
Introduction This white paper shows how a generic flash memory interface can be combined with Xilinx IP
interface cores to add flash memory to Xilinx Spartan device designs. The flexible Xilinx
programmable solutions presented here address three issues of primary importance in a flash
memory interface design:

• Design Reuse — A solution must accommodate design changes made to increase
performance and meet different memory density requirements.

• Performance — A solution should maximize system-level performance by providing
automatic status polling, write buffering, and other system-friendly features.

• Device Availability — Flash memory devices are popular choices for product design, and
device demand often outpaces supply. The flash memory interface solution should allow
designers to choose among different flash memory devices late in the product
development cycle.....

Figure 1 shows a block diagram overview of the architecture of a generic flash memory
interface. Application-specific logic connects to flash memory through a generic flash interface.
Note that application logic, the generic flash interface, and flash interface cores are
implemented on a single Xilinx Spartan-II device. Since the generic interface supports multiple
flash memory devices, the designer can place footprints for more than one flash family device
on the printed-circuit board.

The following sections provide an overview of the flash memory market and flash technologies,
describe a generic flash interface, then illustrate the implemenation of the interface for the two
prevailing flash memory technologies.

The Flash
Memory Market

Demand for flash memory has grown rapidly, driven by the manufacture of a wide range of
portable and embedded products with increased storage requirements. The most notable of
the application areas that employ flash memory storage are:

• Bulk Data Storage — Flash memory replaces bulk storage media, such as hard disks.
Typical applications include PCMCIA flash-storage cards, MP3 players, and digital voice
recorders. Key application requirements are high density (>1 MB), low cost per byte, and
tolerance for storage errors

• Embedded Code Storage — Flash memory stores program code for an embedded
processor, such as a high-end 32-bit, RISC CPU used in a router or a DSP used in a
cellular phone. Key application requirements are modest (<1 MB) memory density, high
performance, and error-free storage

White Paper: Spartan-II

WP143 (v1.0) May 8, 2001

Xilinx Generic Flash Memory Interface
Solutions

R

Figure 1: Generic Flash Interface Architecture

Application
Logic

FLASH
Interface

Cores

FLASH
Device

FootprintsGeneric
FLASH

Interface

WP143_01_042101

Spartan
WP143 (v1.0) May 8, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Xilinx Generic Flash Memory Interface Solutions
R

Flash
Technology
Background

There are two primary flash technologies — NOR and NAND technologies — whose names
are derived from the type of semiconductor logic used to implement flash memory structures.
Figure 2 illustrates the structures used in each flash technology type.

NOR vs. NAND Technology
Each flash memory technology is designed to match the basic requirements of the two primary
flash application areas: NOR technology finds frequent use in embedded core applications
while NAND flash memory is commonly used to replace bulk storage.

• NOR technology is featured in Intel and AMD flash memory devices. It features high-
speed, random access to bit storage and low error rates, but offers less density than
NAND flash technology. It has high endurance—that is, it can reliably support up to one
million program/erase cycles without requiring error correction

• NAND technology ties a string of 16 or 32 single-bit-storage transistors together. This
structure reduces the number of memory array contacts and allows greater density. The
trade-offs involved with implementing this structure are 1) data cells must accessed
sequentially, and 2) read and write errors are more prevalent. As a result, NAND devices
require error correction

Flash Device
Families

Manufacturers produce several flash device families, each targeted at different application
areas. Table 1 lists several popular flash device families and their characteristics.

