
Introduction This white paper shows how a generic flash memory interface can be combined with Xilinx IP 
interface cores to add flash memory to Xilinx Spartan device designs. The flexible Xilinx 
programmable solutions presented here address three issues of primary importance in a flash 
memory interface design:

• Design Reuse — A solution must accommodate design changes made to increase 
performance and meet different memory density requirements.

• Performance — A solution should maximize system-level performance by providing 
automatic status polling, write buffering, and other system-friendly features.

• Device Availability — Flash memory devices are popular choices for product design, and 
device demand often outpaces supply. The flash memory interface solution should allow 
designers to choose among different flash memory devices late in the product 
development cycle.....

Figure 1 shows a block diagram overview of the architecture of a generic flash memory 
interface. Application-specific logic connects to flash memory through a generic flash interface. 
Note that application logic, the generic flash interface, and flash interface cores are 
implemented on a single Xilinx Spartan-II device. Since the generic interface supports multiple 
flash memory devices, the designer can place footprints for more than one flash family device 
on the printed-circuit board.

The following sections provide an overview of the flash memory market and flash technologies, 
describe a generic flash interface, then illustrate the implemenation of the interface for the two 
prevailing flash memory technologies.

The Flash 
Memory Market

Demand for flash memory has grown rapidly, driven by the manufacture of a wide range of 
portable and embedded products with increased storage requirements. The most notable of 
the application areas that employ flash memory storage are:

• Bulk Data Storage — Flash memory replaces bulk storage media, such as hard disks. 
Typical applications include PCMCIA flash-storage cards, MP3 players, and digital voice 
recorders. Key application requirements are high density (>1 MB), low cost per byte, and 
tolerance for storage errors

• Embedded Code Storage — Flash memory stores program code for an embedded 
processor, such as a high-end 32-bit, RISC CPU used in a router or a DSP used in a 
cellular phone. Key application requirements are modest (<1 MB) memory density, high 
performance, and error-free storage
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Figure 1:  Generic Flash Interface Architecture
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Flash 
Technology 
Background

There are two primary flash technologies — NOR and NAND technologies — whose names 
are derived from the type of semiconductor logic used to implement flash memory structures. 
Figure 2 illustrates the structures used in each flash technology type.

NOR vs. NAND Technology
Each flash memory technology is designed to match the basic requirements of the two primary 
flash application areas: NOR technology finds frequent use in embedded core applications 
while NAND flash memory is commonly used to replace bulk storage.

• NOR technology is featured in Intel and AMD flash memory devices. It features high-
speed, random access to bit storage and low error rates, but offers less density than 
NAND flash technology. It has high endurance—that is, it can reliably support up to one 
million program/erase cycles without requiring error correction

• NAND technology ties a string of 16 or 32 single-bit-storage transistors together. This 
structure reduces the number of memory array contacts and allows greater density. The 
trade-offs involved with implementing this structure are 1) data cells must accessed 
sequentially, and 2) read and write errors are more prevalent. As a result, NAND devices 
require error correction

Flash Device 
Families

Manufacturers produce several flash device families, each targeted at different application 
areas. Table 1 lists several popular flash device families and their characteristics.

TABLE 1 – FLASH DEVICE FAMILIES (NEED INPUT FOR THIS TABLE--WAS NOT ABLE 
TO CONVERT--NOT IN WORD FILE

AMD Am29Fxxx
This NOR device family led the migration path to flash memory by featuring EPROM pin 
compatibility. Limitations include lack of support for 3.3V (or lower) operation, 32 Mb maximum 
density, and a relatively high cost per bit. The Am29BDS643D is a recent AMD family member 
that targets cell phones and other low-power, embedded applications. It includes the latest 

Figure 2:  NOR and NAND Flash Memory Structures
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flash industry features, including dual banks for simultaneous red/write support and burst-mode 
operation

Intel StrataFlash
The NOR devices in the Intel StrataFlash family employ four levels of charge storage, which 
allows each transistor to store two data bits. This design gives the StrataFlash family the lowest 
cost per bit among NOR flash families

Micron SyncFlash
This recently-introduced, high-performance NOR device family is designed to plug into existing 
synchronous DRAM interfaces. It does not require a flash interface

Samsung/Toshiba NAND
These NAND devices feature a low cost per bit, making them ideal for use in hard disk 
replacement and Internet audio player applications. They lack random read/write capability, 
and like other NAND devices, require system-level error checking and correction code (ECC)

