pulse may 
have a high fan-out. 

Forcing the "Hot" State

The key to these pulse generators is the recycling of the "hot" state. It is 
therefore vital that the "hot" state is present in the delay loop at the start of 
operation. There are two ways in which this can be achieved:

The most obvious method is to set the hexadecimal INIT value on the 
SRL16E look-up table. If necessary, the position of the "hot" bit can also be 
determined during start-up sequencing. It is important that the "hot" bit is 
declared to exist before the delay tapping point. (Note that in this example 
of INIT=0001, one loop of the delay is required before the first pulse is seen 
at the output.)

Although the INIT parameter provides total control, this may not be easy to 
achieve via synthesis unless component instantiation is used. In this case, 
the default INIT=0000 can be used and the "hot" bit injected using the 
associated flip-flop. This flip-flop can be initialised with logic "1" by 

DataSource CD-ROM Q4-01: techXclusives



SRL16E Part 2 Page 5 of 6declaring (or inferring) an asynchronous preset. Obviously, the delay 
formed in the SRL16E is now one less. The flip-flop has the advantages of 
increasing the maximum delay available by one and improving the clock-to-
output performance of the pulse generator.

Pattern Generation

Since the SRL16E can be pre-initialised with any INIT value, it can be used 
to produce a repeatable pattern. In this example, a clock signal is 
generated that is 400 times less than the input clock. In this case, the 
object is to produce a waveform which is close to square at the output. The 
solution is a divided by 16 stage which enables a divide by 25 stage. Note 
how the INIT values set the pattern of the output waveform.

 

Very High Performance Clock Division

In this example, it has been possible to implement all logic in one CLB. 
The use of RLOC parameters ensures that the logic is mapped in this way. 
Given that all logic in a single CLB shares a common clock, there are no 
clock skew issues between the elements; thus, the input clock does not 
need to be provided on the global clock resource. The close proximity of the 
elements also yields very high performance (in excess of 350MHz). Such a 
circuit may be useful in dividing a high speed clock before use of a global 
clock resource in order to minimise the power dissipation. In general, a 
single clock and enable pulse is preferable.

State Machines

We have seen that the simple clock division or pulse generator is a form of 
"one-hot" state machine. This technique can be expanded to form more 
complex state machines. The use of shift registers to delay control pulses 
can be a very effective implementation method that can actually be easier to 
design than you might think.

In this example, a simple RS232 receiver is considered. The serial data is 
provided at a rate of 9600 bits per second and has a single (active low) 
start bit and single (active high) stop bit. Although the serial data arrives 
asynchronously, the basic timing of the data is known.

A reference time signal is provided at 16 x baud rate (see previous pulse 
generation example). The falling edge of the start bit is used to trigger a 
state machine which uses the timing reference to approximately locate the 
mid-position of each data bit. 

DataSource CD-ROM Q4-01: techXclusives



SRL16E Part 2 Page 6 of 6

It can be seen that the state machine must first count 8 timing reference 
periods to locate the mid-position of the "start bit," and then count every 16 
timing reference periods to locate the midpoint of each data bit and the 
"stop bit." Once the "stop-bit" has been sampled, the state machine must 
return to the idle condition in which it locates the next falling edge of a "start 
bit."

Although this diagram does not show all the details required by the RS232 
receiver state machine, it does illustrate the main functionality and the way 
in which the SRL16E primitives are so useful. In principle, we see a 24 
state "one-hot" state machine with the 24 states represented by the flip-
flops contained within the two SRL16E elements. In this case, all states 
are "cold" until a high pulse, formed when a high to low transition occurs at 
the RS232 input, is injected. The full implementation prevents multiple "hot" 
states from being generated due to following data transitions. 

The first SRL16E delays this pulse until the midpoint of the "start" bit, and 
then injects the "hot" state into the second SRL16E. This is then able to 
circulate every 16 baud rate-enable periods to identify the midpoint of each 
data bit. At the end of the data transmission, the "hot" state is prevented 
from re-entering the SRL16E, and the state machine returns to being 
"cold."

A complete RS232 receiver for this specification can be made in 4 Virtex 
or Spartan II CLBs.

Share your comments, questions and ideas with Ken Chapman and other 
interested designers at the "SRL16E" FORUM.

        

DataSource CD-ROM Q4-01: techXclusives


	Product Selection Guides
	Product Data Sheets
	Application Notes
	Application Briefs
	White Papers
	Package Information
	Software Manuals
	More Information
	Xcell Journal 
	Xcell Journal Archives
	Inside Out Columns
	techXclusives
	Glossary of Terms
	Xilinx Sales Offices
	Register DC-ROM
	-START_HERE PAGE