TABLE 1 – FLASH DEVICE FAMILIES (NEED INPUT FOR THIS TABLE--WAS NOT ABLE
TO CONVERT--NOT IN WORD FILE

AMD Am29Fxxx
This NOR device family led the migration path to flash memory by featuring EPROM pin
compatibility. Limitations include lack of support for 3.3V (or lower) operation, 32 Mb maximum
density, and a relatively high cost per bit. The Am29BDS643D is a recent AMD family member
that targets cell phones and other low-power, embedded applications. It includes the latest

Figure 2: NOR and NAND Flash Memory Structures

Bit Line

NOR NAND

Bit Line

WP143_02_042101

Common Source
2 www.xilinx.com WP143 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

flash industry features, including dual banks for simultaneous red/write support and burst-mode
operation

Intel StrataFlash
The NOR devices in the Intel StrataFlash family employ four levels of charge storage, which
allows each transistor to store two data bits. This design gives the StrataFlash family the lowest
cost per bit among NOR flash families

Micron SyncFlash
This recently-introduced, high-performance NOR device family is designed to plug into existing
synchronous DRAM interfaces. It does not require a flash interface

Samsung/Toshiba NAND
These NAND devices feature a low cost per bit, making them ideal for use in hard disk
replacement and Internet audio player applications. They lack random read/write capability,
and like other NAND devices, require system-level error checking and correction code (ECC)

AMD UltraNAND
The UltraNAND family represents AMD’s first entry in the NAND flash market. UltraNAND
devices are pin and command-set compatible with standard NAND devices, and specify a
100,000 program/erase cycle capability without error correction

Generic Flash
Interface

The goal of a generic flash interface design is to provide a 32-bit, synchronous, memory-
mapped interface that is seen by application-specific logic as a standard RAM module. To
implement this functionality, the interface provides data and address lines, select lines that
choose memory or control register operation, and, ideally, an interrupt line to signal the
completion of flash program and erase cycles.. Providing an interrupt output eliminates the
need for application polling to determine program/erase cycle status. Table 1 provides a list of
generic flash interface signals, and Figure 3 shows read/write timing for the generic interface.

Table 1: Generic Flash Interface Signals

Signal Direction Description

CLK To Core System Clock—data, address, and status signal transfers
across the interface are relative to the rising edge of this clock

FL_SEL_N To Core Flash Select—an active-low signal that selects flash memory
for the current operation

CR_SEL_N To Core Control Register Select—an active-low signal that selects one
of the control/status registers for the current operation

ADDR[N:0] To Core Address Vector—an address vector whose width varies
according to the application

DI[31:0] To Core Data Input—a 32-bit data input port for write (program/erase)
operations

DO[31:0] From Core Data Output—a 32-bit data output port for read operations

WR_N To Core Write—an active-low signal that indicates the presence of valid
data input and address data for a flash write operation
WP143 (v1.0) May 8, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

System-Level
Interface
Considerations

The primary design goal of a generic flash interface is to simplify the interoperability of different
flash families with common application-specific logic. Specifically, a generic interface design
should mask flash device differences from the application, such as:

• Data path width

• Transfer timing

• Transfer handshaking

• Polling algorithms

Due to the wide range of sector sizes supported by different flash families, complete device
masking is normally not possible. (Also, a flash device may support more than one sector size.)
Therefore, system-level logic may need to accommodate different flash device sector sizes.

System-Level Software Interfaces
Software interfaces have been developed to help integrate flash memory at the system level.
Two common flash software protocols are:

• Flash Translation Layer (FTL) — FTL is designed for flash disk-replacement
applications. It specifies an interface that makes linear flash memory appear as a disk
drive to the system application. FTL was defined as part of the PCMCIA-promulgated PC
Card Standard

• Common Flash Interface (CFI) — CFI is a specification that describes how system
software and device programmers can query flash memory devices—for example, to
determine flash device characteristics

RD_N To Core Read—an active-low signal that indicates the presence of
valid address data for a flash read operation.

INT_N From Core Interrupt—an active-low signal that indicates the completion of
a flash operation

RDY_N From Core Ready—an active-low signal that indicates the flash core has
accepted write data, or has presented valid read data on the
DO port

Figure 3: Generic Flash Interface Read/Write Timing

Table 1: Generic Flash Interface Signals (Continued)

Signal Direction Description

T1

CLK

FL_SEL_N

CR_SEL_N

WR_N

RD_N

RDY_N

WP143_03_042101

ADDR[N:0]

D[31:0]

DO[31:0]

T2 T3 T4 T5 T6 T7 T8 T9
4 www.xilinx.com WP143 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

Also, flash device manufacturers provide subroutine libraries of abstract functions to perform
flash device operations, such as memory block erasure and device status polling.