AMD UltraNAND
The UltraNAND family represents AMD’s first entry in the NAND flash market. UltraNAND 
devices are pin and command-set compatible with standard NAND devices, and specify a 
100,000 program/erase cycle capability without error correction

Generic Flash 
Interface

The goal of a generic flash interface design is to provide a 32-bit, synchronous, memory-
mapped interface that is seen by application-specific logic as a standard RAM module. To 
implement this functionality, the interface provides data and address lines, select lines that 
choose memory or control register operation, and, ideally, an interrupt line to signal the 
completion of flash program and erase cycles.. Providing an interrupt output eliminates the 
need for application polling to determine program/erase cycle status. Table 1 provides a list of 
generic flash interface signals, and Figure 3 shows read/write timing for the generic interface.

Table  1:  Generic Flash Interface Signals

Signal Direction Description

CLK To Core System Clock—data, address, and status signal transfers 
across the interface are relative to the rising edge of this clock 

FL_SEL_N To Core Flash Select—an active-low signal that selects flash memory 
for the current operation

CR_SEL_N To Core Control Register Select—an active-low signal that selects one 
of the control/status registers for the current operation

ADDR[N:0] To Core Address Vector—an address vector whose width varies 
according to the application

DI[31:0] To Core Data Input—a 32-bit data input port for write (program/erase) 
operations 

DO[31:0] From Core Data Output—a 32-bit data output port for read operations 

WR_N To Core Write—an active-low signal that indicates the presence of valid 
data input and address data for a flash write operation
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System-Level 
Interface 
Considerations

The primary design goal of a generic flash interface is to simplify the interoperability of different 
flash families with common application-specific logic. Specifically, a generic interface design 
should mask flash device differences from the application, such as:

• Data path width

• Transfer timing

• Transfer handshaking

• Polling algorithms 

Due to the wide range of sector sizes supported by different flash families, complete device 
masking is normally not possible. (Also, a flash device may support more than one sector size.) 
Therefore, system-level logic may need to accommodate different flash device sector sizes. 

System-Level Software Interfaces
Software interfaces have been developed to help integrate flash memory at the system level. 
Two common flash software protocols are:

• Flash Translation Layer (FTL) — FTL is designed for flash disk-replacement 
applications. It specifies an interface that makes linear flash memory appear as a disk 
drive to the system application. FTL was defined as part of the PCMCIA-promulgated PC 
Card Standard

• Common Flash Interface (CFI) — CFI is a specification that describes how system 
software and device programmers can query flash memory devices—for example, to 
determine flash device characteristics

RD_N To Core Read—an active-low signal that indicates the presence of 
valid address data for a flash read operation.

INT_N From Core Interrupt—an active-low signal that indicates the completion of 
a flash operation

RDY_N From Core Ready—an active-low signal that indicates the flash core has 
accepted write data, or has presented valid read data on the 
DO port

Figure 3:  Generic Flash Interface Read/Write Timing

Table  1:  Generic Flash Interface Signals (Continued)
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Also, flash device manufacturers provide subroutine libraries of abstract functions to perform 
flash device operations, such as memory block erasure and device status polling.

Flash Core 
Interface 
Examples

This section provides examples of generic flash interface designs for both NOR and NAND 
flash memory cores.

NOR Flash Interface Example
This example summarizes the logic necessary to implement a generic flash interface for a NOR 
flash device. The device family selected for this example is the AMD Am29Fxxx family (see 
Table 1). This flash family includes flash devices with densities from 1 to 32 Mb, access times 
as low as 45 ns, and a guaranteed erase-cycles-per-sector specification of 1 million cycles. 
Figure 4 is a block diagram of the largest member of the family, the Am29F032B (for a data 
sheet, see the AMD website at http://www.amd.com/).

Figure 4:  Am29F032B Block Diagram
(Figure Courtesy Advanced Micro Devices)
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The Am29Fxxx flash family features a straightforward asynchronous, non-multiplexed interface, 
originally designed to allow flash device use in existing EPROM designs. Table 2 lists the 
signals, and Figure 5 the read protocol and timing, for this device family. 

