
26 23

The XC5200 FPGA’s carry logic is
deceptively simple. While this architecture
only provides a series of multiplexers inter-
connected by dedicated carry nets, the use
of function generators to control these
multiplexers makes the XC5200 FPGA’s
carry logic extremely flexible — more
flexible, in fact, than the XC4000 carry
logic with its multiplicity of modes.

In the XC5200 architecture, one bit of a
simple adder uses two function generators
and a carry chain multiplexer, as shown in
Figure 1. However, not all of the function
generator’s capability is utilized in the basic
adder. In the input function generator, the
adder input, bi, can be any function of the
three inputs that are available. For example,
one of these inputs could be used as an
add/subtract control, inverting bi in an XOR
gate when necessary.

Similarly, the adder output can be com-
bined in any way with the two remaining
function generator inputs. In a typical
counter application, these might be used
for a multiplexer to load the counter or,
alternatively, for an AND gate to provide a
synchronous clear.

A more complex example uses this
additional capability in a carry-select adder
that trades additional logic for higher per-
formance (Figure 2). The adder is divided
into two sections. The lower half operates
normally, but in the upper half two carry
chains are used in parallel, one initialized
with a ‘0’ and the other with a ‘1.’ The carry
output of the lower half is used to select
which carry chain is used to complete the
sum. The carry propagates simultaneously
in the upper and lower halves of the adder;
thus, the settling time is reduced.

Since a single function generator can
both select the carry and complete the
sum, the incremental cost over the basic
adder is only 25%. The direct access to the
carry chain minimizes the timing overhead
associated with this technique, which is
effective even for relatively short adders.

The XC4000 Series of FPGA devices
(i.e., the XC4000E and XC4000EX families,
and their low-voltage counterparts, the
XC4000L and XC4000XL families) includes
several architectural improvements over the
highly-successful XC4000 FPGA family. One
of the most important new features is Se-
lect-RAMTM memory. Select-RAM memory
can be defined as the capability of pro-
gramming the look-up tables in
Configurable Logic Blocks (CLBs) as ROM
or as single- or dual-port RAM, with edge-
triggered (synchronous) or level-sensitive
(asynchronous) timing. Select-RAM memory
also can be initialized to a known value in
all RAM and ROM modes.

Select-RAM memory is unique in its
range of options and ability to deliver high-
speed dual-port memory. The advantages
of the Select-RAM capability include flex-
ibility, increased ease-of-use, shorter design
cycles and increased performance.

Flexibility
Clearly, the options of edge-triggered or

level-sensitive and single-port or dual-port
RAM provide a wide selection of choices
for the designer. The distributed nature of
the RAM, which is implemented in indi-
vidual CLBs, also contributes to the flexibil-
ity of Select-RAM memory. Only sufficient
CLBs to implement a given memory block
need be allocated as RAM: the memory
block size can be scaled to exactly match
the requirements of the application. Each
RAM block can be placed close to related
logic. There is no need to consume a large
block of dedicated memory to implement a
small RAM function, nor to route control
and data lines across the device to reach
such dedicated blocks. Each CLB can be
individually configured, so the designer can

“mix and match” RAM modes. Select-RAM
is the most flexible memory implementa-
tion available in an FPGA today.

Ease of Use
Traditional RAM capability, now referred

to as the level-sensitive or asynchronous
option to Select-RAM memory, has never
been simple to use. Meeting the required
timing relationships often involved careful
layout and detailed timing analysis. To
guarantee correct behavior, a 2X clock is
typically required, in order to generate the
Write Enable during the third quadrant of
the write clock cycle. This type of RAM is
the only available option in the original
XC4000 family devices.

None of these delicate timing relation-
ships need be maintained when using one
of the edge-triggered Select-RAM modes
available in XC4000-Series devices. Instead,
writing to a memory block is just like writ-
ing to a data register: set up the address
and data, enable the RAM and apply the
effective clock edge. A conceptual model
for a Select-RAM block in edge-triggered
mode is shown in the Figure 1.

The ability to initialize RAM, as well as
ROM, as part of device configuration elimi-
nates the need for logic to perform that
initialization. Reduced logic results in
smaller, simpler and more reliable designs.

All of the Select-RAM options are di-
rectly and easily implemented using any of
the schematic entry, MemGen memory
block generator tool, X-BLOXTM schematic-
based synthesis, or HDL synthesis design
environments. Detailed information on how
to use these tools to implement Select-RAM
is available in the new Xilinx application
note “Using Select-RAM Memory in XC4000
Series FPGAs.”

Designing With XC5200 Carry Logic
Simple design makes XC5200
carry logic even more flexible
than that of XC4000 Series

Figure 1:
XC5200 Carry Structure

The corresponding acceleration tech-
nique for long adders in the XC4000 archi-
tecture is the conditional-sum technique.
In the upper half of a conditional-sum
adder, two complete adders are imple-
mented with ‘0’ and ‘1’ carry inputs, and

Continued on
the next page

XC4000 Series Select-RAM Memory:

Advantages and Uses

Figure 2:
XC5200 Carry-Select Adders

24 25

additional CLBs are required to select
between the outputs of these adders ac-
cording to the carry output from the lower
half. The technique is only effective for
relatively long adders; the incremental cost
is 100%.