Flash Core
Interface
Examples

This section provides examples of generic flash interface designs for both NOR and NAND
flash memory cores.

NOR Flash Interface Example
This example summarizes the logic necessary to implement a generic flash interface for a NOR
flash device. The device family selected for this example is the AMD Am29Fxxx family (see
Table 1). This flash family includes flash devices with densities from 1 to 32 Mb, access times
as low as 45 ns, and a guaranteed erase-cycles-per-sector specification of 1 million cycles.
Figure 4 is a block diagram of the largest member of the family, the Am29F032B (for a data
sheet, see the AMD website at http://www.amd.com/).

Figure 4: Am29F032B Block Diagram
(Figure Courtesy Advanced Micro Devices)

Input/Output
Buffers

X-Decoder

Y-Decoder

Chip Enable
Output Enable

Erase Voltage
Generator

PGM Voltage
Generator

TimerVCC Detector

State
Control

Command
Register

VCC

VSS

WE#

CE#
OE#

STB

STB

DQ0–DQ7

Sector Switches

RY/BY#

RESET#

Data
Latch

Y-Gating

Cell Matrix

A
dd

re
ss

 L
at

ch

A0–A21
WP143 (v1.0) May 8, 2001 www.xilinx.com 5
1-800-255-7778

http://www.amd.com/
http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

The Am29Fxxx flash family features a straightforward asynchronous, non-multiplexed interface,
originally designed to allow flash device use in existing EPROM designs. Table 2 lists the
signals, and Figure 5 the read protocol and timing, for this device family.

NOR Flash Interface Implementation

Implementing an interface for a Am29Fxxx NOR device is relatively simple. It requires a non-
multiplexed, memory-mapped interface to perform the following functions:

• Generation of read/write timing

• Byte/word multiplexing and demultiplexing

• Status polling for devices without a RY/BY_N signal

Figure 6 illustrates the blocks for implementing a NOR flash interface. Application signals are
on the left, and flash device signals are on the right. Most of the complexity is in the control
logic. The control logic block accesses the address and read data paths to support automatic
polling (to sense the completion of erase and program operations). Data path functions are

Table 2: Am29Fxxx Device Signal Summary

Signal Direction Description

A[N:0] To Flash Address bus

DQ[7:0] To/From
Flash

Data bus—used to transfer write and read data to and from the
flash

CE_N To Flash Chip Enable—an active-low signal that enables the device

WE_N To Flash Write Enable—write data is latched on the rising edge of this
strobe

OE_N To Flash Output enable—an active-low enable for device output buffers

RESET_
N

To Flash Reset—an active-low signal that resets device state machines.

RY/BY_N From Flash Ready/Busy—an open-drain output that is pulled low when a
program, erase or read operation is in progress.

Figure 5: Am29Fxxx Read Protocol and Timing
(Figure Courtesy Advanced Micro Devices)

tCE

Outputs

WE#

Addresses

CE#

OE#

HIGH Z
Output Valid

HIGH Z

Addresses Stable

tRC

tACC

tOEH

tOE

RESET#

tDF

tOH
6 www.xilinx.com WP143 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

performed by the multiplexer and registers block, which convert the data bus width from 8 to 32
bits.

