
32

The internal flip-flops in Xilinx FPGA
architectures have built-in, dedicated
clock enable (CE) inputs. Appropriate use
of these clock enables avoids the need for
gating clocks, facilitating good synchro-

nous design techniques. Using these
dedicated clock enable resources also
avoids having to use the combinatorial
logic resources in the logic blocks to
implement the same functionality, poten-
tially eliminating an extra level of logic
from the design. This, in turn, can mini-
mize delays along critical paths and save
valuable logic resources.

The built-in clock enable function is
implemented using a multiplexer in front
of the flip-flop’s data input, as shown in
Figure 1. When the clock enable signal
is not asserted, the Q output of the flip-
flop is fed to the D input, holding the
flip-flop in its current state regardless of
activity on the data and clock inputs.
Implementing clock enables in this man-
ner avoids the race conditions that could
result if the clock enable line was used
to directly gate the clock input.
Implementing the same clock enable
functionality using a look-up table (LUT)
within a configurable logic block (CLB)
would consume three inputs to the LUT;
in most cases, this would add an
additional LUT to the data path to the
flip-flop as well as using additional
routing resources.

However, to take advantage of the
built-in clock enable function, users of
HDLs and logic synthesis tools need to
be very careful when coding flip-flops.
Different coding techniques can yield
significantly different circuit implementa-
tions. The choice of user options for the
synthesis compiler also can affect the
synthesis results.

Using an HDL, there are a many ways
to describe a flip-flop with a clock

HDL Synthesis
and

Built-In Clock Enables

CODING EXAMPLE 1
always @ (posedge clk or posedge rst)
begin

 if (rst)
 q <= 1’b0;

else if (clken)
q <= d;

end

CODING EXAMPLE 2
always @ (posedge clk or posedge rst)
begin

 if (rst)
q <= 1’b0;

else if (clken)
q <= d;

else
q <= q;

end

Figure 1



33

enable. The examples show four unique
ways of describing a flip-flop with an
asynchronous reset and a synchronous
clock enable. (The information presented
below also applies if the asynchronous reset
is removed from the description.) While
Verilog is used in the examples, the dis-
cussion applies to VHDL coding as well.

These different coding styles can yield
differing results, as shown in Table 1.
Furthermore, user-selected options in the
synthesis compiler also can affect the
results. For example, in the case of the
Synopsys FPGA Compiler synthesis tool,
two compilation variables affect flip-flop
implementations; these variables control
feedback paths in sequential circuits. The
variables and their default values are:

hdlin_keep_feedback “FALSE”

hdlin_keep_inv_feedback “TRUE”

The hdlin_keep_feedback variable
does not seem to affect the implementa-
tion of flip-flops for Xilinx FPGAs, but the
hdlin_keep_inv_feedback variable does
have a significant effect. (Incidentally, if
you type “help hdlin_keep_inv_feedback”
at the dc_shell prompt, it informs you that
the default value for this variable is
FALSE. This is not accurate; the default
value is TRUE. This was
changed with release 3.2b, and
has been TRUE
ever since.)

Table 1 summarizes the
results of synthesizing code
fragment examples 1-4, in terms
of whether the built-in clock
enable or a multiplexer circuit
external to the flip-flop is used

to implement the clock enable function.
The results came from using v3.3b of the
Synopsys compiler. Other logic synthesis
compilers may yield different results. If this
information cannot be obtained from the
documentation supplied with your synthe-
sis tools, than you may want to use the
HDL code examples given here to test the
operation of your synthesis tool.

CODING EXAMPLE 3
assign d_in = clken ? d : q;
always @ (posedge clk or posedge rst)
 begin

if (rst)
q <= 1’b0;

 else
q <= d_in;

 end

CODING EXAMPLE 4
assign d_in = ((clken & d) | (~clken & q));
always @ (posedge clk or posedge rst)
begin

 if (rst)
q <= 1’b0;

else
 q <= d_in;

Table 1: Synthesis Results Using Synopys FPGA Compiler

hdlin_keep_inv_feedback register Example
variable size (1) (2) (3) (4)

False single-bit CE CE CE MUX
False multi-bit CE CE CE MUX
True single-bit CE CE CE MUX
True multi-bit CE MUX MUX MUX

CE = dedicated clock enable synthesized MUX = external multiplexer synthesized

Continued on
the next page

❝...to take advantage of the built-in clock enable

function, users of HDLs and logic sysnthesis tools need to

be very careful when coding flip-flops.❞



34

Example (4) uses an explicit multi-
plexer equation that is external to the flip-
flop code. This will always cause the
compiler to generate a flip-flop with an
external multiplexer, and will not use the
dedicated clock enable flip-flop.

WhenFALSE, the hdlin_keep_inv_feedback
variable will always cause the compiler to
generate a flip-flop with a dedicated clock
enable for examples (1-3).

When TRUE (the default), the
hdlin_keep_inv_feedback variable causes
the compiler to generate circuits that are
dependent on both the design and the
coding style, as follows:

• If the register is a single-bit entity, the
compiler will generate a flip-flop with
a dedicated clock enable when using
the coding styles of Examples (1-3).
As stated above, an external multiplexer
will be always be generated for
example (4).

• If the register is part of a multi-bit bus
(or vector), the synthesis results depend

on how the code is written.
Example (1) will generate a
set of flip-flops with dedi-
cated clock enable (CE) pins.
Examples (2) and (3) will
generate simple flip-flops
with a multiplexer driving
the D input. Basically, if you
include the “else ➠ q gets q”
clause in the code, the com-
piler interprets this (cor-
rectly) as a multiplexer, and
will generate the multiplexer
externally using feedback
from the flip-flop. If you
don’t, the compiler will use
flip-flops with dedicated
clock enables.

Which is better? That depends upon the
application. Using flip-flops with the dedi-
cated clock enables is most efficient for
highest speed and minimal area, and is

usually recommended. As noted above,
implementing an external multiplexer
requires three inputs to a look-up table to
generate the multiplexer. In an FPGA’s
fan-in limited architecture, this wastes
resources and often causes an additional
LUT delay.

However, there are occasions when
an external multiplexer is better than a
dedicated clock enable (CE) for place-
ment reasons. Flip-flops within a single
configurable logic block (CLB) share a
common dedicated CE signal. If only the
dedicated CE mechanism is used, there is
no physical way to place two flip-flops
with different clock enable signals in the
same CLB. If the design has many unique,
dedicated clock enables, placement prob-
lems may result, because once a flip-flop
with a dedicated CE is placed in a CLB,
no other flip-flop with a dedicated CE can
be placed in that same CLB, possibly
resulting in “wasted,” unusable flip-flops.
Flip-flops that do not use the dedicated
CE lines have no such restrictions. This
phenomenon is more prevalent in the
XC5200 family, with four flip-flops per
CLB, than in the XC4000 series, with
only two flip-flops per CLB.

(A similar placement problem can
occur with flip-flops having different
clock or asynchronous control signals,
since these inputs are also common to all
the flip-flops in a CLB. However, most
designs do not have enough unique
clocks or resets to make this a problem.)

In summary, using coding styles that
take advantage of the FPGA’s built-in
clock enable function usually results in
smaller, faster designs. However, place-
ment considerations may dictate the use
of clock enable logic implemented in the
CLBs look-up tables. In either case, it is
important for the designer to understand
which circuit implementation will be
produced by the synthesis compiler,
which is often a function of the user’s
coding style.◆

HDL
Synthesis
Continued from the

previous page

❝...it is important

for the designer to

understand which circuit

implementation will be

produced by the synthesis

compiler, which is often a

function of the user’s

coding style.❞