NOR Flash Interface Implementation

Implementing an interface for a Am29Fxxx NOR device is relatively simple. It requires a non-
multiplexed, memory-mapped interface to perform the following functions:

• Generation of read/write timing

• Byte/word multiplexing and demultiplexing

• Status polling for devices without a RY/BY_N signal

Figure 6 illustrates the blocks for implementing a NOR flash interface. Application signals are 
on the left, and flash device signals are on the right.  Most of the complexity is in the control 
logic. The control logic block accesses the address and read data paths to support automatic 
polling (to sense the completion of erase and program operations). Data path functions are 

Table  2:  Am29Fxxx Device Signal Summary

Signal Direction Description

A[N:0] To Flash Address bus

DQ[7:0] To/From 
Flash

Data bus—used to transfer write and read data to and from the 
flash

CE_N To Flash Chip Enable—an active-low signal that enables the device

WE_N To Flash Write Enable—write data is latched on the rising edge of this 
strobe

OE_N To Flash Output enable—an active-low enable for device output buffers

RESET_
N

To Flash Reset—an active-low signal that resets device state machines. 

RY/BY_N From Flash Ready/Busy—an open-drain output that is pulled low when a 
program, erase or read operation is in progress. 

Figure 5:  Am29Fxxx Read Protocol and Timing
(Figure Courtesy Advanced Micro Devices)
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performed by the multiplexer and registers block, which convert the data bus width from 8 to 32 
bits.

NAND Flash Interface Example
This example describes the logic necessary to implement a generic flash interface for the 
popular Samsung K9F6408U0M (8M x 8-bit) NAND device (a pin-for-pin compatible device is 

Figure 6:  NOR Flash Interface Block Diagram
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available from Toshiba). Figure 7 shows the block diagram for this device (for a data sheet, see 
the Samsung website at http://www.samsung.com/).

There are several key NAND flash technology characteristics that affect interface design. 
These include:

• Block-transfer architecture

• Access latency

• Memory errors

Block Transfer Architecture
NAND devices only support block-read and block-write operations. This block-transfer 
orientation is reflected in a narrow, highly-multiplexed device architecture. Specifically, the 
K9F6408U0M employs an eight-bit port, which serves both as an address and data bus. This 
block-transfer architecture complicates the task of interfacing NAND devices to the generic 
flash interface, which must provide the host processor with random access to flash memory. 
Table 3 lists the signals, and Figure 8 the read protocol and timing, for the K9F6408U0M 
device.

Figure 7:  K9F6408U0M Block Diagram
(Figure Courtesy Samsung Semiconductor)

Table  3:  K9F6408U0M Device Signal Summary
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Access Latency

NAND flash devices exhibit significant read-access latency. NAND read-access latency is 
depicted as tR in Figure 8 (maximum worst-case tR for the K9F6408U0M is 7 us). Although 
AMD UltraNAND devices have a gapless read feature that significantly reduces access time to 
sequential blocks, random access exhibits latency. Due to these latency characteristics, NAND 
devices normally are not used to directly execute program code (for example, in embedded 
code storage applications). As a work-around to latency constraints, program code can be 
copied from flash to RAM at boot time, then executed from RAM. However, since the initial boot 
code necessary to initialize system RAM and perform the flash-to-RAM copy operation must 
execute directly from the flash device, this is only a partial solution.

Memory Errors

Even though a narrow block-transfer oriented NAND interface requires additional logic glue, a 
more challenging system-level interface issue is data integrity. There are two NAND data-
integrity considerations: 1) devices may ship with invalid memory blocks, and 2) additional 
memory blocks may fail during device operation. The next sections describes software invalid-
block mapping and error-correction-code (ECC) strategies that help ensure NAND data 
integrity.

SE_N To Flash Spare area Enable—an active-low signal that enables 16 bytes of spare 
memory on each page

WP_N To Flash Write Protect—an active-low signal that disables device writes when 
asserted

R/B_N From Flash Ready/Busy—an open-drain output that is pulled low when a 
program, erase, or read operation is in progress

Figure 8:  K9F6408U0M Read Protocoland Timing
(Figure Courtesy Samsung Semiconductor)
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Bad-Block Mapping

The number of valid blocks that a flash device contains when shipped is specified by its NVB 
data sheet parameter. This value varies from device to device—the K9F6408U0M ships with 
standard minimum, maximum and typical values specified at 1,014, 1,024, and 1,020, 
respectively. The first block of a flash memory array is guaranteed be valid , but the remaining 
memory blocks may contain errors. Invalid blocks are marked at the factory with a “0” value 
stored at location 0 of the first or second page of the bad block (8K blocks are organized into 16 
pages, with each page holding 512 bytes—each page also provides a spare 16 bytes). To avoid 
writing to and reading from bad memory blocks, system software must create a map of invalid 
memory blocks. If the application code executes from RAM rather than flash memory, system 
software bad-block mapping is only necessary at boot time and during flash storage updates. 
Further, since the first memory block is guaranteed to be valid, the first 8 kB of flash memory 
can safely be used for system bootstrapping functions. 