NAND Flash Interface Example
This example describes the logic necessary to implement a generic flash interface for the
popular Samsung K9F6408U0M (8M x 8-bit) NAND device (a pin-for-pin compatible device is

Figure 6: NOR Flash Interface Block Diagram

CLK
FL_SEL_N
CR_SEL_N
WR_N
RD_N
INT_N
RDY_N

Q D

D [31:24]

A[N:0]

DQ[7:0]

DO[31:0]

DI[31:0]

ADDR[N:0]

D

D

Control

Registers

CE_N
WE_N
OE_N

RESET_N
RDY/BSY_N

WP143_06_042101

D [23:16]

D [15:8]

D [7:0]
WP143 (v1.0) May 8, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

available from Toshiba). Figure 7 shows the block diagram for this device (for a data sheet, see
the Samsung website at http://www.samsung.com/).

There are several key NAND flash technology characteristics that affect interface design.
These include:

• Block-transfer architecture

• Access latency

• Memory errors

Block Transfer Architecture
NAND devices only support block-read and block-write operations. This block-transfer
orientation is reflected in a narrow, highly-multiplexed device architecture. Specifically, the
K9F6408U0M employs an eight-bit port, which serves both as an address and data bus. This
block-transfer architecture complicates the task of interfacing NAND devices to the generic
flash interface, which must provide the host processor with random access to flash memory.
Table 3 lists the signals, and Figure 8 the read protocol and timing, for the K9F6408U0M
device.

Figure 7: K9F6408U0M Block Diagram
(Figure Courtesy Samsung Semiconductor)

Table 3: K9F6408U0M Device Signal Summary

Signal Direction Description

CLE To Flash Command Latch Enable—an active-high command latch enable signal

ALE To Flash Address Latch Enable—active-high address latch enable signal

IO[7:0] To/From
Flash

Input/Output bus—used to transfer commands, addresses, and
write data to the flash, and to transfer read data from the flash

WE_N To Flash Write Enable—write data is latched on the rising edge of this
strobe

RE_N To Flash Read enable—an active-low enable for the device data output buffers.
Assertion of RE_N also increments the column address counter

X-Buffers

Y-Gating

64M + 2M Bit

Command

2nd half Page Register & S/A

NAND Flash
ARRAY

(512 + 16)Byte x 16384

Y-Gating

1st half Page Register & S/A

I/O Buffers & Latches

Latches
& Decoders

Y-Buffers
Latches
& Decoders

Register

Control Logic
& High Voltage

Generator Global Buffers Output
Driver

A9 - A22

A0 - A7

Command

CE
RE
WE

CLE ALE WP

I/0 0

I/0 7

VCCQ
VSS

A8
8 www.xilinx.com WP143 (v1.0) May 8, 2001
1-800-255-7778

http://www.samsung.com/
http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

Access Latency

NAND flash devices exhibit significant read-access latency. NAND read-access latency is
depicted as tR in Figure 8 (maximum worst-case tR for the K9F6408U0M is 7 us). Although
AMD UltraNAND devices have a gapless read feature that significantly reduces access time to
sequential blocks, random access exhibits latency. Due to these latency characteristics, NAND
devices normally are not used to directly execute program code (for example, in embedded
code storage applications). As a work-around to latency constraints, program code can be
copied from flash to RAM at boot time, then executed from RAM. However, since the initial boot
code necessary to initialize system RAM and perform the flash-to-RAM copy operation must
execute directly from the flash device, this is only a partial solution.

Memory Errors

Even though a narrow block-transfer oriented NAND interface requires additional logic glue, a
more challenging system-level interface issue is data integrity. There are two NAND data-
integrity considerations: 1) devices may ship with invalid memory blocks, and 2) additional
memory blocks may fail during device operation. The next sections describes software invalid-
block mapping and error-correction-code (ECC) strategies that help ensure NAND data
integrity.

