
This document provides a brief description of the
Xilinx bitstream compression algorithm based on the
LZ77 scheme. FPGA configuration files can be
compressed by Xilinx-developed software to reduce
memory storage requirements. Compressed
configuration files can be stored in a high-density
System ACE™ MPM FPGA configuration controller.
The System ACE MPM controller decompresses the
files and shifts the original configuration data to the
target FPGAs.

White Paper: Configuration Solutions

WP152 (v1.0) September 25, 2001

Xilinx FPGA Configuration
Data Compression and Decompression

By: Arthur Khu

R

WP152 (v1.0) September 25, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

White Paper: Xilinx FPGA Configuration Data Compression and Decompression
R

Overview of
LZ77

LZ77 is a dictionary-based text compression scheme developed by Abraham Lempel
and Jacob Ziv in 1977. The scheme works by defining a fixed-size dictionary to hold
bytes from an input source (e.g., a file), and then referring to the dictionary when
compressing the remainder of the input source to find existing patterns. If a pattern in
the input source is already in the dictionary, this pattern is replaced with a reference to
the position in the dictionary and the length of the pattern.

As compression progresses, the dictionary is updated by shifting in more bytes from
the input source, subsequently forcing earlier entries out. The dictionary is sometimes
referred to as a sliding window because it contains a constantly updated snapshot of
the input stream.

Decompression is the inverse of the compression process. The same fixed-size
dictionary (or sliding window) is used to hold uncompressed data. When a reference
to the dictionary is encountered, the decompressor simply copies the specified
number of bytes from the dictionary, shifts these bytes into the same dictionary, and
then continues processing the rest of the compressed data stream.

Compression
Example

Assume a 20-byte dictionary/sliding window and an 8-byte look-ahead window
implemented as First-In-First-Out (FIFO) data structures.

Sliding Window | Look-Ahead Window
AABBAAAEAAAEEFFFAAAG | AEAAACEE

 1111111111
01234567890123456789 01234567 Ä sliding window position

The sliding window is loaded with the first 20 bytes from the input source, with
symbol or data byte A in window position 0 and symbol G in window position 19. The
remainder of the input file consists of bytes starting with AEAAACEE which are
loaded into the look-ahead window.

Search for a sequence in the sliding window that begins with the byte in look-ahead
position 0 ("A"). Such a sequence of five bytes starts at sliding window index 6
("AEAAA")

These five bytes can be replaced by an (Offset,Length) record as shown below:
ABBAAAEAAAEEFFFAAAG (6,5)

The Sliding window is then shifted over five bytes:
Sliding window | Look-Ahead window

AAEAAAEEFFFAAAGAEAAA | CEGHHHHE Ä shift in 5 new bytes
 1111111111

01234567890123456789 01234567 Ä Window position

Five bytes from the look-ahead window are moved into the sliding window, and five
new bytes from the input source are shifted into the look-ahead sliding window.
2 www.xilinx.com WP152 (v1.0) September 25, 2001
1-800-255-7778

http://www.xilinx.com

White Paper: Xilinx FPGA Configuration Data Compression and Decompression
R

Decompression
Example

Decompressing an LZ77 compressed data stream requires the same size fixed-size
buffer for a sliding window; a look-ahead window is not required. To decompress the
compressed data sequence:

AABBAAAEAAAEEFFFAAAG (6,5)

First shift uncompressed data into the sliding window FIFO:
Sliding window

 AABBAAAEAAAEEFFFAAAG Ä (Offset,Length) record = (6,5)
 1111111111
 01234567890123456789 Ä Window position

When an (offset,length) record is detected, the decompressor points to the position
specified by the offset, and begins copying the specified number of symbols/bytes
and shifts these into the same sliding window FIFO. Bytes that shift out of the FIFO are
the uncompressed data bytes.

Step 1:
Sliding window

 AABBAAAEAAAEEFFFAAAG Ä next data is (Offset,Length) record (6,5)
 1111111111
 01234567890123456789 Ä Window position

Step 2:
Sliding window

A ABBAAAEAAAEEFFFAAAGA Ä Copy/shift byte 1 (A) into FIFO
 1111111111
 01234567890123456789 Ä Window position

Step 3:
Sliding window

AA BBAAAEAAAEEFFFAAAGAE Ä Copy/shift byte 2 (E) into FIFO
 1111111111
 01234567890123456789 Ä Window position

Step 4:
Sliding window

AAB BAAAEAAAEEFFFAAAGAEA Ä Copy/shift byte 3 (A) into FIFO
 1111111111
 01234567890123456789 Ä Window position

Step 5:
Sliding window

AABB AAAEAAAEEFFFAAAGAEAA Ä Copy/shift byte 4 (A) into FIFO
 1111111111
 01234567890123456789 Ä Window position

Step 6:
Sliding window

AABBA AAEAAAEEFFFAAAGAEAAA Ä Copy/shift byte 5 (A) into FIFO
 1111111111

01234567890123456789 Ä Window position

Uncompressed data

LZ77 belongs to a class of lossless compression methods wherein the compression and
decompression cycle results in an exact replica of the original.
WP152 (v1.0) September 25, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

White Paper: Xilinx FPGA Configuration Data Compression and Decompression
R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

09/25/01 1.0 Initial Xilinx release.
4 www.xilinx.com WP152 (v1.0) September 25, 2001
1-800-255-7778

http://www.xilinx.com

	Xilinx FPGA Configuration Data Compression and Decompression
	Overview of LZ77
	Compression Example
	Decompression Example
	Step 1:
	Step 2:
	Step 3:
	Step 4:
	Step 5:
	Step 6:

	Revision History