It is interesting to note that, in the
XC5200 architecture, the carry-select and
conditional-sum techniques cannot always

Figure 3:
4-Bit Cascade Multiplier

XC5200
Carry Logic

Continued from the previous page

be distinguished. Both sums of the condi-
tional-sum adder can be completed in the
same function generator. This function
generator can be further used to select
between them. If this is done, all the func-
tion-generator truth tables and all the inter-
connections become identical to the carry-
select adder. This should not be surprising,
however, since both techniques implement
the same uniquely defined adder function.

Figure 4:
Bit-Slice of First
Two Adders

In a simple multiplier, the product is
computed using a cascade of gated adders
together with appropriate shifts (Figure 3).
A more detailed view of a single bit slice
through the first two adders of this multi-
plier is shown in Figure 4. One of the two
AND gates that precedes the first adder is
combined into the function generator that
controls the carry multiplexer. The other

AND gate, however, must use a separate
function generator because there is a fan-
out point at the second input to the adder.

In the second and subsequent adders,
the AND gates again use separate function
generators. This permits the XOR gates that
complete the previous sums to be merged
adder inputs, thus saving both logic re-
sources and critical-path delay. If, instead,
the AND gates had been merged into the

inputs, the XOR gates would have required
function generators. In this case, the re-
source utilization would have been the
same, but the delay longer. Only in the
final adder is a separate function generator
needed for the XOR gate.

The speed of the multiplier can be
increased by rearranging the cascade of
adders into a tree, as in Figure 5. After the
first set of adders, the input of each adder
can absorb the output XOR gate of one of
the two preceding adders, as described in
the cascade multiplier. The other preceding
adder, however, must use a separate func-
tion generator for its XOR gate.

In the first set of adders, the objective is
to multiply the X input by bit pairs of Y,
creating products that are 0X, 1X, 2X or 3X.
This is usually achieved by gating X and 2X
into an adder, as is shown in Figure 5.

However, a different, more direct
approach may be used in XC5200 FPGA.

Figure 5:
Adder-Tree Multiplier

Figure 6:
First Stage of a Tree-Adder
Multiplier

A bit slice of this more efficient approach is
shown in Figure 6. The carry chain is only
used to add X and 2X when the 3X output
is required. Otherwise, 0, X or 2X is se-
lected in the first function generator and
routed to the second function generator
where it passes through unaltered. While
the carry chain continues to operate in a
meaningless way, it cannot damage itself,
and its outputs are not required. When 3X
is required, the first function generator
XORs X and 2X to control the carry chain
in a normal addition. The sum is completed
in the XOR gate that precedes the multi-
plexer in the second function generator.◆

24 25

additional CLBs are required to select
between the outputs of these adders ac-
cording to the carry output from the lower
half. The technique is only effective for
relatively long adders; the incremental cost
is 100%.

It is interesting to note that, in the
XC5200 architecture, the carry-select and
conditional-sum techniques cannot always

Figure 3:
4-Bit Cascade Multiplier

XC5200
Carry Logic

Continued from the previous page

be distinguished. Both sums of the condi-
tional-sum adder can be completed in the
same function generator. This function
generator can be further used to select
between them. If this is done, all the func-
tion-generator truth tables and all the inter-
connections become identical to the carry-
select adder. This should not be surprising,
however, since both techniques implement
the same uniquely defined adder function.

Figure 4:
Bit-Slice of First
Two Adders

In a simple multiplier, the product is
computed using a cascade of gated adders
together with appropriate shifts (Figure 3).
A more detailed view of a single bit slice
through the first two adders of this multi-
plier is shown in Figure 4. One of the two
AND gates that precedes the first adder is
combined into the function generator that
controls the carry multiplexer. The other

AND gate, however, must use a separate
function generator because there is a fan-
out point at the second input to the adder.

In the second and subsequent adders,
the AND gates again use separate function
generators. This permits the XOR gates that
complete the previous sums to be merged
adder inputs, thus saving both logic re-
sources and critical-path delay. If, instead,
the AND gates had been merged into the

inputs, the XOR gates would have required
function generators. In this case, the re-
source utilization would have been the
same, but the delay longer. Only in the
final adder is a separate function generator
needed for the XOR gate.

The speed of the multiplier can be
increased by rearranging the cascade of
adders into a tree, as in Figure 5. After the
first set of adders, the input of each adder
can absorb the output XOR gate of one of
the two preceding adders, as described in
the cascade multiplier. The other preceding
adder, however, must use a separate func-
tion generator for its XOR gate.

In the first set of adders, the objective is
to multiply the X input by bit pairs of Y,
creating products that are 0X, 1X, 2X or 3X.
This is usually achieved by gating X and 2X
into an adder, as is shown in Figure 5.

However, a different, more direct
approach may be used in XC5200 FPGA.

Figure 5:
Adder-Tree Multiplier

Figure 6:
First Stage of a Tree-Adder
Multiplier

A bit slice of this more efficient approach is
shown in Figure 6. The carry chain is only
used to add X and 2X when the 3X output
is required. Otherwise, 0, X or 2X is se-
lected in the first function generator and
routed to the second function generator
where it passes through unaltered. While
the carry chain continues to operate in a
meaningless way, it cannot damage itself,
and its outputs are not required. When 3X
is required, the first function generator
XORs X and 2X to control the carry chain
in a normal addition. The sum is completed
in the XOR gate that precedes the multi-
plexer in the second function generator.◆