SE_N To Flash Spare area Enable—an active-low signal that enables 16 bytes of spare
memory on each page

WP_N To Flash Write Protect—an active-low signal that disables device writes when
asserted

R/B_N From Flash Ready/Busy—an open-drain output that is pulled low when a
program, erase, or read operation is in progress

Figure 8: K9F6408U0M Read Protocoland Timing
(Figure Courtesy Samsung Semiconductor)

Table 3: K9F6408U0M Device Signal Summary (Continued)

Signal Direction Description

CE

CLE

R/B

I/O0 ~ 7

WE

ALE

RE

Busy

00h or 01h A0 ~ A7 A9 ~ A16 A17 ~ A22 Dout N Dout N+1 Dout N+2 Dout N+3 Dout 527

Column
Address

Page(Row)
Address

tWB

tAR2

tR tRC
tRHZ

tRR

tCHZ

tCEH

tRB

tCRY

tWC

≈
≈

≈

WP143 (v1.0) May 8, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

Bad-Block Mapping

The number of valid blocks that a flash device contains when shipped is specified by its NVB
data sheet parameter. This value varies from device to device—the K9F6408U0M ships with
standard minimum, maximum and typical values specified at 1,014, 1,024, and 1,020,
respectively. The first block of a flash memory array is guaranteed be valid , but the remaining
memory blocks may contain errors. Invalid blocks are marked at the factory with a “0” value
stored at location 0 of the first or second page of the bad block (8K blocks are organized into 16
pages, with each page holding 512 bytes—each page also provides a spare 16 bytes). To avoid
writing to and reading from bad memory blocks, system software must create a map of invalid
memory blocks. If the application code executes from RAM rather than flash memory, system
software bad-block mapping is only necessary at boot time and during flash storage updates.
Further, since the first memory block is guaranteed to be valid, the first 8 kB of flash memory
can safely be used for system bootstrapping functions.

Error Checking and Correction (ECC)

NAND devices are subject to data failures that occur during device operation. To ensure data
read/write integrity, system error-checking and correction (ECC) algorithms must be
implemented. Samsung suggests using a Hamming code to implement these functions. NAND
devices provide 16 bytes of spare memory in each 512-byte memory page, which can be used
to store ECC codes.

Note: Invalid block-mapping, as described above, is used together with ECC techniques. Since
operational failures often involve just one invalid bit per block, which can be corrected with ECC
algorithms, it is normally not necessary to map out an entire block of memory to correct memory bit-
failures (see the description of ECC logic, below, for a website link to ECC algorithm information).

NAND Flash Interface Implementation

Figure9 illustrates the functional blocks necessary to implement a NAND flash controller
interface. Application signals are on the left, and flash device signals are on the right. This
design can be used for both Samsung and Toshiba NAND devices as well as AMD UltraNAND
devices. This NAND flash interface implements the following functions (the same as those
listed for the NOR flash interface, above):

• Generation of read/write timing

• Byte/word multiplexing and demultiplexing

• Status polling for devices without a RY/BY_N signal

It also implements the following NAND-specific interface functions:

- ECC functions

- A two-page cache
10 www.xilinx.com WP143 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

The cache is necessary to buffer pages to perform ECC functions. It also improves system
performance by reducing multiple-read operations and by decoupling the timing between
application logic and the NAND device.

The three key NAND flash interface blocks are 1) block RAM memory used for storage, 2) ECC
logic, and 3) control logic.

Page Caching Memory

The interface implements a two-entry page cache with storage implemented by four
RAMB4_S8 Block RAM macros. The memory is connected in a 32-bit wide, 256-word deep
configuration, which provides the bandwidth necessary for data storage access during read
and write cycles. Two address registers with comparators are used to check for cache hits
during interface read/write cycles.

For read operations, the cache is transparent to system software. However, due to the coarse,
8 KB erase granularity of the NAND device, write transparency is not achievable (read-modify-
write techniques do not work). This means that write operations must be managed by system
software. The software must write to a control logic register to initiate a block-write operation,
then use page memory as a write buffer for the block write operation.