Error Checking and Correction (ECC)

NAND devices are subject to data failures that occur during device operation. To ensure data 
read/write integrity, system error-checking and correction (ECC) algorithms must be 
implemented. Samsung suggests using a Hamming code to implement these functions. NAND 
devices provide 16 bytes of spare memory in each 512-byte memory page, which can be used 
to store ECC codes. 

Note: Invalid block-mapping, as described above, is used together with ECC techniques. Since 
operational failures often involve just one invalid bit per block, which can be corrected with ECC 
algorithms, it is normally not necessary to map out an entire block of memory to correct memory bit-
failures (see the description of ECC logic, below, for a website link to ECC algorithm information).

NAND Flash Interface Implementation

Figure9 illustrates the functional blocks necessary to implement a NAND flash controller 
interface. Application signals are on the left, and flash device signals are on the right.  This 
design can be used for both Samsung and Toshiba NAND devices as well as AMD UltraNAND 
devices. This NAND flash interface implements the following functions (the same as those 
listed for the NOR flash interface, above):

• Generation of read/write timing

• Byte/word multiplexing and demultiplexing

• Status polling for devices without a RY/BY_N signal

It also implements the following NAND-specific interface functions:

- ECC functions

- A two-page cache
10 www.xilinx.com WP143 (v1.0) May 8, 2001
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The cache is necessary to buffer pages to perform ECC functions. It also improves system 
performance by reducing multiple-read operations and by decoupling the timing between 
application logic and the NAND device.

The three key NAND flash interface blocks are 1) block RAM memory used for storage, 2) ECC 
logic, and 3) control logic.

Page Caching Memory

The interface implements a two-entry page cache with storage implemented by four 
RAMB4_S8 Block RAM macros. The memory is connected in a 32-bit wide, 256-word deep 
configuration, which provides the bandwidth necessary for data storage access during read 
and write cycles. Two address registers with comparators are used to check for cache hits 
during interface read/write cycles. 

For read operations, the cache is transparent to system software. However, due to the coarse, 
8 KB erase granularity of the NAND device, write transparency is not achievable (read-modify-
write techniques do not work). This means that write operations must be managed by system 
software. The software must write to a control logic register to initiate a block-write operation, 
then use page memory as a write buffer for the block write operation.

Figure 9:  NAND FLASH INTERFACE Block Diagram
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ECC Logic

The ECC logic implements double-bit error detection and single-bit error correction using a 
Hamming code that generates a three-byte check field for each 256-byte data segment (six 
code bytes per page).  This coding scheme is described by Samsung in their application 
literature, available at http://www.samsung.com/. The ECC block compares stored ECC 
write-data codes to ECC read-data codes. If a correctable bit error is found, the ECC generates 
the corrected data. 

The ECC block has the following data ports: 

• Data In — A byte-wide input port, which receives incoming and outgoing memory data

• ECC Data — A byte-wide output port, which produces the ECC code at the end of a page 
transfer. ECC values are appended to the transfer during write cycles

• Correction Vector — A 32-bit vector that flags an invalid bit. This vector is XORed with 
the invalid data word during memory-scrub operations

• Correction Address — A six-bit vector that identifies the address of the cache word with 
the bit error

Control Logic

The Control Logic consists of several small state machines. It is responsible for sequencing 
interface signals and managing the cache and ECC logic.

Conclusion The interface implementations presented in this application note meet the design criteria 
required for generic flash memory interfaces. They adapt to design reuse requirements, off-
load flash memory interface chores from application logic and software, and allow device 
targeting late in the manufacturing cycle. They provide additional system-level benefits as well: 
the NOR interface implementation handles erase and program-completion polling, while the 
NAND interface implementation provides ECC and cache capabilities.
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