Figure 9: NAND FLASH INTERFACE Block Diagram

WE
EN
RST
 CLK
ADDR[7:0]
DI[7:0]

DO[7:0]
WE
EN
RST
 CLK
ADDR[7:0]
DI[7:0]

DO[7:0]
WE
EN
RST
 CLK
ADDR[7:0]
DI[7:0]

DO[7:0]

MEM_ADDR[7:6]
MEM_ADDR[5:0]
ADDR[22:0]

CLK
FL_SEL_N
CR_SEL_N
WR_N
RD_N
INT_N
RDY_N

ECC[7:0]

VEC1[31:0]

ADDR[31:0]
DI[7:0]

Q D

QD

HIT2Reg.

D [31:24]

I/O[7:0]

ADDR[16:9]

ADDR[22:17]

D

D

Control

4 x RAMB4_S8

Registers

ECC

CMD[7:0]
CLE
ALE

WE_N
RE_N
SE_N
WP_N

RDY/BSY_N

WE
EN
RST
 CLK
ADDR[7:0]
DI[7:0]

ADDR[22:0]
ADDR[7:2]

ADDR[22:9]

ADDR[22:9]

DI[31:0]

DO[31:0]

DO[7:0]

WP143_09_042101

D [23:16]

D [15:8]

D [7:0]

ADDR[22:9]

QD

HIT1Reg.
ADDR[22:9]

ADDR[22:9]
WP143 (v1.0) May 8, 2001 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Xilinx Generic Flash Memory Interface Solutions
R

ECC Logic

The ECC logic implements double-bit error detection and single-bit error correction using a
Hamming code that generates a three-byte check field for each 256-byte data segment (six
code bytes per page). This coding scheme is described by Samsung in their application
literature, available at http://www.samsung.com/. The ECC block compares stored ECC
write-data codes to ECC read-data codes. If a correctable bit error is found, the ECC generates
the corrected data.

The ECC block has the following data ports:

• Data In — A byte-wide input port, which receives incoming and outgoing memory data

• ECC Data — A byte-wide output port, which produces the ECC code at the end of a page
transfer. ECC values are appended to the transfer during write cycles

• Correction Vector — A 32-bit vector that flags an invalid bit. This vector is XORed with
the invalid data word during memory-scrub operations

• Correction Address — A six-bit vector that identifies the address of the cache word with
the bit error

Control Logic

The Control Logic consists of several small state machines. It is responsible for sequencing
interface signals and managing the cache and ECC logic.

Conclusion The interface implementations presented in this application note meet the design criteria
required for generic flash memory interfaces. They adapt to design reuse requirements, off-
load flash memory interface chores from application logic and software, and allow device
targeting late in the manufacturing cycle. They provide additional system-level benefits as well:
the NOR interface implementation handles erase and program-completion polling, while the
NAND interface implementation provides ECC and cache capabilities.

References 1. Xilinx Spartan-II FPGA data sheet, January 2000, Xilinx

2. Am29F032B 32 Megabit Uniform Sector Flash Memory data sheet, November 1999,
Advanced Micro Devices

3. K9F6408U0M 8M x 8 Bit NAND Flash Memory data sheet, September 1999, Samsung
Semiconductor

Revision
History

The following table shows the revision history for this document.

Date Version Revision

05/08/01 1.0 Initial Xilinx release.
12 www.xilinx.com WP143 (v1.0) May 8, 2001
1-800-255-7778

http://www.samsung.com/
http://www.xilinx.com

	Introduction
	The Flash Memory Market
	Flash Technology Background
	NOR vs. NAND Technology

	Flash Device Families
	AMD Am29Fxxx
	Intel StrataFlash
	Micron SyncFlash
	Samsung/Toshiba NAND
	AMD UltraNAND

	Generic Flash Interface
	System-Level Interface Considerations
	System-Level Software Interfaces

	Flash Core Interface Examples
	NOR Flash Interface Example
	NOR Flash Interface Implementation

	NAND Flash Interface Example
	Block Transfer Architecture
	Access Latency
	Memory Errors
	Bad-Block Mapping
	Error Checking and Correction (ECC)

	NAND Flash Interface Implementation
	Page Caching Memory
	ECC Logic
	Control Logic

	Conclusion
	References
	Revision History

